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The spectrum of a variety of modular groupoids

Robert A. R. Monzo

Abstract. We prove that the spectrum of the variety of idempotent, right modular and anti-
rectangular groupoids consists of all powers of four. We also prove that any �nite or countable
groupoid anti-isomorphic to a groupoid in that variety is isomorphic to it. Finally, it is proved
that, to within isomorphism, there is only one countable groupoid in that variety and that it is
isomorphic to a proper subgroupoid of itself.

1. Introduction

Kazim and Naseeruddin studied a groupoid variety consisting of what they called
left almost semigroups, groupoids satisfying the equation xy · z = zy · x [9]. Such
groupoids have also been referred to as left invertive [5], Abel-Grassmann's [8,
10, 11, 12, 14, 15, 16] and right modular [7]. Various aspects of these groupoids
have been studied over the years, such as partial ordering and congruences [6],
in�ations [15], idempotent structure [14], zeroids and idempoids [12], structure of
unions of groups [10], power groupoids and inclusion classes [11] simplicity [7] and
combinatorial chacterization [1].

In this paper we study the variety I ∩RM ∩AR of idempotent, right modular,
anti-rectangular groupoids, the collection of groupoids that satisfy the equations
x = x2, xy · z = zy · x and xy · x = y. These groupoids also satisfy the equation
x · yz = z · yx and are therefore modular. They were called anti-rectangular AG-
bands in [14] and are also known, perhaps more commonly, as a�ne spaces over

GF (4) [1, 4]. The main result of this paper is that there is, up to isomorphism,
exactly one groupoid of order 4n in I∩RM∩AR for each n ∈ {0, 1, 2, . . .} and that
there are no �nite groupoids in I ∩RM ∩AR of any other orders. We also prove
that, up to isomorphism, there is only one countable groupoid in I ∩ RM ∩ AR
and that it is isomorphic to a proper subgroupoid of itself.

2. Preliminary de�nitions, notation and results

We use G, H, J, . . . to denote groupoids, xy or x · y to denote the product of x on
the left with y on the right. For example, (xy · z) · yz = [(x · y) · z] · (y · z). The
varieties of idempotent and anti-rectangular groupoids are denoted by I and AR
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and are the collection of groupoids satisfying the equations x = x2 and xy · x = y
respectively.

The set of orders of the �nite algebras in a groupoid variety V is called the spec-
trum of V. We will denote this by sp(V ). T. Evans [3] showed that the spectrum
of the groupoid variety de�ned by the equation xy ·yz = y is the set {n2 : n ∈ N}.
Evans generalised this result and obtained, for each positive integer n ∈ N , a va-
riety of groupoids having as spectrum all nth powers [2]. The main result in this
paper, referred to in the introduction above, is that the spectrum of I ∩RM ∩AR
is {4n : n ∈ N ∪ {0}}.

There is another reason to study the structure of groupoids in I ∩ RM ∩ AR.
Let RM denote the variety of right modular groupoids determined by the equation
xy · z = zy · x. Proti¢ and Stepanovi¢ [14] proved that any idempotent, right
modular groupoid G is an idempotent, right modular groupoid YG of members of
I ∩RM ∩AR. In other words,

Lemma 2.1. [14, Theorem 2.1]
If G ∈ I ∩RM, then there exists a groupoid YG ∈ I ∩RM such that G is a disjoint

union of groupoids Gα (α ∈ YG), GαGβ ⊆ Gαβ (α, β ∈ YG) and Gα ∈ I∩RM∩AR
(α ∈ YG).

So, the �nite members of I ∩ RM ∩ AR are basic building blocks of the �nite
members of I∩RM . As we shall see, the basic building block of the �nite members
of I ∩RM ∩AR is the following groupoid T4 of order 4, called Traka 4 in [14]. It
is isomorphic to any groupoid generated by any two distinct elements, a and b say,
of any member of I ∩ RM ∩ AR and, therefore, T4 ∈ I ∩ RM ∩ AR (see Lemma
2.4 below). The multiplication table of T4 is:

T4 a b ab ba
a a ab ba b
b ba b a ab
ab b ba ab a
ba ab a b ba

We will also show that if G ∈ I ∩ RM ∩ AR and |G| = 4n then G consists of
4n−1 disjoint copies of T4 (see Corollary 3.8). Some of the following results will
be used throughout this paper. Several of the proofs are straightforward and are
omitted.

Lemma 2.2. [13] If G ∈ RM, then G satis�es the identity xu · vy = xv · uy.

Lemma 2.3. If G ∈ I ∩RM ∩AR. then G satis�es the identity x · yz = z · yx.

Proof. z · yx = (yx · z) · z = (zx · y) · z = [zx · (zy · z)] · z =
= [(z · zy) · (xz)] · z = (z · xz) · (z · zy) = x · [(zy · z) · z] = x · yz. �

Lemma 2.4. Let G ∈ I ∩ RM ∩ AR with {c, d} ⊆ G and c 6= d. Then the

subgroupoid 〈c, d〉 of G generated by c and d is isomorphic to T4. One isomorphism

is given by the mapping c→ a, d→ b, cd→ ab and dc→ ba.
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Lemma 2.5. Any two distinct elements of T4 generate T4.

Lemma 2.6. Any bijection on T4 is either an isomorphism or an anti-isomorphism.

Four-cycles and two-cycles are anti-isomorphisms and the identity mapping, three-

cycles and products of two-cycles are isomorphisms.

Lemma 2.7. Any groupoid anti-isomorphic to T4 is isomorphic to T4. In partic-

ular, if Φ : T4 → G is an anti-isomorphism, then the mapping a → Φa, b → Φb,
ab→ Φ(ba) and ba→ Φ(ab) is an isomorphism.

Lemma 2.8. Suppose that H and K are subgroupoids of G ∈ I ∩ RM ∩ AR and

that H ∼= T4
∼= K. Then either H = K, H ∩K = ∅ or H ∩K = {c}.

Notation 2.9. G ∼= H [G∼=←−H] will denote that G and H are isomorphic [anti-

isomorphic].

Lemma 2.10. If G ∈ I ∩RM ∩AR and G∼=←−H, then H ∈ I ∩RM ∩AR.

Proof. Let Φ : G → H be an anti-isomorphism. Then it is straightforward to
show that H is an idempotent groupoid that satis�es the equation xy · x = y.
Let {h1, h2, h3} ⊆ H. Then there exists {g1, g2, g3} ⊆ G such that hi = Φgi, i ∈
{1, 2, 3}. Using Lemma 2.3, h1h2 · h3 = (Φg1) (Φg2) · (Φg3) = Φ (g2g1) · (Φg3) =
Φ(g3 · g2g1) = Φ(g1 · g2g3) = Φ (g2g3) · (Φg1) = (Φg3) (Φg2) · (Φg1) = h3h2 · h1 and
so H satis�es the equation xy · z = zy · x. Hence, H ∈ I ∩RM ∩AR.

3. The structure of �nite members of I ∩RM ∩AR

We use G ≤ H [G ≺ H] to denote that G is a subgroupoid [proper subgroupoid]
of the groupoid H. Recall that a ∈ T4.

Theorem 3.1. If T4 ≤ H ≺ R, R ∈ I ∩ RM ∩ AR and r ∈ R − H, then

Hr = H ∪ {rh}h∈H ∪ {hr}h∈H ∪ {ar · h}h∈H is a subgroupoid of R and, therefore,

Hr ∈ I ∩RM ∩AR. If H has n elements then Hr has 4n elements.

Proof. We will prove that Hr is closed under the multiplication inherited from R
and that its multiplication table is as follows:

Hr k rk kr ar · k
h hk ar · (ka · h) r · kh (hk · ah) r
rh kh · r r · hk ar · (k · ah) a · hk
hr ar · (ha · kh) kh hk · r r (ah · k)

ar · h r (h · ka) (hk · a) r ak · ha ar · hk

Table 1. The multiplication table for {h, k} ⊆ H.

We will use Lemma 2.2 and Lemma 2.3, together with the fact that R is in
I ∩RM ∩AR to calculate the products in rows 2, 3, 4 and 5 of the table.
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Row 2: The product in column 2 follows from the fact that H is a subgroupoid
of R. The product in column 4 follows from Lemma 2.3. For column 3, h · rk =
h · (ar · a) k = h · (ka · ar) = ar · (ka · h). For column 5, h · (ar · k) = (h · ar) ·hk =
(r · ah) · hk = (hk · ah) · r.

Row 3: The product in column 2 follows from the right modularity of R.
The product in column 3 follows from Lemma 2.2 and the fact that R is an
idempotent groupoid. For the product in column 4, rh · kr = rk · hr = rk ·
(ah · a) r = rk · (ra · ah) = (r · ra) (k · ah) = ar · (k · ah) . For the product in
column 5, rh · (ar · k) = (r · ar) · hk = a · hk.

Row 4: For the product in column 2, hr · k = [h (ar · a)] k = [k (ar · a)]h =
kh·[(ar · a) h] = kh·(ha · ar) = ar (ha · kh). For the product in column 3, hr ·rk =
(rk · r) h = kh. For the product in column 4, hr · kr = hk · r. For column 5,
hr · (ar · k) = (h · ar) · rk = (r · ah) · rk = r (ah · k).

Row 5: For the product in column 2, (ar · h) k = (ar · h) (a · ka) = r (h · ka).
For column 3, (ar · h) · rk = (ar · r) · hk = ra · hk = (hk · a) r. For column 4,
(ar · h) · kr = (hr · a) · kr = (ha · ra) · kr = (ha · k) · a = ak · ha. The product in
column 5 follows from Lemma 2.2 and the fact that R is an idempotent groupoid.

Thus, Hr is closed under the groupoid operation and hence Hr belongs to
I ∩RM ∩AR.

It is straightforward to show that the sets H, {rh}h∈H , {hr}h∈H and {ar·h}h∈H

are pairwise disjoint sets. Furthermore, it is easy to show that, for {h, k} ⊆ H,
two elements rh and rk [hr and kr; ar ·h and ar ·k] are equal if and only if h = k.
Therefore, if H contains n elements then Hr contains 4n elements.

De�nition 3.2. We will call Hr the extension of H by r.

Corollary 3.3. sp (I ∩RM ∩AR) = {4n : n ∈ N ∪ {0}}.

Corollary 3.4. A groupoid G ∈ I ∩RM ∩AR of order 4n has (n+1) generators,
n ∈ {0, 1, . . . }.

Theorem 3.5. Suppose that T4 ≤ H ∈ I ∩ RM ∩ AR and r /∈ H. We de�ne

pairwise disjoint sets A = {rh}h∈H , B = {hr}h∈H and C = {ar ◦h}h∈H such that

A∩H = B∩H = C ∩H = ∅. De�ne Hr = H ∪A∪B∪C with a product ◦ de�ned
as in Table 2 below. Then Hr ∼= Hr and therefore Hr ∈ I ∩RM ∩AR.

Hr k rk kr ar ◦ k

h hk ar ◦ (ka · h) r(kh) (hk · ah)r

rh (kh)r r(hk) ar ◦ (k · ah) a · hk

r ar ◦ (ha · kh) kh (hk)r r(ah · k)

ar ◦ h r(h · ka) (hk · a)r ak · ha ar ◦ hk

Table 2. The multiplication table for ◦ with {h, k} ⊆ H.

Proof. The product ◦ is well de�ned and closed and so Hr is a groupoid. We
de�ne a mapping Φ : Hr → Hr as follows: for any h ∈ H, Φh = h, Φ(rh) = rh,
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Φ(hr) = hr and Φ(ar ◦ h) = ar · h. It is clear that Φ is one-to-one and onto Hr.
We now show that Φ is a homomorphism. Let {x, y} ⊆ Hr. There are 16 possible
forms x ◦ y can take.

Let {h, k} ⊆ H.

Case 1. x = h, y = k. Then Φ(x ◦ y) = Φ(hk) = hk = Φh · Φk = Φx · Φy.

Case 2. x = h, y = rk. Then Φ(x◦y) = Φ(h◦rk) = Φ(ar◦ka·h)) = ar(ka·h) =
h · rk = Φh · Φ(rk) = Φx · Φy.

Case 3. x = h, y = kr. Then Φ(x ◦ y) = Φ(h ◦ kr) = Φ(r ◦ kh) = r · kh =
h · kr = Φh · Φ(kr) = Φx · Φy.

Case 4. x = h, y = ar ◦ k. Then we have Φ(x ◦ y) = Φ(h ◦ (ar ◦ k)) =
Φ((hk · ah)r) = (hk · ah)r = h(ar · k) = Φh · Φ(ar ◦ k) = Φx · Φy.

Case 5. x = rh, y = k. Then Φ(x ◦ y) = Φ(rh ◦ k) = Φ((kh)r) = kh · r =
rh · k = Φ(rh) · Φk = Φx · Φy.

Case 6. x = rh, y = rk. Then Φ(x ◦ y) = Φ(rh ◦ rk) = Φ(r(hk)) = r · hk =
rh · rk = Φ(rh) · Φ(rk) = Φx · Φy.

Case 7. x = rh, y = kr. Then Φ(x ◦ y) = Φ(rh ◦ kr) = Φ(ar ◦ (k · ah)) =
ar · (k · ah) = rh · kr = Φ(rh) · Φ(kr) = Φx · Φy.

Case 8. x = rh, y = ar ◦ k. Then Φ(x ◦ y) = Φ(rh ◦ (ar ◦ k)) = a · hk =
rh · (ar · k) = Φ(rh) · Φ(ar · k) = Φx · Φy.

Case 9. x = hr, y = k. Then Φ(x ◦ y) = Φ(hr ◦ k) = Φ(ar ◦ (ha · kh)) =
ar · (ha · kh) = hr · k = Φ(hr) · Φk = Φx · Φy.

Case10. x = hr, y = rk. Then Φ(x◦ y) = Φ(hr ◦ rk) = Φ(kh) = kh = hr · rk =
Φ(hr) · Φ(rk) = Φx · Φy.

Case 11. x = hr, y = kr. Then Φ(x ◦ y) = Φ(hr ◦ kr) = Φ((hk)r) = hk · r
= hr · kr = Φ(hr) · Φ(kr) = Φx · Φy.

Case 12. x = hr, y = ar ◦ k. Then Φ(x ◦ y) = Φ(hr ◦ (ar ◦ k)) = Φ(r(ah · k)) =
r(ah · k) = hr · (ar · k) = Φ(hr) · Φ(ar · k) = Φx · Φy.

Case 13. x = ar · h, y = k. Then Φ(x ◦ y) = Φ((ar ◦ h) ◦ k) = Φ(r(h · ka)) =
r(h · ka) = (ar · h) · k = Φ(ar ◦ h) · Φk = Φx · Φy.

Case 14. x = ar ◦ h, y = rk. Then Φ(x ◦ y) = Φ((ar ◦ h) ◦ rk) = Φ((hk · a)r) =
(hk · a)r = (ar · h) · rk = Φ(ar · h) · Φ(rk) = Φx · Φy.

Case 15. x = ar ◦ h, y = kr. Then Φ(x ◦ y) = Φ((ar ◦ h) ◦ kr) = ak · ha =
(ar · h) · kr = Φ(ar · h) · Φ(kr) = Φx · Φy.

Case 16. x = ar ◦ h, y = ar ◦ k. Then Φ(x ◦ y) = Φ((ar ◦ h) ◦ (ar ◦ k)) =
Φ(ar(hk)) = ar · hk = (ar · h) · (ar · k) = Φ(ar · h) · Φ(ar · k) = Φx · Φy.

Hence, Φ is an isomorphism and Hr ∼= Hr.

De�nition 3.6. We de�ne G0 as the trivial groupoid, G1 = T4 and by induction,
Gn = G

rn−1
n−1 , n > 2, where rn /∈ Gn, n > 1.

Corollary 3.7. Any �nite member of I ∩RM ∩AR is isomorphic to Gn for some

n ∈ {0, 1, 2 . . .}. If G ∈ I ∩RM ∩AR and |G| = 4n, then G ∼= Gn.
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Corollary 3.8. For n ∈ N , Gn is a disjoint union of groupoids Gα with GαGβ ⊆
Gαβ and Gα

∼= Gn−1, α, β ∈ T4. Therefore, Gn is a disjoint union of 4n−1 copies

of T4.

4. The countable member of I ∩RM ∩AR

In this section we show that, to within isomorphism, there is precisely one count-
able member of I∩RM∩AR. This result will follow from the following construction
of such a groupoid.

Construction 4.1. Let H =
⋃∞

n=1 Gn, with the Gn's as in De�nition 3.6. De�ne
a product ∗ on H as follows. If {u, v} ⊆ H with u ∈ Gnu − Gnu−1 and v ∈
Gnv −Gnv−1 then u ∗ v is de�ned as the product of u and v in Gmax{nu,nv}.

Theorem 4.2. H in Construction 4.1 is countable and H ∈ I ∩RM ∩AR.

Proof. Clearly ∗ is well de�ned and H is closed with respect to ∗. By The-
orem 3.5, Gn ∈ I ∩ RM ∩ AR, n ∈ N, and since max{max{nu, nv}, nw} =
max{max{nw, nv}, nu}, it follows easily that H ∈ I ∩ RM ∩ AR. Since each
Gn, n ∈ N, is countable, so is H.

Theorem 4.3. A countable K ∈ I∩RM∩AR is isomorphic to H in Construction

4.1.

Proof. Let K =
⋃∞

n=1{yn}, with yi = yj if and only if i = j. De�ne K0 = ∅,
K1 = {y1, y2, y1y2, y2y1} and R1 = K − K1. De�ne K2 = K

yt1
1 , where t1 is the

minimum of the subscripts of the yn's in R1. De�ne R2 = K−K2 and K3 = K
yt2
2 ,

where t2 is the minimum subscript of the yn's in R2. In general, by induction we
de�ne Rn = K − Kn and Kn+1 = K

ytn
n , where tn is the minimum subscript of

the yn's in Rn. Then every yn must eventually appear in some Kt and therefore
K =

⋃∞
n=0 Kn. Note that if {h, k} ⊆ K, with h ∈ Kn−Kn−1 and k ∈ Km−Km−1,

then the product hk in K equals the product hk in KM , where M = max{n, m}.
By Lemma 2.4, K1

∼= G1 = T4. Call this isomorphism Φ1. Note that Φ1(y1) =
a, Φ1(y2) = b, Φ1(y1y2) = ab and Φ1(y2y1) = ba.

Now by induction we de�ne Φn : Kn → Gn, n > 2, as follows. Firstly,
Φn = Φn−1 on Kn−1. Then for k ∈ Kn −Kn−1 we de�ne

Φn(ytn−1k) = rn−1 ∗ (Φn−1k), Φn(kytn−1) = (Φn−1k) ∗ rn−1 and
Φn((y1ytn−1)k) = ((Φn−1y1) ∗ rn−1) ∗ (Φn−1k).

We now prove by induction on n that Φn is an isomorphism (n > 2). Assume
that for 1 6 t ≺ n, Φt is an isomorphism and Φty1 = a. Then the fact that
Φn is one-to-one and onto Gn follows from the de�nition of Φn and the fact that
Φn−1 is one-to-one and onto Gn−1. The fact that Φn(xy) = (Φnx)(Φny) for any
{x, y} ⊆ Kn follows from the de�nition of product in Kn and Gn (see Tables 3
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and 4 below) and the facts that Φn−1 is an isomorphism and Φn−1y1 = a. We
leave the straightforward details of these calculations to the reader.

Kn=K
ytn−1
n−1 m ytn−1m mytn−1 y1ytn−1 ·m

l lm y1ytn−1·(my1·l) ytn−1 ·ml (lm·y1l)·ytn−1

ytn−1 l ml · ytn−1 ytn−1 · lm y1ytn−1·(m·y1l) y1 · lm
lytn−1 y1ytn−1·(ly1·ml) ml lm · ytn−1 ytn−1·(y1l·m)

y1ytn−1 · l ytn−1 · (l ·my1) (lm · y1) · ytn−1 y1l ·my1 y1ytn−1 · lm

Table 3. The multiplication table for {l, m} ⊆ Kn−1.

Gn = G
rn−1
n−1 k rn−1k krn−1 arn−1 · k

h hk arn−1 ·(ka·h) rn−1(kh) (hk ·ah)rn−1

rn−1h (kh)rn−1 rn−1(hk) arn−1 ·(k ·ah) a · hk
hrn−1 arn−1 ·(ha·kh) kh (hk)rn−1 rn−1(ah·k)

arn−1 ·h rn−1(h · ka) (hk · a)rn−1 ak · ha arn−1 ·hk

Table 4. The multiplication table for {h, k} ⊆ Gn−1.

So every Φn : Kn → Gn is an isomorphism.

We now de�ne Φ : K → H as follows: for x ∈ Kn −Kn−1, Φx = Φnx. Note
that if x ∈ Kn − Kn−1 and M > n then, since Kn ⊆ Kn+1 ⊆ . . . ⊆ KM−1 and
Φt = Φt−1 on Kt−1, t ∈ N − {1}, ΦM = Φn on Kn. Then for any {x, y} ⊆ K,
with x ∈ Kn −Kn−1 and y ∈ Km −Km−1, Φ(xy) = ΦM (xy) = (ΦMx)(ΦMy) =
(Φnx)(Φmy) = (Φx)(Φy), where M = max{n, m}. Using the de�nition of the Φn's
it is straightforward to prove that Φ is one-to-one and onto H. So, H ∼= K.

Corollary 4.4. A countable member of I ∩ RM ∩ AR is a union of a countable

number of disjoint, isomorphic copies of T4.

Corollary 4.5. A countable member of I ∩ RM ∩ AR is isomorphic to a proper

subgroupoid of itself.

Proof. Consider H in Construction 4.1. Let J1 = {a, ar1, r1a, r1}. For 1 ≺ n
de�ne Jn by induction as Jn = Jrn

n−1. Then J =
⋃∞

n=1 Jn, with the multiplication
inherited from H, is a proper, countable subgroupoid of H. By Theorem 4.3, J
and H are isomorphic.

It follows from Lemma 2.10, Corollary 3.7 and Theorem 4.3 that:

Corollary 4.6. If G ∈ I ∩ RM ∩ AR, G is �nite or countable and G∼=←−H, then

G ∼= H.
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5. Smallest (W,W) groupoids in RM−AR

De�nition 5.1. A groupoid G is called a groupoid YG of groupoids Gα, α ∈ YG if
G is a disjoint union of the groupoids Gα and GαGβ ⊆ Gαβ , α, β ∈ YG. If a ∈ Gα,
then Ga will denote Gα.

In De�nition 5.1, if YG ∈ U and Gα ∈ V (α ∈ YG) for some groupoid varieties
U and V, then G is called a (U, V )-groupoid.

In this section W will denote the variety I ∩RM ∩AR.

Looking closely at Lemma 2.1, it is natural to wonder whether a right modular
(W,W )-groupoid is anti-rectangular and, hence, a member of W. The converse
statement is trivial, since any G ∈W is a groupoid YG = G of trivial members of
W. However, there is a (W,W )-groupoid G ∈ RM − AR. In fact we �nd a right
modular (W,W )-groupoid G of order 16, which is the minimal order for a right
modular (W,W )-groupoid that is not anti-rectangular, as we proceed to prove.
We also prove that G is unique up to isomorphism and that any right modular
(W,W )-groupoid K /∈ AR contains an isomorphic copy of G.

Lemma 5.2. If K ∈ RM is a groupoid YK of groupoids Kα, α ∈ YK , with

YK ∈W and Kα ∈W (α ∈ YK), then
1) K is cancellative,

2) for any {a, b} ⊆ K, |Ka| = |Kb|,
3) for any {a, b} ⊆ K, ab · a = b if and only if ba · b = a.

Proof. 1) Suppose that a ∈ Kα = Ka, b ∈ Kβ = Kb and c ∈ Kγ = Kc. If
ca = cb, then γα = γβ and, since YK is cancellative, α = β. Then ab · a = b and
bc = (ab · a)c = ca · ab = cb · ab = (ab · b)c = ba · c.

Hence, (ca ·c)b = bc ·ca = (ba ·c) ·ca = (ca ·c) ·ba. But since {b, ba, ca ·c} ⊆ Kβ ,
and Kβ is cancellative, b = ba. Therefore b = ba = bb. So a = b. Dually, if ac = bc,
then a = b. Therefore K is cancellative.

2) Now let c ∈ Kα = Ka. Then ab·c ∈ Kβ . Since K is cancellative |Kα| 6 |Kβ |.
Dually |Kβ | 6 |Kα| and so |Kα| = |Kβ |.

3) Note that ab · a = a · ba and so we can write aba to denote ab · a. If aba = b,
then ba · b = a((bab)a) = a((ba)(aba)) = a((ba)b). But {a, bab} ⊂ Ka and Ka is
cancellative. Hence a = bab. Dually, bab = a implies aba = b.

Now suppose that K ∈ RM is a groupoid YK of groupoids Kα (α ∈ YK), with
YK ∈ W and Kα ∈ W , (α ∈ YK). If K is not anti-rectangular, then it follows
from Lemma 5.2 that there is a set {a, b, c, d} ⊆ K with aba = d 6= b, bab = c 6= a,
{a, c, ac, ca} ⊆ Ka, {b, d, bd, db} ⊆ Kb, ab 6= cd and ba 6= dc.

It follows from Lemma 2.4 and the fact that K is a groupoid YK of groupoids
Kα, (α ∈ YK), with YK ∈W and Kα ∈W that {a, c, ac, ca} = Ga, {b, d, bd, db} =
Gb, {ab, cd, ab · cd, cd · ab} = Gab and {ba, dc, ba · dc, dc · ba} = Gba are disjoint,
isomorphic copies of T4 contained in Ka, Kb, Kab and Kba respectively. We
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proceed to demonstrate that the union G =
⋃

Gg, g ∈ {a, b, ab, ba}, of these four
copies of T4 is a subgroupoid of K and is a groupoid T4 of groupoids Gg.

Recall that K ∈ I∩RM is cancellative. We have ab·a = d. Then ab·c = cb·a =
(bab · b)a = (b · ba)a = aba · b = db, ab ·ac = (aba)(ab · c) = aba · (cb ·a) = d ·db = bd
and ab · ca = (ab · c) · aba = db · d = b. We have shown that Gb = (ab)Ga.

Similarly we can calculate that Gab = Gab and Gba = bGa.
We can then calculate the Cayley table consisting of the 256 products of pairs

of elements of G. In order to have su�cient space to show the Cayley table we
de�ne the following two ordered 16�tuples as equal:
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16) =

(a, c, ac, ca, b, d, bd, db, ab, cd, ab · cd, cd · ab, ba, dc, ba · dc, dc · ba).
G 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 3 4 2 9 11 12 10 16 14 13 15 6 8 7 5
2 4 2 1 3 12 10 9 11 13 15 16 14 7 5 6 8
3 2 4 3 1 10 12 11 9 15 13 14 16 5 7 8 6
4 3 1 2 4 11 9 10 12 14 16 12 13 8 6 5 7
5 13 15 16 14 5 7 8 6 2 4 3 1 12 10 9 11
6 16 14 13 15 8 6 5 7 3 1 2 4 9 11 12 10
7 14 16 15 13 6 8 7 5 1 3 4 2 11 9 10 12
8 15 13 14 16 7 5 6 8 4 2 1 3 10 12 11 9
9 6 8 7 5 13 15 16 14 9 11 12 10 4 2 1 3
10 7 5 6 8 16 14 13 15 12 10 9 11 1 3 4 2
11 5 7 8 6 14 16 15 13 10 12 11 9 3 1 2 4
12 8 6 5 7 15 13 14 16 11 9 10 12 2 4 3 1
13 9 11 12 10 2 4 3 1 8 6 5 7 13 15 16 14
14 12 10 9 11 3 1 2 4 5 7 8 6 16 14 13 15
15 10 12 11 9 1 3 4 2 7 5 6 8 14 16 15 13
16 11 9 10 12 4 2 1 3 6 8 7 5 15 13 14 16

Table 5.
G h (ab) · h hb bh
g gh [c(g · ah)] b b [(a · hg)c] (ab) · (ga · h)

(ab) · g b(ca · hg) (ab) · (gh) cg · ha (gh · a)b
gb (ab) · (ha · gh) b(hg · ca) (gh)b h · (ag · c)
bg (hg)b h · gc (ab) · (g · ch) b(gh)

Table 6. The multiplication table for {g, h} ⊆ Ga = {a, c, ac, ca}.

Table 6 is derived using calculations obtained from Table 5. Notice that Table
6 yields the following Cayley table in set theoretic notation:

G Ga Gb = (ab)Ga Gab = Gab Gba = bGa

Ga Ga Gab Gba Gb

Gb = (ab)Ga Gba Gb Ga Gab

Gab = Gab Gb Gba Gab Ga

Gba = bGa Gab Ga Gb Gba

Table 7.

Note that the subscripts of the G′
gs, g ∈ {a, b, ab, ba}, multiply in exactly the

same way as the elements of T4. The fact that G ∈ RM follows from the fact that
G ≤ K and K ∈ I ∩RM ⊆ RM . This proves that G is a right modular groupoid



96 R.A.R. Monzo

T4 of groupoids Gg, where each Gg
∼= T4. Note however that {a, b, ab, ba} is not

even a subgroupoid of G! We have therefore proved:

Theorem 5.3. G ∈ I∩RM and G is a groupoid T4 of (four) isomorphic copies of
T4. However G /∈W . Also, if (W,W )-groupoid K ∈ RM −AR, then K contains

an isomorphic copy of G.
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