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Congruences on ternary semigroups

Sheeja G. and Sri Bala S.∗

Abstract. We study congruences on ternary semigroups. We have extended Lallement's
lemma for a regular ternary semigroups. We have characterized minimum group congruence and
maximum idempotent pair separating congruence on a strongly regular ternary semigroups. We
have also obtained a characterization for maximum idempotent pair separating congruence and
smallest strongly regular congruence on an orthodox ternary semigroup.

1. Introduction

Ternary semigroups, i.e., algebras of the form (T, [ ]), where [ ] is a ternary
operation T 3 −→ T : (x, y, z) −→ [xyz] satisfying the associative law

[xy[uvw]] = [x[yuv]w] = [[xyu]vw]

are studied by many authors. The study of ideals and radicals of ternary semi-
groups was initiated in [11]. The concept of regular ternary semigroups was intro-
duced in [10]. In [6] regular ternary semigroups was characterized by ideals. In
[8] regular ternary semigroups are characterized by idempotent pairs. Orthodox
ternary semigroups are investigated in [9]. Congruences on ternary semigroups are
described in [2].

In this paper we generalize to ternary semigroups some important results on
congruences on binary semigroups such as the Lallement's Lemma for example.
We also characterize the minimal congruence on ternary semigroup under which
the quotient algebra is a ternary group and �nd a maximal congruence separating
idempotent pairs.

2. Preliminaries

For simplicity a ternary semigroup (T, [ ]) will be denoted by T and the symbol of
an inner ternary operation [ ] will be deleted, i.e., instead of [[xyz]uw] or [x[yzu]w]
or [xy[zuw]] we will write [xyzuw].
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Recall that an element x of a ternary semigroup T is called regular if there
exists y ∈ T such that [xyx] = x. A ternary semigroup in which each element is
regular is called regular. An element x ∈ T is inverse to y ∈ T if [xyx] = x and
[yxy] = y. Clearly, if x is inverse to y, then y is inverse to x. Thus every regular
element has an inverse. The set of all inverses of x in T is denoted by I(x).

De�nition 2.1. A pair (a, b) of elements of T is an idempotent pair if [ab[abt]] =
[abt] and [[tab]ab] = [tab] for all t ∈ T . An idempotent pair (a, b) in which an
element a is inverse to b is called a natural idempotent pair.

According to Post [7] two pairs (a, b) and (c, d) are equivalent if [abt] = [cdt]
and [tab] = [tcd] for all t ∈ T. Equivalent pairs are denoted by (a, b) ∼ (c, d). If
(a, b) is an idempotent pair, then ([aba], [bab]) is a natural idempotent pair and
(a, b) ∼ ([aba], [bab]). The equivalence class containing (a, b) will be denoted by
〈a, b〉. By ET we denote the set of all equivalence classes of idempotent pairs in T .

For a, b ∈ T consider the maps La,b : T −→ T : x −→ [abx] and Ra,b : x −→
[xab]. On the set

M = {m(a, b) |m(a, b) = (La,b,Ra,b), a, b ∈ T},

which can be identi�ed with T × T, we introduce a binary product by putting

m(a, b)m(c, d) = m([abc], d) = m(a, [bcd]).

Then M is a semigroup. This semigroup can be extended to the semigroup ST =
T ∪M as follows. For A,B ∈ ST we de�ne

AB =


m(a, b) if A = a, B = b ∈ T,
[abx] if A = m(a, b) ∈ ST , B = x ∈ T,
[xab] if A = x ∈ T, B = m(a, b) ∈ ST ,

m([abc], d) if A = m(a, b), B = m(c, d) ∈ ST .

The semigroup ST is a covering semigroup in the sense of Post [7] (see also [1]).
The product [abc] in T is equal to abc in ST . The element m(a, b) in ST is usually
denoted by ab.

It is shown in [8] that T is a regular (strongly regular) ternary semigroup if and
only if ST is a regular (inverse) semigroup. There is a bijective correspondence
between ET and the set EST

of idempotents of ST . Note that (a, b) is an idempotent
pair in T if and only if m(a, b) is an idempotent in ST and 〈a, b〉 corresponds to
m(a, b).

De�nition 2.2. A ternary semigroup T is called a ternary group if for a, b, c ∈ T
the equations [abx] = c, [ayb] = c and [zab] = c have (unique) solutions in T.

De�nition 2.3. An element a of a ternary semigroup T is said to be invertible if
there exists an element b ∈ T such that [abx] = x = [bax] = [xab] = [xba] for all
x ∈ T.
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An invertible element is regular. In ternary group each element is invertible.
Moreover, directly from the de�nition of a ternary group it follows that in ternary
groups each element is regular and invertible. An element which is inverse to x is
called it skew to x and is denoted by x (see [1] or [3]). Obviously it is uniquely
determined and x = x.

In this paper we will denote the unique inverse of x (also in ternary semigroups)
by x−1.

As a simple consequence of results proved in [3] and [7] we can deduce

Theorem 2.4. A ternary semigroup T is a ternary group if and only if one of
the following equivalent conditions is satis�ed.

(i) T is regular and cancellative.

(ii) T is regular and all idempotent pairs are equivalent.

(iii) All elements of T are invertible.

(iv) T contains no proper one sided ideals.

More information on ternary groups one can �nd in [4] and [5].

De�nition 2.5. A regular ternary semigroup T is called orthodox if for any two
idempotents pairs (a, b) and (c, d) the pair ([abc], d) is also an idempotent pair.

If T is an orthodox ternary semigroup, then ET is a band. Hence ET is a
semilattice of rectangular bands. Clearly ET ' EST

as bands.
For a, b ∈ T denote by W (a, b) the set of all equivalence classes 〈u, v〉 such

that (u, v) ∈ T × T and [abuvabt] = [abt], [tabuvab] = [tab], [uvabuvt] = [uvt],
[tuvabuv] = [tuv].

Clearly, 〈x, y〉 ∈ W (a, b) if and only if xy ∈ I(ab) in ST . Since ET is a semi-
lattice of rectangular bands, from the fact that 〈a, b〉 and 〈c, d〉 are elements of
ET it follows that 〈[abc], d〉 and 〈[cda], b〉 are in the same component of ET and
consequently W ([abc], d) = W ([cda], b).

Proposition 2.6. [I(c)I(b)I(a)] ⊂ I([abc]) for all elements a, b, c of each orthodox
ternary semigroup.

Proposition 2.7. A regular ternary semigroup is orthodox if and only if for all
its elements a, b from I(a) ∩ I(b) 6= ∅ it follows I(a) = I(b).

The proofs of the above two facts are found in [9].

3. Congruences on ternary semigroups

Lemma 3.1. If (a, b) is an idempotent pair in an orthodox ternary semigroup T,
then ([uab], u′), ([abu], u′), ([uu′a], b) and ([buu′], a) are idempotent pairs for any
u ∈ T and u′ ∈ I(u).
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Proof. Indeed, we have [uabu′uabu′t] = [uabu′uab[u′uu′]t] = [u[abu′uabu′uu′]t] =
[u[abu′uu′]t] = [uabu′t] for all t ∈ T. Similarly, [tuabu′uabu′] = [tuabu′uabu′uu′] =
[tu[abu′uabu′uu′]] = [tuabu′]. Therefore ([uab], u′) is an idempotent pair. For
([abu], u′), ([uu′a], b) and ([buu′], a) the proof is analogous.

Corollary 3.2. If (a, b) is an idempotent pair in a strongly regular ternary semi-
group T, then ([uab], u−1),([abu], u−1) ([uu−1a], b) and ([buu−1], a) are idempotent
pairs for any u ∈ T.

Lemma 3.3. If (a, b) is an idempotent pair in an orthodox ternary semigroup T,
then ([uva], [bv′u′]) is an idempotent pair for all u′ ∈ I(u), v′ ∈ I(v) and u, v ∈ T.

Proof. By Lemma 3.1 ([vab], v′) is an idempotent pair and for all u′ ∈ I(u) and v′ ∈
I(v) we obtain [uvabv′u′uvabv′u′t] = [u[vabv′u′uvabv′u′uu′t]] = [uvabv′u′uu′t] =
[uvabv′u′t] for t ∈ T. Similarly [tuvabv′u′uvabv′u′] = [tuvabv′u′uvabv′u′uu′] =
[tuvabv′u′uu′] = [tuvabv′u′].

Corollary 3.4. If (a, b) is an idempotent pair in a strongly regular ternary semi-
group T, then ([uva], [bv−1u−1]) is an idempotent pair for all u, v∈T.

Lemma 3.5. (Generalised Lallement's Lemma)
Let ρ be a congruence on a regular ternary semigroup T. If (aρ, bρ) is an idempotent
pair in T/ρ then there exists an idempotent pair (p, q) in T such that (aρ, bρ) ∼
(pρ, qρ). Moreover, (p, q) satis�es the property that [Tpq] ⊆ [Tab] and [pqT ] ⊆
[abT ]

Proof. It is clear that T/ρ is a ternary semigroup. Let (aρ, bρ) be an idempo-
tent pair in T/ρ. If b′ is an inverse of b and u be an inverse of [[aba]bb′], then
for p = [abb′], q = [uab] and t ∈ T we have [pq[pqt]] = [[abb′][uab][abb′][uab]t] =
[abb′[uababb′u]abt] = [[abb′][uab]t] = [pqt]. Similarly [[tpq]pq] = [t[abb′][uababb′u]ab]
= [tpq]. Hence (p, q) is an idempotent pair. Moreover [pρqρxρ] = [[abb′]ρ[uab]ρxρ] =
[aρbρb′ρuρaρbρxρ] = [aρbρaρbρb′ρuρaρbρaρbρb′ρbρxρ] = [[[[aba]bb′]u[[aba]bb′]]bx]ρ
= [[aba]bx]ρ = [aρbρaρbρxρ] = [aρbρxρ] for x ∈ T. Analogously [xρpρqρ] =
[xρaρbρ] for all x ∈ T. Thus (aρ, bρ) ∼ (pρ, qρ) in T/ρ. From the choice of p
and q it is clear that [Tpq] ⊆ [Tab] and [pqT ] ⊆ [abT ].

Corollary 3.6. If T is a regular ternary semigroup and ρ is a congruence on T,
then T/ρ is a regular ternary semigroup.

De�nition 3.7. A congruence ρ on a ternary semigroup T is said to be a ternary
group congruence if T/ρ is a ternary group.

De�nition 3.8. A congruence ρ on a regular ternary semigroup T is called strongly
regular if T/ρ is a strongly regular ternary semigroup, and idempotent pair sepa-
rating if (a, b) and (c, d) are equivalent in T for each idempotent pairs (a, b), (c, d)
such that (aρ, bρ) and (cρ, dρ) are equivalent in T/ρ.

Lemma 3.9. Let ρ : T −→ Tρ be a ternary homomorphism of an orthodox ternary
semigroup T. Then Tρ is an orthodox ternary semigroup.
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Lemma 3.10. Let ρ be a ternary homomorphism of a strongly regular ternary
semigroup T. Then Tρ is a strongly regular ternary semigroup such that (aρ)−1 =
a−1ρ for all t ∈ T.

Proof. For idempotent pairs (aρ, bρ) and (xρ, yρ) in Tρ, by Lemma 3.5, there
exists idempotent pairs (p, q) and (u, v) such that (pρ, qρ) ∼ (aρ, bρ) and (uρ, vρ) ∼
(xρ, yρ). Thus [aρbρxρyρtρ] = [pρqρuρvρtρ] = [pquvt]ρ = [uvpqt]ρ = [uρvρpρqρtρ]
= [xρyρaρbρtρ] and [tρaρbρxρyρ] = [tρxρyρaρbρ]. Hence the idempotent pairs
(aρ, bρ) and (xρ, yρ) commute in T/ρ. Thus Tρ is strongly regular. Moreover, for
any a ∈ T we have [aρa−1ρaρ] = aρ and [a−1ρaρa−1ρ] = a−1ρ. Thus a−1ρ =
(aρ)−1, by [9].

Any congruence ρ on a ternary semigroup T can be extended to the relation
ρe de�ned on ST = T ∪M in the following way:

(x, y) ∈ ρe ⇔
{

(x, y) ∈ ρ and x, y ∈ T, or
x=ab, y=cd∈M and ([abt],[cdt]), ([tab],[tcd])∈ρ ∀t∈T.

Lemma 3.11. ρe is a congruence on ST .

Proof. It is clear that ρe is an equivalence relation on ST . To prove that it is a
congruence suppose xρey and x, y ∈ ST .

(i) If x, y ∈ T and z ∈ T, then [zxt]ρ[zyt] and [tzx]ρ[tzy] for any t ∈ T, so
zxρezy. Similarly [xzt]ρ[yzt] and [txz]ρ[tyz]. Hence xzρeyz. If z = uv, then zx =
[uvx], zy = [uvy] and [uvx]ρ[uvy]. Also [xuv]ρ[yuv]. Thus zxρezy and xzρeyz.

(ii) Suppose x = ab, y = cd and z = pq. Then xz = ([abp], q) and yz =
([cdp], q). Since xρey, we have [abt] = [cdt] and [tab] = [tcd] for all t ∈ T. Therefore
[abpqt] = [cdpqt] and [tabpq] = [tcdpq]. Hence xzρeyz. Similarly, [pqabt] = [pqcdt]
and [tpqab] = [tpqcd]. So, zxρezy.

(iii) If x = ab,y = cd, then for any z ∈ T we have [zab]ρ[zcd] and [abz]ρ[cdz].
Therefore zxρezy and xzρeyz. Hence ρe is a congruence.

Lemma 3.12. If T is a regular ternary semigroup, then ρe is an idempotent
separating congruence in ST if and only if ρ is an idempotent pair separating
congruence in T.

Proof. Let ρe be an idempotent separating congruence in ST . If (a, b) and (c, d) are
idempotent pairs in T such that (aρ, bρ) and (cρ, dρ) are equivalent in T/ρ, then
[abt]ρ[cdt] and [tab]ρ[tcd] for all t ∈ T. Hence abρecd in ST . Since ab and cd are
idempotents in ST and ρe is idempotent separating we have ab = cd. This means
that [abt] = [cdt] and [tab] = [tcd] and so (a, b) ∼ (c, d). Conversely suppose ρ is an
idempotent pair separating congruence in T. Let e, f be idempotents in ST such
that eρef. Let e = ab and f = cd for some idempotent pairs (a, b) and (c, d) in
T. Then eρef implies [abt]ρ[cdt] and [tab]ρ[tcd]. Hence (aρ, bρ) ∼ (cρ, dρ) in T/ρ,
which gives (a, b) ∼ (c, d) in T. So, e = f. Thus ρe is an idempotent separating
congruence on ST .
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4. Strongly regular ternary semigroups

In this section T denotes a strongly regular ternary semigroup. Below we will
construct congruences on T which are analogous to the group congruence and
maximum idempotent separating congruence on an ordinary inverse semigroup.

We start with the relation σ de�ned on T as follows:

(x, y) ∈ σ ⇐⇒ [abx] = [aby] for some idempotent pair (a, b) ∈ T.

Lemma 4.1. σ is a congruence on T.

Proof. Clearly σ is an equivalence relation on T. To prove that it is a congruence
suppose xσy and u, v ∈ T. Then [abx] = [aby] for some idempotent pair (a, b), and
so [abxuv] = [abyuv]. Hence ([xuv], [yuv]) ∈ σ. By Corollary 3.2, for any u, v ∈ T,
([v−1u−1u], v) is an idempotent pair and by Corollary 3.4, ([uva], [bv−1u−1]) is
also an idempotent pair. So,[

[uva][bv−1u−1][uvx]
]

=
[
uvabv−1u−1uvabv−1u−1uvx

]
=

[
uvabv−1u−1uvv−1u−1uvabx

]
=

[
uvabv−1u−1uvabx

]
= [uvabv−1u−1uvaby]

=
[
uvababv−1u−1uvy

]
= [uvabv−1u−1uvy].

Therefore ([uvx], [uvy]) ∈ σ. Similarly ([vab], v−1) and (u−1, u) are idempotent
pairs and they commute. Hence[

[uva][bv−1u−1][uxv]
]

= [uvabv−1u−1uvabv−1u−1uxv]
= [u[vabv−1u−1uv]abv−1u−1uxv]]
=

[
uu−1u[vabv−1vabv−1u−1]uxv

]
=

[
u[vabv−1u−1]uxv

]
= [uv[abv−1u−1u]xv]

= [uvv−1u−1uabxv] = [uvv−1u−1uabyv]
= [uvabv−1u−1uyv].

Therefore ([uxv], [uyv]) ∈ σ. Hence σ is a congruence.

Proposition 4.2. T/σ is a ternary group.

Proof. By Theorem 2.4 and Lemma 3.9, it is enough to show that all idempotent
pairs in T/σ are equivalent. If (aσ, bσ), (uσ, vσ) are two idempotent pairs in T/σ,
then we have to prove [abt]σ[uvt] and [tab]σ[tuv] for all t ∈ T. By Lemma 3.5,
without loss of generality we can assume that (a, b) and (u, v) are idempotent pairs
of T. Then ([abu], v) and ([uva], b) are idempotent pairs. For any t ∈ T we have
[[abu]v[abt]] = [ababuvt] = [abuvt] = [abuvuvt] = [[abu]v[uvt]] since idempotent
pairs commute in T. Therefore [abt]σ[uvt]. Similarly [[tab][uva]b] = [tabuvab] =
[tuvab] = [[tuv][uva]b]. Hence [tab]σ[tuv]. So, (aσ, bσ) and (uσ, vσ) are equivalent
in T/σ. Thus in T/σ all idempotent pairs are equivalent and T/σ is a ternary
group.
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Theorem 4.3. σ is the minimum ternary group congruence on a strongly regular
ternary semigroup T.

Proof. By Proposition 4.2, T/σ is a ternary group. Suppose θ is a congruence on
T such that T/θ is a ternary group. We prove that σ ⊆ θ. Suppose (p, q) ∈ σ,
then [abp] = [abq] for some idempotent pair (a, b) in T. Then [aθbθpθ] = [aθbθqθ].
Since T/θ is a ternary group cancellation law holds and so pθ = qθ.

Now we consider the relation µ de�ned as follows:

(a, b) ∈ µ ⇐⇒ ([axx−1], a−1) ∼ ([bxx−1], b−1) ∀(x, x−1) ∈ T × T.

In other words, (a, b) ∈ µ if [axx−1a−1t] = [bxx−1b−1t] and [taxx−1a−1] =
[tbxx−1b−1] for every t ∈ T.

Lemma 4.4. µ is a congruence on T.

Proof. Clearly µ is an equivalence relation. Suppose (a, b) ∈ µ and u, v ∈ T.
For every idempotent pair (x, x−1), by Corollary 3.2 ([uvx], [x−1v−1u−1]) is an
idempotent pair and so we obtain [auvxx−1v−1u−1a−1t] = [buvxx−1v−1u−1b−1t],
[tauvxx−1v−1u−1a−1] = [tbuvxx−1v−1u−1b−1]. Hence ([auv], [buv]) ∈ µ. Since
[axx−1a−1t] = [bxx−1b−1t] for all t ∈ T, we have [uvaxx−1a−1t] = [uvbxx−1b−1t].
Replacing t by [v−1u−1t] we get [uvaxx−1a−1v−1u−1t] = [uvbxx−1b−1v−1u−1t].
In a similar way we obtain [tuvaxx−1a−1v−1u−1] = [tuvbxx−1b−1v−1u−1]. Thus
([uva], [uvb]) ∈ µ. Hence for every idempotent pair (x, x−1) also ([vxx−1], v−1)
is an idempotent pair. Therefore for all t ∈ T we have [avxx−1v−1a−1t] =
[bvxx−1v−1b−1t]. In particular for t = u−1 we obtain [avxx−1v−1a−1u−1] =
[bvxx−1v−1b−1u−1]. Hence [[uav]xx−1[v−1a−1u−1]t] = [[ubv]xx−1[v−1b−1u−1]t]
for t ∈ T. Analogously we obtain [tuavxx−1v−1a−1u−1] = [tubvxx−1v−1b−1u−1].
Hence ([uav], [ubv]) ∈ µ. Thus µ is a congruence.

Theorem 4.5. µ is the maximum idempotent pair separating congruence on T.

Proof. Let (a, a−1) and (b, b−1) be such that (aµ, a−1µ) and (bµ, b−1µ) are equiv-
alent idempotent pairs in T/µ. We claim that (a, a−1) and (b, b−1) are equiva-
lent idempotent pairs in T. From the hypothesis it follows that in T we have
[aa−1t]µ[bb−1t] and [taa−1]µ[tbb−1] for all t ∈ T. The �rst relation for t = a and
t = b gives aµ[bb−1a] and [aa−1b]µb. Putting in the second relation t = a−1 and
t = b−1 we obtain a−1µ[a−1bb−1] and [b−1aa−1]µb−1. Therefore for all idempotent
pairs (z, z−1) and for all t ∈ T we have

[azz−1a−1t] = [bb−1azz−1a−1bb−1t], (4.1)

[bzz−1b−1t] = [aa−1bzz−1b−1aa−1t]. (4.2)

From (4.1) for z = a−1 and t = a we get [aa−1aa−1a] = [bb−1aa−1bb−1a] = [bb−1a].
Therefore

a = [bb−1a]. (4.3)
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Thus a−1 = [a−1bb−1]. From (4.2) putting z = b−1 and t = b we obtain [bb−1bb−1b]
= [aa−1bb−1aa−1b] = [aa−1b]. Therefore

b = [aa−1b]. (4.4)

Hence b−1 = [b−1aa−1]. Now using (4.3) and (4.4) we see that

[aa−1t] = [bb−1a[a−1bb−1]t] = [b[b−1aa−1]bb−1t] = [bb−1bb−1t] = [bb−1t]

for all t ∈ T. Similarly

[taa−1] = [t[bb−1a][a−1bb−1]] = [tb[b−1aa−1]bb−1] = [tbb−1bb−1] = [tbb−1].

Therefore (a, a−1) ∼ (b, b−1). Hence µ is an idempotent pair separating congruence
in T.

Suppose that ρ is another idempotent pair separating congruence on T. If
aρ = bρ, then a−1ρ = b−1ρ by Lemma 3.10. For any idempotent pair (x, x−1) ∈ T
we have [axx−1a−1t]ρ = [bxx−1b−1t]ρ and [taxx−1a−1]ρ = [tbxx−1b−1]ρ. Hence
([axx−1]ρ, a−1ρ) and ([bxx−1]ρ, b−1ρ) are equivalent idempotent pairs in T/ρ.
Since ([axx−1], a−1) and ([bxx−1], b−1) are idempotent pairs in T we see that
they are equivalent in T. Hence aµb. Therefore ρ ⊆ µ.

5. Congruences on orthodox ternary semigroups

In this section by T will denote an orthodox ternary semigroup. By γ we denote
the relation on T such that

(a, b) ∈ γ ⇐⇒ I(a) = I(b).

Theorem 5.1. The relation γ is a congruence on T.

Proof. Clearly γ is an equivalence relation. Suppose (a, b) ∈ γ and x, y ∈ T.
Then for any u ∈ I(a) = I(b) and for any v ∈ I(x), w ∈ I(y) it follows from
Proposition 2.6, that [uwv] ∈ I([xya])∩ I([xyb]). Hence by Proposition 2.7 we get
I([xya]) = I([xyb]) and so ([xya], [xyb]) ∈ γ. Similarly [wvu] ∈ I([axy])∩ I([bxy]).
Therefore ([axy], [bxy]) ∈ γ. Also ([xay], [xby]) ∈ γ. Hence γ is a congruence.

Theorem 5.2. The relation γ is the smallest congruence on T for which T/γ is
a strongly regular ternary semigroup.

Proof. ET = ∪Eα is a semilattice of rectangular bands. For any 〈a, b〉, 〈c, d〉
and 〈e, f〉 in ET , elements ([abcde], f) and ([cdabe], f) belong to the same class
Eα and so I(〈[abcde], f〉) = I(〈[cdabe], f〉) in ET . This can be interpreted in T
as W ([abcde], f) = W ([cdabe], f) = W (a, [bcdef ]). Let (aγ, bγ) and (cγ, dγ) be
two idempotent pairs in T/γ. Fix t ∈ T. If u ∈ I([abcdt]), then [abcdtuabcdt] =
[abcdt] and [uabcdtu] = u. We �rst show that (t, u) ∈ W ([cdabt], t′), for some
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t′ ∈ I(t). For all z ∈ T we have [tuz] = [t[uabcdtu]z] = [tuabcdtt′tuz] and
[abcdtt′z] = [[abcdtuabcdt]t′z] = [abcdtt′tuabcdtt′z]. Therefore we see that (t, u)
is in W ([abcdt], t′) = W ([cdabt], t′). Thus, for all z ∈ T

[cdabtt′tucdabtt′z] = [cdabtt′z], (5.1)

[tucdabtt′tuz] = [tuz], (5.2)

[zcdabtt′tucdabtt′] = [zcdabtt′], (5.3)

[ztucdabtt′tu] = [ztu]. (5.4)

(5.1) for z = t gives [cdabtt′tucdabtt′t] = [cdabtt′t]. Therefore

[cdabtucdabt] = [cdabt]. (5.5)

Multiplying (5.2) on the left by [uabcd] and on the right by u we obtain the equation
[uabcdtucdabtt′tuzu] = [uabcdtuzu]. Therefore [ucdabtuzu] = [uzu], which for z =
[abcdt] gives [ucdabt[uabcdtu]] = [uabcdtu]. Hence

[ucdabtu] = u. (5.6)

From (5.5) and (5.6) we get u ∈ I([cdabt]). Thus u ∈ I([abcdt])∩ I([cdabt]), which
implies I([abcdt]) = I([cdabt]) (cf. [9]). Hence

[abcdt]γ[cdabt]. (5.7)

Now we show that I([tabcd]) = I([tcdab]). Indeed, if u ∈ I([tabcd]), then
[tabcdutabcd] = [tabccd] and [utabcdu] = u. Moreover, for every z from T we have
[utz] = [[utabcdu]tz] = [utt′tabcdutz], [zut] = [zutabcdut] = [zutt′tabcdut]. Simi-
larly, [t′tabcdz] = [t′[tabcd]z] = [t′[tabcdutabcd]z] = [t′tabcdutt′tabcdz], [zt′tabcd] =
[zt′[tabcdutabcd]] = [zt′tabcdutt′tabcd] = [zt′tabcdutt′tabcd]. Therefore (u, t) is in
W ([t′, [tabcd]) = W (t′, [tcdab]). Hence for all z ∈ T,

[utt′tcdabutz] = [utz], (5.8)

[t′tcdabutt′tcdabz] = [t′tcdabz], (5.9)

[zutt′tcdabut] = [zut], (5.10)

[zt′tcdabutt′tcdab] = [zt′tcdab]. (5.11)

Multiplying (5.10) on the left by u and on the right by [abcdu] we obtain the
equation [uzutcdab[utabcdu]] = [uz[utabcdu] = [uzu]. This for z = [tabcd] gives
[[utabcdu]tcdabu] = [utabcdu] = [utabcdu]. Therefore

[utcdabu] = u. (5.12)

(5.11) for z = t gives [tt′tcdabutt′tcdab] = [tt′tcdab]. Therefore

[tcdabutcdab] = [tcdab]. (5.13)
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From (5.12) and (5.13) we get u ∈ I([tcdab]). Thus I([tabcd]) = I([tcdab]). Hence

[tabcd]γ[tcdab]. (5.14)

Now, from (5.7) and (5.14) it follows that (aγ, bγ) and (cγ, dγ) commute in T/γ
and so T/γ is strongly regular.

Suppose that ρ is a congruence on T such that T/ρ is a strongly regular ternary
semigroup. If (a, b) ∈ γ, then for any x ∈ I(a) = I(b), aρ and bρ are both inverses
of xρ in T/ρ. Since T/ρ is strongly regular, the element xρ has a unique inverse
and so aρ = bρ. Hence γ ⊆ ρ. Thus γ is the smallest strongly regular ternary
semigroup congruence.

Theorem 5.3. The relation µ de�ned by

(a, b) ∈ µ ⇐⇒

{
for every idempotent pair (x, x′) ∃a′ ∈ I(a),∃b′ ∈ I(b)
([axx′], a′) ∼ ([bxx′], b′) and ([a′xx′], a) ∼ ([b′xx′], b).

is a congruence on T.

Proof. We �rst prove that µ is an equivalence relation. Clearly µ is re�exive
and symmetric. For any (a, b), (b, c) ∈ µ there exists a′ ∈ I(a), b′, b′′ ∈ I(b)
and c′ ∈ I(c) such that for every idempotent pair (x, x′) we have [axx′a′t] =
[bxx′b′t] and [taxx′a′] = [tbxx′b′], [a′xx′at] = [b′xx′bt] and [ta′xx′a] = [tb′xx′b],
[bxx′b′′t] = [cxx′c′t] and [tbxx′b′′] = [tcxx′c′], [b′′xx′bt] = [c′xx′ct] and [tb′′xx′b] =
[tc′xx′c]. Put a∗ = [b′′ba′bb′]. We see that [bb′a] = [bb′aa′aa′a] = [bb′ba′ab′a] =
[ba′ab′a] = [aa′aa′a] = [aa′a] = a and [aa∗a] = [ab′′ba′bb′a] = [bb′′bb′bb′a] =
[bb′bb′a] = [bb′a] = a. Thus [a∗aa∗] = [b′′ba′bb′ab′′ba′bb′] = [b′′bb′bb′bb′′ba′bb′] =
[b′′bb′′ba′bb′] = [b′′ba′bb′] = a∗. Hence a∗ ∈ I(a). Similarly for c∗ = [b′′bc′bb′]
we have [cc∗c] = [cb′′bc′bb′c] = [cb′′bb′′bb′b] = [cb′′bb′b] = [cc′bb′c] = [cc′c] = c,
[c∗cc∗] = [b′′bc′bb′cb′′bc′bb′] = [b′′bb′′bb′bb′′bc′bb′] = [b′′bb′′bc′bb′] = [b′′bc′bb′] = c∗.
Therefore c∗ ∈ I(c). Now for all idempotent pair (x, x′) in T and all t ∈ T we obtain
[a∗xx′at] = [b′′ba′bb′xx′at] = [b′′bb′bb′xx′bt] = [b′′bb′xx′bt] = [b′′bb′′bb′xx′bt] =
[b′′bc′bb′xx′ct] = [c∗xx′ct] and [ta∗xx′a] = [tc∗xx′c], [axx′a∗t] = [axx′b′′ba′bb′t] =
[bxx′b′′bb′bb′t] = [bxx′b′′bb′t] = [bxx′b′′bb′′bb′t] = [cxx′b′′bc′bb′t] = [cxx′c∗t]. Also
we have [taxx′a∗] = [tcxx′c∗]. Hence (a, c) ∈ µ, proving µ is a transitive relation.
Thus µ is an equivalence relation.

Suppose (a, b) ∈ µ and u, v ∈ T so that for every idempotent pair (x, x′) in T
and for all t ∈ T,

[axx′a′t] = [bxx′b′t], (5.15)

[taxx′a′] = [tbxx′b′], (5.16)

[a′xx′at] = [b′xx′bt], (5.17)

[ta′xx′a] = [tb′xx′b]. (5.18)

In (5.15), replacing (x, x′) by ([uvx], [x′v′u′]) we get [auvxx′v′u′a′t] = [buvxx′v′u′b′t].
Similarly, (5.16) becomes [tauvxx′v′u′a′] = [tbuvxx′v′u′b′]. In (5.17) replacing
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t by [uvt] and multiplying on the left by v′ and u′ we get [v′u′a′xx′auvt] =
[v′u′b′xx′buvt] ∀t ∈ T. In (5.18) replacing t by [tv′u′] and multiplying on the
right by u and v, we get [tv′u′a′xx′auv] = [tv′u′b′xx′buv]. Since [v′u′a′] ∈ I([auv])
and [v′u′b′] ∈ I([buv]) we have ([auv], [buv]) ∈ µ. Similarly we can show that
([uva], [uvb]) ∈ µ and ([uav], [ubv]) ∈ µ.

Theorem 5.4. µ is the maximum idempotent pair separating congruence on T.

Proof. Let (aµ, a′µ) and (bµ, b′µ) be two equivalent idempotent pairs in T/µ so
that [aa′t]µ[bb′t], [taa′]µ[tbb′], [a′at]µ[b′bt] and [ta′a]µ[tb′b] ∀t ∈ T. Putting t = a
and t = b in the �rst relation we get aµ[bb′a] and [aa′b]µb. Putting t = a′ and t = b′

in the second relation we get a′µ[a′bb′] and [b′aa′]µb′. Hence for every idempotent
pair (x, x′) and for all t ∈ T we have

[axx′a′t] = [bb′axx′[bb′a]′t], (5.19)

[bxx′b′t] = [aa′bxx′[aa′b]′t], (5.20)

[ta′′xx′a′] = [t[a′bb′]′xx′a′bb′], (5.21)

[tb′′xx′b′] = [t[b′aa′]′xx′b′aa′] (5.22)

for some [bb′a]′ ∈ I([bb′a]). From (5.19) for (x, x′) = (a′, a) and t = a we get
a = [bb′aa′a[bb′a]′t] = [[bb′a][bb′a]′t]. Multiplying on the left by b and b′ we have
[bb′a] = [bb′[bb′a][bb′a]′t] = a. Therefore [bb′a] = a. Putting (x, x′) = (b′, b)
and t = b in (5.20) we obtain b = [aa′bb′b[aa′b]′b] = [aa′b[aa′b]′b]. Multiply-
ing on the left by a and a′ we get [aa′b] = [aa′aa′b[aa′b]′b] = [aa′b[aa′b]′b] =
a. Therefore [aa′b] = a. Replacing in (5.21) x by a′ and x′ by a′′ we obtain
[ta′′a′] = [t[a′bb′]′a′a′′a′bb′] = [t[a′bb′]′a′bb′] for every t ∈ T, which for t = a′

implies a′ = [a′[a′bb′]′a′bb′]. Multiplying this on the right by b and b′ we get
[a′bb′] = [a′[a′bb′]′a′bb′bb′] = a′. Therefore [a′bb′] = a′. (5.22) for x = b′ and
x′ = b′′ gives [tb′′b′] = [t[b′aa′]′b′b′′b′aa′] = [t[b′aa′]′b′aa′], ∀t ∈ T. In particular,
for t = b′ we get b′ = [b′[b′aa′]′b′aa′]. Multiplying this on the right by a and a′

we obtain [b′aa′] = [b′[b′aa′]′b′aa′aa′] = [b′[b′aa′]′b′aa′] = b′. Therefore [b′aa′] = b′

and [aa′t] = [[bb′a][a′bb′]t] = [b[b′aa′]bb′t] = [bb′bb′t] = [bb′t], ∀t ∈ T, Similarly
[taa′] = [t[bb′a][a′bb′]] = [tb[b′aa′]bb′] = [tbb′bb′] = [tbb′]. Hence (a, a′) ∼ (b, b′).
Thus µ is an idempotent pair separating congruence on T.

Suppose that θ is an idempotent pair separating congruences on T and θe is
the congruence induced on ST by θ. If xθy, then xθey in ST . ST is orthodox
and by Lemma 3.12, θe is an idempotent separating congruences on ST . Hence
θe ⊂ H, where H is the Green's equivalence on ST . Hence xHy in ST we can
�nd inverse x′ of x and y′ of y such that xx′ = yy′ and x′x = y′y in ST . There-
fore for all t ∈ T, [xx′t] = [yy′t] and [txx′] = [tyy′]. Similarly, [x′xt] = [y′yt]
and [tx′x] = [ty′y] in T. Therefore x = [xx′x] = [yy′x], x′ = [x′xx′] = [x′yy′],
y′ = [y′yy′]. Thus x′ = [x′yy′]θ[x′xy′] = y′. Hence for every idempotent pair
(u, v) in T , [x′uvxt]θ[y′uvyt]; [xuvx′t]θ[yuvy′t]. ([x′uv]θ, xθ) ∼ ([y′uv]θ, yθ) and
([xuv]θ, x′θ) ∼ ([yuv]θ, y′θ) in T/θ. Since θ is idempotent pair separating we have
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([xuv], x′) ∼ ([yuv], y′). In a similar way we can show that ([x′uv], x) ∼ ([y′uv], y).
Thus xµy. Hence θ ⊆ µ and so µ is the maximum idempotent pair separating
congruences on T.
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