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Recursively r-differentiable quasigroups
within S-systems and MDS-codes

Galina B. Belyavskaya

Abstract. We study recursively r-differentiable binary quasigroups and such quasigroups with
an additional property (strongly recursively r-differentiable quasigroups). These quasigroups
we find in S-systems of quasigroups and give a lower bound of the parameters of idempotent
2-recursive MDS-codes that respect to strongly recursively r-differentiable quasigroups. Some

illustrative examples are given.

1. Introduction

In the article [7], the notion of a recursively r-differentiable k-ary quasigroup
which arise in the connect complete k-recursive codes is introduced. The minimum
Hamming distance of these codes achieves the Singleton bound.

Let Q = {a1,az,...,a4} be a finite set. Any subset K C Q" is called a code
of length n or an n-code over the alphabet ). An n-code is called an [n, k]g-code
if | K |= ¢*. An [n,k,d]g-code is an [n,k]g-code with the minimum Hamming
distance d between code words. An [n, k, d]g-code is an MDS-code if d =n—k+1
(d <n—k+1is the Singleton bound).

A code K is a complete k-recursive code if there exists a function f : Q¥ — Q
(k < n) such that K is the set of all words w(0,n—1) = (u(0),...,u(n — 1))
satisfying the condition u(i + k) = f(u(i),...,u(i + k —1)) for i € O,n—k —1,
where u(0),...,u(k — 1) are arbitrary elements of Q.

This code is a error-correcting code and is denoted by K (n, f). Any subcode
K, C K of a complete k-recursive code is called k-recursive.

A complete k-recursive code K(n, f) is called idempotent if the function f is
idempotent, that is f(z,z,...,z) = x.

Let n"(k,q) (n'"(k,q)) denote the maximal number n such that there exists
a complete k-recursive MDS-code (a complete idempotent k-recursive MDS-code)
over an alphabet of g elements.

By Theorem 6 of [7], the equality n" (2, q) = ¢+1 holds for any primary number
(prime power) ¢ = p® > 3 and by Corollary 4 of [7],

n"(2,q) = min{p]* +1,p5? +1,...,py* + 1}
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xt

it g =pT'p3?...p;

According to Proposition 10 from [7], n'"(2,q) > ¢ — 1 for any primary ¢ > 3.
By Proposition 11 from [7], n*"(2,p) > p if p is a prime number.

For binary function f a code K(n, f) the system of check functions has the
form fO(z,y) = f(f"2(z,y), f(x,y)) for t > 2, where fO(z,y) = f(z,y)
and f(l)(xvy) = f(y, f(o) (xay))

In [7] it is proved that r-differentiable quasigroups correspond to complete
recursive codes and various methods of constructions of binary recursively 1-
differentiable quasigroups are suggested. Moreover, in [7] it is proved that for
any q¢ € N, excepting 1,2,6 and possibly 14, 18,26,42, there exist recursively
1-differentiable quasigroups of order ¢, that is n"(2,¢q) > 4.

A quasigroup operation f is called recursively r-differentiable if all its recur-
sive derivatives f1), £ ... f(") are quasigroups. By Theorem 4 of [7], a quasi-
group (Q, f) is recursively r-differentiable if and only if the code K (r 4+ 3, f) is an
MDS-code. In this case the code words are (z,y, fO (z,y), fP (z,y), ... f(z,y)),
(z,y) € Q.

A. Abashin in [1] consider special linear recursive MDS-codes with k=2 or 3.
V. Izbash and P. Syrbu in [9] prove that for any k-ary (k > 2) operation f the
equality f(") = f0" holds, where 0 : Q* — Q*, 0(z%) = (29,23, ..., zk, f(2)) for
all (x¥) € Q. (Note that this result for k = 2 was announced in [4]). They also
establish a connection between recursive differentiability of a binary group and the
Fibonacci sequence.

In this article we establish properties of binary recursively r-differentiable
quasigroups, introduce the notion of a strongly recursively r-differentiab-le quasi-
group, and find such idempotent quasigroups in S-systems of quasigroups. A lower
bound of n%"(2,q) for complete idempotent strongly 2-recursive MDS-codes with
primary ¢ is found and illustrative examples are given.

is the canonical decomposition of the number gq.

2. Preliminaries

Let @ be a finite or infinite set, Ag be the set of all binary operations defined on
Q. On the set Ag it can be defined the Mann’s right (left) multiplication A - B
(Ao B) of operations A, B € Ag in the following way:

(A . B)(Z‘,y) = A('TaB(x’y)) = A(F7 B)(x,y),

(Ao B)(z,y) = A(B(z,y),y) = A(B, E)(z,y),

where E(z,y) =y, F(z,y) = x are the right and the left identity operations.

For any operations A, B € Ag the equality (A o B)* = A* - B* holds, where
A*(z,y) = Ay, z) (Lemma 4.5 in [2]).

The set A,.(-) (the set A;(o)) of all invertible from the right (from the left)
operations given on a set ) forms the group A,(-) (the group A;(c)) under the
right (under the left) multiplication of operations.
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The operation E, F are the identity elements of the group A, (:) and A;(o),
respectively, and A1 - A=A- A" =FE, ~YAo0A=Ao"'A = F, where

ANzy) =26 Alz,2) =y, A,y =24 Alzy) =2

Every pair (A, B) of operations of the set Ag defines a mapping 6 of the set
Q? into Q? in the following way:

0(z,y) = (A(z,y), B(z,v)), =,y € Q.

And conversely, any mapping 6 of the set Q2 into Q? uniquely defines the pair
of operations A, B € Ag: if 6(a,b) = (¢,d), then ¢ = A(a,b), d = B(a,b), and
(A,B)=(C,D)ifand only if A=C, B=D.

If 0 is a permutation on a set @2, then operations A, B defined by @ are orthog-
onal (shortly, A L B), that is the system of equations {A(x,y) = a, B(z,y) = b}
has a unique solution for any a,b € Q. And conversely, an orthogonal pair of
operations, given on a set (), corresponds to the permutation 6 on the set Q2.

If A,B,C € Ag, then the new binary operation D can be defined by the
following superposition:

D(x7y) = A(B(x’y)a C('Ta y))

or shortly, D = A(B,C) = A, where § = (B, (), that is D(z,y) = Af(z,y).
The identity operations F, E of Ay define the identity permutation (F, E) =€
on Q2. The equality (A4, B)§ = (A6, BO) holds [2, 3].

3. Recursively r-differentiable quasigroups

Let (Q, A) be a finite quasigroup given on a set Q. Then, the sequence of operations
A AW AW®  for A is defined in the following way:

A (z,y) = A(z,y), APV (z,y) = Ay, AV (z,y)),

A (‘T’ y) = A(A(t_z) ((E, y)? A(t_l)(xv y))

for t > 2. This sequence can be written shortly as:
A = A(F E), AW = AE,AD), A® = A(AF=2 AC-D) ¢ > 9

According to [7], the operation A of this sequence is called the r-th recursive
derivative of a quasigroup (Q, A).

By definition, a quasigroup (@, A) is recursively r-differentiable if all its re-
cursive derivatives A, A A" are quasigroup operations. In this case, the
system of operations ¥ = {F, E, A, AM, A®) . A} is orthogonal (Proposition
7 of [7]).
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By Theorem 4 of [7], a quasigroup (Q, A) is recursively r-differentiable if and
only if the 2-recursive code K(r + 3, A) is an MDS-code.

First we establish some properties of finite binary recursively r-differentiable
quasigroups.

Theorem 1. Let A% be the i-th recursive derivative of a quasigroup (Q,A) and
0= (E,A), then AW = A#", ¢ = (A2 A1) 92 L (F E).

Proof. Note that the mapping 6 = (E, A) of Q2 into Q? is a permutation since A
is a quasigroup operation. By the definition,

AW (z,y) = Ay, A(z,y)) = A(E, A)(z,y) = A0(z,y),
A® = A(A, A(E, A)) = A(A, AB) = A62,

since (E,A)? = (E,A)(E,A) = (A, A(E, A)) = (A, Af) whence (E, A)? # (F,E)
as A#F.

Let A®) = A@* for all k, 1 < k < i — 1, then by the induction we have
AW = A(AG=2 AC=DY = A(AGI72,A01) = A(A, AR)H'~2 = AG%0'~2 = AG'.
From these equalities the second equality of the theorem follows.

Note that, in the general case, the equality Af; = A8y, where 01,605 are two
permutations not necessarily implies 6; = 6. O

The result of Theorem 1 for binary quasigroups was announced in [4] and was
generalized for k-ary quasigroups in [9].

Let A*(z,y) = A(y, ), then A* = (“}(A~1))~1 ==1((~LA)~1) (see [3]).

Corollary 1. If AM, A®@ . A® . are the sequence of the recursive deriva-
tives of a quasigroup (Q, A), then for i > 1 we have

A(z) _ (A(zfl) A*)* _ (A(zfl))* OA,

where (-) and (o) are the right and left multiplication of the operations given on
the set Q.

Proof. Indeed, by Theorem 1,
A(z) — Af* = A(Zil)(E,A) — (A(zfl))* 0 A= (A(zfl) . A*)*,
since A(E,B) = A*o B and (Ao B)* = A*- B*. O

Proposition 1. Let a quasigroup (Q, A) be recursively r-differentiable. Then,
AW 1-YA™Y) foranyi=0,1,2,...,r —1, 7> 1.
If ArtD) = F r >0, then A" ="1(A7) and AU+2) = E.
IfAUT2) = F r >0, then AUTD = F.
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Proof. By the criterion of orthogonality of two quasigroups (cf. [2]), A L B if
and only if A- B~! is a quasigroup operation. But by Corollary 1, the operations
AGFD — (A . A*)* by 4 > 0 are quasigroup operations, and therefore the oper-
ation (AGHDY* = A®) . A* is a quasigroup operation. Taking into account that
A* = ("HA™1)7, we have A®) | =1A~Y) forany i =0,1,2,...,r — 1.

Let A"*tD = F then by Corollary 1, AT+ = (A"))* 0 A = F for r > 0,
so (A)* =1 A since A;(o) is a group with the identity F' and the quasigroup
~1A is inverse for A in this group. Thus, A" =—1(A~'). In this case we have
Alr+2) — A(A(r)yA(rH)) — A(A(T),F) - A*(F,A(”) — A*. A(M) — A* AT =
E because A* = (71 A7)~ A.(+) is a group with the identity F and A* is the
inverse quasigroup for ~{(A~!) in this group.

Let ACt2 = E 7 > 0, then (AU*+2)* = F and according to Corollary 1,
A3 = (AU+2)) 0 A = Fo A = A since Aj(o) is a group with the identity F.
But then

A(r+3) — A(A(T+1)’A(T+2))) — A(A(T+1),E) — Ao A(r+1) - A
and so AUt = F. O

Definition 1. A quasigroup (Q, A) is called strongly recursively r-differentiable
if it is r-differentiable and ACtY = F (or AU+2) = E). A quasigroup (Q, A) is
strongly recursively 0-differentiable if AV = F.

Note that a quasigroup not always is strongly recursively 0-differentiable, al-
though any quasigroup is recursively O-differentiable. In contrast to recursively
r-differentiable quasigroups, a strongly recursively r-differentiable quasigroup is
not strongly recursively ri-differentiable if ry < r.

Recall that a quasigroup (Q, A) is called semisymmetricif in (Q, A) the identity
A(z, A(y,z)) = y holds.

Corollary 2. Let (Q, A) be a strongly recursively r-differentiable quasigroup, then
AT =1 (A1), AU+ = E for any r > 0. A quasigroup (Q,A) is strongly
recursively 0-differentiable (1-differentiable) if and only if it is semisymmetric
(AW ==Y A=) respectively).

Proof. The first statement follows from Proposition 1. It is easy to see that a quasi-
group (@, A) is semisymmetric if and only if A* = A~ (or A ="1(A71)), so for a
semisymmetric quasigroup A = A* o~ A1) = Ao (A ) = F. f AW = F,
then by Proposition 1, A = A(®) ==1(A~1), that is (Q, A) is semisymmetric.

Let AN ==1(4~1), then A® = (AD)* 0 A= (YA ) cA="TA0cA=F.
If A® = F, then, by Proposition 1, A =—1(A4~1). O

Proposition 2. A recursively r-differentiable quasigroup (Q, A) is strongly recur-
sively r-differentiable if and only if the permutation 6 = (E, A) has order r + 3.
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Proof. Let the permutation § = (E, A) have order r + 3, that is "3 = (F, E),
then by Theorem 1, (AU+D A+2)) = (F, E) and so AU+D) = F.

Conversely, suppose that a quasigroup (Q, A) is strongly recursively r-differen-
tiable, then r is the least number such that A"+ = F. By Proposition 1,
A2 = B 50 073 = (AU, AU+ = (F E). O

Proposition 3. The direct product of strongly recursively r-differentiable quasi-
groups s a strongly recursively r-differentiable quasigroup.

Proof. Suppose that (Q, A) and (P, B), |Q| = ¢1, |P| = ¢2, are strongly recursively
r-differentiable quasigroups. Then, the direct product A x B of these quasigroups
is an r-differentiable quasigroup since

(Ax B)® = AW x B e N

(see the proof of Proposition 9 of [7]). Furthermore, from A+ = Fy and
B+ = Fp it follows that (A x B)"T) = A+ x B+l = Fy x Fp. But
Fo x Fp is the left identity operation under the left multiplication of operations
given on the set () X P, so by the definition, the operation A x B given on the set
Q@ x P is a strongly recursively r-differentiable quasigroup of order ¢;gs. O

4. Strongly recursively r-differentiable quasigroups

In the theory of binary quasigroups the notion of a Stein system (shortly, an
S-system) is known. This system can be defined in the following way [2].

Definition 2. [2] A system Q(X) of operations given on a finite set @ is called an
S-system if
1) X contains the operation F, F, the rest operations are quasigroup operations;
2) if A,B €Y, where ¥ = X\F, then A- B € Y/;
3) if A€ X, then A* € X.

In this case, ¥'(+), ¥"(0), where ¥’ = ¥\ F and X" = ¥\ E, are isomorphic groups.

We recall some necessary information about S-systems. Let s be the number
of operations in an S-system Q(X), n be the order of the set ). Then, by Theorem
4.3 of [2], the number s — 1 dividesn —land k= (n—1)/(s—1) =2 sor k= 1.

The number k is called the index of an S-system Q(X). In the case k = 1 we
say that Q(X) is a complete S-system.

Complete S-systems are described by V. Belousov in [2]. Incomplete S-systems
are described by G. Belyavskaya and A. Cheban in [5, 6].

All operations of an S-system Q(X) are orthogonal and by Theorem 4.2 [2],
are idempotent if s > 4, that is A(z,z) =z for all z € Q and A € X.

If Q(X) is an S-system, then according to Theorem 4.1 [2], for any A, B,C € ¥
the operation C(A, B):

C(A, B)(z,y) = C(A(z,y), B(z,v))
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belongs to ¥ and the set A of all mappings 6 = (B, C), where B,C € ¥, B # C,
is a group.

Recall that an algebra (@, +,-) with two operations is called a near-field if
(@, +) is an abelian group with the identity 0, (@', -) is a group, where Q' = Q\{0}
and the right distributive law: (z + y)z = zz + yz holds [10].

By Theorem 4.6 of [2], any complete S-system Q(X) is a system over some
near-field Q(+,-), that is any its operation has the form

Aa(x’y) = a’(y - x) +x

for a fixed element a € Q.

Thus, for a complete S-system @Q(X) containing s quasigroups of order ¢ we
have s = ¢ = p® for some primary number since any near-field has such order, and
for any prime power there exists a near-field of this order [10]. If a near-field is a
field, then the quasigroups are linear over the group (@, +) and have the form

Aule,y) = (1 - a)a + ay.

All S-systems that are not complete are described in the article [5] by means
of near-fields (by means of complete S-systems) and balanced incomplete block
designs BIB(v,b,rk,1).

A balanced incomplete block design BIB(v,b,r,k,1) is an arrangement of v
elements by b blocks such that

every block contains exactly k different elements;

every element appears in exactly r different blocks;

every pair of different elements appears in exactly one block.

The parameters r and k of a BIB(v,b,r,k,1) define the number v and b [11].

By Theorem 1 of [5], an S-system with operations of order g, of index k con-
taining s operations exists if and only if there exists a BIB(q,b,,k,p*, 1) with a
prime p. In this case,

g=ks—k+1, b= ((ks—k+1)/9)k, s=p™.

Below S-systems will be used to finding of strongly recursively r-differentiable
idempotent quasigroups. Since we consider only recursively r-differentiable quasi-
groups sometimes the word "recursively" will be omitted.

Theorem 2. A quasigroup (Q, A) of an S-system Q(X) is (strongly) recursively
r-differentiable if and only if v is the least number such that AU+tY = F (the
permutation 0 = (E, A) has order r + 3).

Proof. If a quasigroup (@, A) of an S-system Q(X) is strongly r-differentiable,
then by the definition, AT+tD = F and A®M, A®@) . A" are quasigroups.

For the proof of the converse statement we first note that from the properties
of S-systems @Q(X) pointed above it follows that all recursive derivatives of any
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quasigroup (@, A), where A € ¥, are in X. So, they can be quasigroup operations
or the identity operations F, E.

Let a quasigroup operation A be in ¥, 7 be the least number such that A"+ =
F, then the recursive derivatives A®), 1 < i < r, of A either all are quasigroup
operations or A0 = E for some i; < r, and all operations A®, i < iy, are
quasigroup operations.

In the first case, A is a strongly r-differentiable quasigroup. In the second case,
the quasigroup A is (ig — 1)-differentiable. On the other hand, by Proposition 1,
we have AGo—1) = F since AG0) = E. But AUo—1 is a quasigroup, that is we
obtain the contradiction.

Let the permutation § = (E, A) have order r+3, then §("+3) = (A("+1) A(r+2))
= (F,E) whence AUt) = F A+2) = E moreover, this number r is the least
one with such property. In this case, as has been shown above, the quasigroup
(Q, A) is strongly r-differentiable. The converse follows from Proposition 2. O

Theorem 3. Let Q(X) be an S-system containing p® > 3 operations, A be a
quasigroup operation of ¥, and the permutations 04 = (E, A) have order r + 3 for
somer > 0. Then

(r+3) [ p*(p™ - 1).

Proof. Let ¥ = {F,E, A1, Aa,... As_2} be an S-system containing s = p® opera-
tions of order ¢ = p® if the system 3 is complete, and of order ¢ = ks —k+1if &
is an S-system of index k.

By Theorem 4.1 of [2], the set A of all mappings § = (B,C), B,C € ¥, B # C,
of any S-system is a group. The order of the group A is s(s — 1) = p*(p® — 1).

The permutation 04 = (E, A) € A for any operation A of ¥, A # E.

If for A € ¥ the permutation 64 has order r + 3, then ;" = (F, E). Thus
(r+3)[p*(p* —1). O

Theorem 4. Let p® > 5 be an odd prime power, Q(X) be an S-system containing
p% operations. Then in X there exists a quasigroup operation A such that the
permutation 04 = (E, A) has order r + 3 for some r +3 = p*, oy < «, and A
is a strongly recursively idempotent r-differentiable quasigroup operation of order
q = p®. If there exists a BIB(q,b,k,p“, 1), then A has order ¢ = kp® — k + 1.

(03

Proof. Let p* > 5 be an odd prime power, Q(X) be an S-system containing s = p
operations. Then by Theorem 4.1 of [2] the set A of all mappings 6 = (B, C),
B,C € ¥, B # C is a group. Moreover, from the proof of Theorem 4.6 in [2] it
follows that this group is twice transitive on ¥ and contains a strongly transitive

on ¥ invariant abelian subgroup Ag. It is obvious that the group /g has order
(03

s =p°.
~ Let fc be the permutation of Ag such that Fc = C. Then FOr = E and
0p = (E,A) = 04 for a unique operation A of ¥. Moreover, A # F. Indeed, if
A = F, then ng = (E,F)(E,F) = (F,FE), so p* = 2% and the subgroup A has
even order.
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Suppose that the permutation 6z has order r +3. Then r+3 = p*t for a; < «
since (r +3) | p*. Hence, 5;;3 = ¢';"® = (F, E). By Theorem 2, (Q, A) is strongly
r-differentiable quasigroup of order ¢ = p® if the S-system Q(X) is complete, and
has order ¢ = kp® — k+ 1 if it is incomplete with index k. Recall that by Theorem
4.2 of [2] any operation of an S-system is idempotent if s > 4.

According to Corollary 2, A” =—1 (A1), A0+tD = F, AU+2) = E. Thus, we
have the subsystem

¥ = {A, AV A®) A0 =1 (A=) AU = F A2 = B C %
for r = p* — 3. O

Corollary 3. For any prime p, p > b, there exists a strongly recursively (p — 3)-
differentiable idempotent quasigroup of order ¢ = p (of order ¢ = kp — k + 1 if
there exists a BIB(q,b,k,p,1)).

Proof. In this case the subgroup A\ of the group A of an S-system has odd order
p, that is, A is a cyclic group and so the permutation 0 = (E, A) of Ay has
order p. Now the statements of the corollary follow from Theorem 4 by ¢ =p. O

Proposition 4. For any prime power p*, p > 5, there exists a strongly recursively
idempotent (p — 3)-differentiable quasigroup of order ¢ = p* (respectively, of order
q= (kp—k+ 1) if there exists a BIB(q,b,k,p,1)).

Proof. By Corollary 3 there exists a strongly (p — 3)-differentiable quasigroup
of order p. Using Proposition 3 and taking the direct product of « copies of
this quasigroup, we get a strongly (p — 3)-differentiable idempotent quasigroup of
order p®. It is obvious that the direct product of idempotent quasigroups is an
idempotent quasigroup. O

Remark. Note that the direct product of two strongly recursively r-differentiable
idempotent quasigroups of order p{" and p5?, p1 # pa, over near-fields of the
respective orders already is not a quasigroup over some near-field since has order
pT'ps? which is not a prime power.

Corollary 4. There exist strongly recursively 2-differentiable idempotent quasi-
groups of order q = 21,25,41,45,61; strongly recursively 4-differentiable idem-
potent quasigroups of order q = 49,91 and strongly recursively 8-differentiable
idempotent quasigroups of order ¢ = 121.

Proof. These statements follow from Corollary 3 and the existence of the following
designs:

BIB(21,21,5,5,1) (N7), BIB(25,30,6,5,1) (N11),

BIB(41,82,10,5,1) (N42), BIB(45,99,11,5,1) (N51),

BIB(61,183,15,5,1) (N108) (for these designs we have (2 = 5 — 3)-differen-
tiable idempotent quasigroups of order ¢ = 21, 25,41, 45,61 respectively.

The designs BIB(49,56,8,7,1) (N24) and BIB(91,195,15,7,1) (N111) give a
strongly (4 = 7 — 3)-differentiable idempotent quasigroups of order ¢ = 49, 91.
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The design BIB(121,132,12,11,1) (N68) corresponds to a strongly (8 =11-3)
-differentiable idempotent quasigroup of order ¢ = 121.

All these BIB-designs exist (near with each design we point its number in
Table of Application I of [11]. O

Definition 3. An MDS-code K(n, A) is said to be strongly recursive if the quasi-
group (Q, A) is strongly recursively (n — 3)-differentiable.

Corollary 5. For any prime power p®, p > 5, there exists an idempotent strongly
2-recursive code K (p, A), where A is a quasigroup of order p®.

Proof. By Theorem 4 of [7], a quasigroup A is r-differentiable if and only if the code
K(r+3,A) is an MDS-code. Next use Corollary 3 for » = p — 3 and Proposition
4. O

Denote by K!(n, A) the idempotent strongly 2-recursive MDS-code correspond-
ing to a quasigroup (@, A) and let n'"(2,q) denote the maximal number n such
that there exists a (complete) idempotent strongly 2-recursive MDS-code K!(n, A)
over an alphabet of g elements.

From Corollary 5 it follows
Corollary 6. n'"(2,p*) > p for any prime p, p > 5 and o € N. O

Corollary 7. If there exist strongly recursively r-differentiable quasigroups of
order q1 and g2, then

ny (2, q1q2) > + 3.
Proof. That follows from Proposition 3 and Theorem 4 of [7]. O

Below, we give some illustrative examples of strongly recursively r-differentiable
idempotent quasigroups over fields.

Example 1. Consider the following quasigroup operation As of the S-system of
quasigroups over the field GF(5): As(z,y) = 2(y — )+ 2 = 4o+ 2y. The recursive
derivatives of this quasigroup are:

A5 (,y) = Ao(y, As(w.y)) = 4y + 2(4x + 2y) = 32 + 3y;

AP () = As(As(a,), 45 (@,y)) = 44z + 2y) + 2(32 + 3y) = 20 + dy;
AP (2,y) = A2(45 (@,y), A (2, y) = 4(32 + 3y) +2(22 + 4y) = &

Hence, A, is a strongly 2-differentiable quasigroup operation of the S-system

over the field GF(5), and the orthogonal system ¥ = {F, F, As, Agl), Ag)} corre-
sponds to the code K:(5, As).

Example 2. Consider the quasigroup operation of the same form over the field
GF(7):
As(z,y) = 2(y — ) + . = 62 + 2y; Aél)(x, y) = bz + 3y; AEQ)(J:, y) = 4x +4y;
A (x,y) = 32+ 5y; AP (w,y) = 22 + 6y; AY (2,y) = 2.
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Thus, this quasigroup is strongly (7 — 3 = 4)-differentiable. The orthogonal
system ¥ = {F, E, A,, Agl), Aég), A§3), Agl)} corresponds to the code K(7, As).

Note that for a quasigroup operation A over GF(7) the group A (see the proof
of Theorem 3) has order 7 - 6, so a permutation § = (E, A) for A € ¥ can have
only order 3 or 7 ((E, A)? # (F, E) if A is a quasigroup operation).

For the quasigroup operation Az(x,y) = 3(y — x) + @ = 5z + 3y over GF(7)
the permutation § = (F, A3) has order 3 since Aél)(x,y) = As(y, As(z,y)) =
5y + 3(5x 4+ 3y) = x. In this case, the quasigroup operation Aj is strongly 0-
differential, 6 € A\Ag since | Ag |= 7.

The subsystem ¥; = {F, E, A3} of the complete S-system over GF(7) corre-
sponds to the code K!(3, A3).

Example 3. Among of quasigroups over the field GF(11) necessarily there are
strongly (11 — 3 = 8)-differentiable quasigroups (by Corollary 3) and a priori can
be strongly (5 — 3 = 2)- or (10 — 3 = 7)-differentiable quasigroups since the group
A has order 11 - 10. Show that all these cases are possible.

The quasigroup operation As(z,y) = 2(y — ) + © = 10z + 2y is strongly
8-differentiable with the following recursive derivatives:

A (@,) = 92+ 3y; A (w,y) = 82 + dy; AT (z,y) = To + By;

A§4)(:v, y) = 62 + 6y; Aé5) (z,y) = bz + Ty; Aée’)(x, y) = 4z + 8y;

A (2,y) = 32+ 9y; A (2, y) = 22 + 10y; AP (2,y) = o

The system ¥ = {F, E, Ay, ASY, AP A1 corresponds to Ki(11, A).

The commutative quasigroup operation Ag(z,y) = 6(y —x) +x = 6z + 6y over
the field GF(11) is strongly 2-differentiable: Aél)(x,y) = 3z + 9y; Agf) (x,y) =
10x + 2y; Aé?’)(:r, y) = x, corresponds to the subsystem % = {F, F, Ag, Aél), A((f)}
and to the code K!(5, Ag). The permutation § = (E, Ag) has order 5 and is in the
subset A\Ay.

Finally, consider the quasigroup operation Ag(z,y) = 9(y — x) + = 32 + 9y

over GF(11):
(1) _ . A(2) _ . A®) _ .

Ay (x,y) = bz + Ty; Ay” (z,y) = 10z + 2y; Ay (z,y) = 6x + 6y;

Agl)(:z:, y) = Tx + by; Aff) (z,y) = 4z + 8y; Ags)(:z, y) = 2z + 10y;

Ag)(x,y) = 8x + 4y; Aég) (z,y) = .

Thus, the quasigroup operation Ag is strongly 7-differentiable and corresponds
to the subsystem ¥; of 10 (from 11) operations and to the code K(10, Ay).

Note that the direct product of the strongly 2-differentiable quasigroups A; =
4x + 2y over GF(5) (Example 1) and Ag(z,y) = 6z + 6y over the field GF(11)
(Example 3) is a strongly 2-differentiable quasigroup of order 55 and corresponds
to the code K(5, Ay x Ag) by Proposition 3 and Theorem 4 of [7].
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