Recursively *r*-differentiable quasigroups within *S*-systems and MDS-codes

Galina B. Belyavskaya

Abstract. We study recursively *r*-differentiable binary quasigroups and such quasigroups with an additional property (strongly recursively *r*-differentiable quasigroups). These quasigroups we find in *S*-systems of quasigroups and give a lower bound of the parameters of idempotent 2-recursive MDS-codes that respect to strongly recursively *r*-differentiable quasigroups. Some illustrative examples are given.

1. Introduction

In the article [7], the notion of a recursively r-differentiable k-ary quasigroup which arise in the connect complete k-recursive codes is introduced. The minimum Hamming distance of these codes achieves the Singleton bound.

Let $Q = \{a_1, a_2, \ldots, a_q\}$ be a finite set. Any subset $K \subseteq Q^n$ is called a *code* of length n or an n-code over the alphabet Q. An n-code is called an $[n, k]_Q$ -code if $|K| = q^k$. An $[n, k, d]_Q$ -code is an $[n, k]_Q$ -code with the minimum Hamming distance d between code words. An $[n, k, d]_Q$ -code is an MDS-code if d = n - k + 1 $(d \leq n - k + 1)$ is the Singleton bound).

A code K is a complete k-recursive code if there exists a function $f: Q^k \to Q$ $(k \leq n)$ such that K is the set of all words $u(\overline{0, n-1}) = (u(0), \dots, u(n-1))$ satisfying the condition $u(i+k) = f(u(i), \dots, u(i+k-1))$ for $i \in \overline{0, n-k-1}$, where $u(0), \dots, u(k-1)$ are arbitrary elements of Q.

This code is a error-correcting code and is denoted by K(n, f). Any subcode $K_1 \subseteq K$ of a complete k-recursive code is called k-recursive.

A complete k-recursive code K(n, f) is called *idempotent* if the function f is idempotent, that is f(x, x, ..., x) = x.

Let $n^r(k,q)$ $(n^{ir}(k,q))$ denote the maximal number n such that there exists a complete k-recursive MDS-code (a complete idempotent k-recursive MDS-code) over an alphabet of q elements.

By Theorem 6 of [7], the equality $n^r(2,q) = q+1$ holds for any primary number (prime power) $q = p^{\alpha} \ge 3$ and by Corollary 4 of [7],

$$n^{r}(2,q) \ge \min\{p_{1}^{\alpha_{1}}+1, p_{2}^{\alpha_{2}}+1, \dots, p_{t}^{\alpha_{t}}+1\}$$

²⁰¹⁰ Mathematics Subject Classification: 20N05, 94B60, 05B15

Keywords: quasigroup, S-system of quasigroups, orthogonal operations, balanced incomplete block design, recursively r-differentiable quasigroup, recursive MDS-code

if $q = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}$ is the canonical decomposition of the number q.

According to Proposition 10 from [7], $n^{ir}(2,q) \ge q-1$ for any primary $q \ge 3$. By Proposition 11 from [7], $n^{ir}(2,p) \ge p$ if p is a prime number.

For binary function f a code K(n, f) the system of check functions has the form $f^{(t)}(x, y) = f(f^{(t-2)}(x, y), f^{(t-1)}(x, y))$ for $t \ge 2$, where $f^{(0)}(x, y) = f(x, y)$ and $f^{(1)}(x, y) = f(y, f^{(0)}(x, y))$.

In [7] it is proved that r-differentiable quasigroups correspond to complete recursive codes and various methods of constructions of binary recursively 1-differentiable quasigroups are suggested. Moreover, in [7] it is proved that for any $q \in N$, excepting 1,2,6 and possibly 14,18,26,42, there exist recursively 1-differentiable quasigroups of order q, that is $n^r(2,q) \ge 4$.

A quasigroup operation f is called *recursively r-differentiable* if all its *recursive derivatives* $f^{(1)}, f^{(2)}, \ldots, f^{(r)}$ are quasigroups. By Theorem 4 of [7], a quasigroup (Q, f) is recursively *r*-differentiable if and only if the code K(r+3, f) is an MDS-code. In this case the code words are $(x, y, f^{(0)}(x, y), f^{(1)}(x, y), \ldots, f^{(r)}(x, y))$, $(x, y) \in Q^2$.

A. Abashin in [1] consider special linear recursive MDS-codes with k=2 or 3. V. Izbash and P. Syrbu in [9] prove that for any k-ary $(k \ge 2)$ operation f the equality $f^{(r)} = f\theta^r$ holds, where $\theta : Q^k \to Q^k$, $\theta(x_1^k) = (x_2, x_3, \ldots, x_k, f(x_1^k))$ for all $(x_1^k) \in Q^k$. (Note that this result for k = 2 was announced in [4]). They also establish a connection between recursive differentiability of a binary group and the Fibonacci sequence.

In this article we establish properties of binary recursively *r*-differentiable quasigroups, introduce the notion of a strongly recursively *r*-differentiab-le quasigroup, and find such idempotent quasigroups in *S*-systems of quasigroups. A lower bound of $n_s^{ir}(2,q)$ for complete idempotent strongly 2-recursive MDS-codes with primary *q* is found and illustrative examples are given.

2. Preliminaries

Let Q be a finite or infinite set, Λ_Q be the set of all binary operations defined on Q. On the set Λ_Q it can be defined the *Mann's right (left) multiplication* $A \cdot B$ $(A \circ B)$ of operations $A, B \in \Lambda_Q$ in the following way:

$$(A \cdot B)(x, y) = A(x, B(x, y)) = A(F, B)(x, y),$$

 $(A \circ B)(x, y) = A(B(x, y), y) = A(B, E)(x, y),$

(---)(-, -

where E(x, y) = y, F(x, y) = x are the right and the left identity operations.

For any operations $A, B \in \Lambda_Q$ the equality $(A \circ B)^* = A^* \cdot B^*$ holds, where $A^*(x, y) = A(y, x)$ (Lemma 4.5 in [2]).

The set $\Lambda_r(\cdot)$ (the set $\Lambda_l(\circ)$) of all invertible from the right (from the left) operations given on a set Q forms the group $\Lambda_r(\cdot)$ (the group $\Lambda_l(\circ)$) under the right (under the left) multiplication of operations.

The operation E, F are the identity elements of the group $\Lambda_r(\cdot)$ and $\Lambda_l(\circ)$, respectively, and $A^{-1} \cdot A = A \cdot A^{-1} = E$, ${}^{-1}\!A \circ A = A \circ {}^{-1}\!A = F$, where

$$A^{-1}(x,y) = z \Leftrightarrow A(x,z) = y, \quad {}^{-1}\!A(x,y) = z \Leftrightarrow A(z,y) = x.$$

Every pair (A, B) of operations of the set Λ_Q defines a mapping θ of the set Q^2 into Q^2 in the following way:

$$\theta(x,y) = (A(x,y), B(x,y)), \quad x,y \in Q.$$

And conversely, any mapping θ of the set Q^2 into Q^2 uniquely defines the pair of operations $A, B \in \Lambda_Q$: if $\theta(a, b) = (c, d)$, then c = A(a, b), d = B(a, b), and (A, B) = (C, D) if and only if A = C, B = D.

If θ is a permutation on a set Q^2 , then operations A, B defined by θ are orthogonal (shortly, $A \perp B$), that is the system of equations $\{A(x, y) = a, B(x, y) = b\}$ has a unique solution for any $a, b \in Q$. And conversely, an orthogonal pair of operations, given on a set Q, corresponds to the permutation θ on the set Q^2 .

If $A, B, C \in \Lambda_Q$, then the new binary operation D can be defined by the following superposition:

$$D(x,y) = A(B(x,y), C(x,y))$$

or shortly, $D = A(B, C) = A\theta$, where $\theta = (B, C)$, that is $D(x, y) = A\theta(x, y)$.

The identity operations F, E of Λ_Q define the identity permutation $(F, E) = \overline{\varepsilon}$ on Q^2 . The equality $(A, B)\theta = (A\theta, B\theta)$ holds [2, 3].

3. Recursively *r*-differentiable quasigroups

Let (Q, A) be a finite quasigroup given on a set Q. Then, the sequence of operations $A^{(0)}, A^{(1)}, \ldots, A^{(t)}, \ldots$ for A is defined in the following way:

$$A^{(0)}(x,y) = A(x,y), \quad A^{(1)}(x,y) = A(y,A^{(0)}(x,y)),$$
$$A^{(t)}(x,y) = A(A^{(t-2)}(x,y),A^{(t-1)}(x,y))$$

for $t \ge 2$. This sequence can be written shortly as:

$$A^{(0)} = A(F, E), \quad A^{(1)} = A(E, A^{(0)}), \quad A^{(t)} = A(A^{(t-2)}, A^{(t-1)}), \ t \ge 2.$$

According to [7], the operation $A^{(r)}$ of this sequence is called the *r*-th recursive derivative of a quasigroup (Q, A).

By definition, a quasigroup (Q, A) is recursively *r*-differentiable if all its recursive derivatives $A^{(1)}, A^{(2)}, \ldots, A^{(r)}$ are quasigroup operations. In this case, the system of operations $\Sigma = \{F, E, A, A^{(1)}, A^{(2)}, \ldots, A^{(r)}\}$ is orthogonal (Proposition 7 of [7]).

By Theorem 4 of [7], a quasigroup (Q, A) is recursively *r*-differentiable if and only if the 2-recursive code K(r + 3, A) is an MDS-code.

First we establish some properties of finite binary recursively r-differentiable quasigroups.

Theorem 1. Let $A^{(i)}$ be the *i*-th recursive derivative of a quasigroup (Q, A) and $\theta = (E, A)$, then $A^{(i)} = A\theta^i$, $\theta^i = (A^{(i-2)}, A^{(i-1)})$, $\theta^2 \neq (F, E)$.

Proof. Note that the mapping $\theta = (E, A)$ of Q^2 into Q^2 is a permutation since A is a quasigroup operation. By the definition,

$$\begin{split} A^{(1)}(x,y) &= A(y,A(x,y)) = A(E,A)(x,y) = A\theta(x,y), \\ A^{(2)} &= A(A,A(E,A)) = A(A,A\theta) = A\theta^2, \end{split}$$

since $(E, A)^2 = (E, A)(E, A) = (A, A(E, A)) = (A, A\theta)$ whence $(E, A)^2 \neq (F, E)$ as $A \neq F$.

Let $A^{(k)} = A\theta^k$ for all $k, 1 \leq k \leq i-1$, then by the induction we have $A^{(i)} = A(A^{(i-2)}, A^{(i-1)}) = A(A\theta^{i-2}, A\theta^{i-1}) = A(A, A\theta)\theta^{i-2} = A\theta^2\theta^{i-2} = A\theta^i$. From these equalities the second equality of the theorem follows.

Note that, in the general case, the equality $A\theta_1 = A\theta_2$, where θ_1, θ_2 are two permutations not necessarily implies $\theta_1 = \theta_2$.

The result of Theorem 1 for binary quasigroups was announced in [4] and was generalized for k-ary quasigroups in [9].

Let
$$A^*(x,y) = A(y,x)$$
, then $A^* = ({}^{-1}(A^{-1}))^{-1} = {}^{-1}(({}^{-1}A)^{-1})$ (see [3]).

Corollary 1. If $A^{(1)}, A^{(2)}, \ldots, A^{(t)}, \ldots$ are the sequence of the recursive derivatives of a quasigroup (Q, A), then for $i \ge 1$ we have

$$A^{(i)} = (A^{(i-1)} \cdot A^*)^* = (A^{(i-1)})^* \circ A,$$

where (\cdot) and (\circ) are the right and left multiplication of the operations given on the set Q.

Proof. Indeed, by Theorem 1,

$$A^{(i)} = A\theta^{i} = A^{(i-1)}(E, A) = (A^{(i-1)})^{*} \circ A = (A^{(i-1)} \cdot A^{*})^{*},$$

since $A(E, B) = A^* \circ B$ and $(A \circ B)^* = A^* \cdot B^*$.

Proposition 1. Let a quasigroup
$$(Q, A)$$
 be recursively r-differentiable. Then,

 $\begin{array}{l} A^{(i)} \perp^{-1} (A^{-1}) \ for \ any \ i = 0, 1, 2, \dots, r-1, \ r \ge 1. \\ If \ A^{(r+1)} = F, \ r \ge 0, \ then \ A^{(r)} =^{-1} (A^{-1}) \ and \ A^{(r+2)} = E. \\ If \ A^{(r+2)} = E, \ r \ge 0, \ then \ A^{(r+1)} = F. \end{array}$

Proof. By the criterion of orthogonality of two quasigroups (cf. [2]), $A \perp B$ if and only if $A \cdot B^{-1}$ is a quasigroup operation. But by Corollary 1, the operations $A^{(i+1)} = (A^{(i)} \cdot A^*)^*$ by $i \ge 0$ are quasigroup operations, and therefore the operation $(A^{(i+1)})^* = A^{(i)} \cdot A^*$ is a quasigroup operation. Taking into account that $A^* = (-1(A^{-1}))^{-1}$, we have $A^{(i)} \perp -1(A^{-1})$ for any $i = 0, 1, 2, \dots, r-1$.

Let $A^{(r+1)} = F$, then by Corollary 1, $A^{(r+1)} = (A^{(r)})^* \circ A = F$ for $r \ge 0$, so $(A^{(r)})^* = {}^{-1}A$ since $\Lambda_l(\circ)$ is a group with the identity F and the quasigroup ^{-1}A is inverse for A in this group. Thus, $A^{(r)} = ^{-1}(A^{-1})$. In this case we have $A^{(r+2)} = A(A^{(r)}, A^{(r+1)}) = \bar{A}(A^{(r)}, F) = A^*(F, A^{(r)}) = A^* \cdot A^{(r)} = A^* \cdot A^{(r)} = A^* \cdot A^{(r-1)} = A^* \cdot A^{(r-1$ E because $A^* = ({}^{-1}(A^{-1}))^{-1}$, $\Lambda_r(\cdot)$ is a group with the identity E and A^* is the inverse quasigroup for $^{-1}(A^{-1})$ in this group.

Let $A^{(r+2)} = E$, $r \ge 0$, then $(A^{(r+2)})^* = F$ and according to Corollary 1, $A^{(r+3)} = (A^{(r+2)})^* \circ A = F \circ A = A$ since $\Lambda_l(\circ)$ is a group with the identity F. But then

$$A^{(r+3)} = A(A^{(r+1)}, A^{(r+2)})) = A(A^{(r+1)}, E) = A \circ A^{(r+1)} = A$$

and so $A^{(r+1)} = F$.

Definition 1. A quasigroup (Q, A) is called *strongly recursively r-differentiable* if it is r-differentiable and $A^{(r+1)} = F$ (or $A^{(r+2)} = E$). A quasigroup (Q, A) is strongly recursively 0-differentiable if $A^{(1)} = F$.

Note that a quasigroup not always is strongly recursively 0-differentiable, although any quasigroup is recursively 0-differentiable. In contrast to recursively r-differentiable quasigroups, a strongly recursively r-differentiable quasigroup is not strongly recursively r_1 -differentiable if $r_1 < r$.

Recall that a quasigroup (Q, A) is called *semisymmetric* if in (Q, A) the identity A(x, A(y, x)) = y holds.

Corollary 2. Let (Q, A) be a strongly recursively r-differentiable quasigroup, then $A^{(r)} = {}^{-1}(A^{-1}), A^{(r+2)} = E$ for any $r \ge 0$. A quasigroup (Q, A) is strongly recursively 0-differentiable (1-differentiable) if and only if it is semisymmetric $(A^{(1)} = {}^{-1}(A^{-1}) \ respectively).$

Proof. The first statement follows from Proposition 1. It is easy to see that a quasigroup (Q, A) is semisymmetric if and only if $A^* = A^{-1}$ (or $A = {}^{-1}(A^{-1})$), so for a semisymmetric quasigroup $A^{(1)} = A^* \circ^{-1}(A^{-1}) = A^{-1} \circ^{-1}(A^{-1}) = F$. If $A^{(1)} = F$, then by Proposition 1, $A = A^{(0)} = {}^{-1}(A^{-1})$, that is (Q, A) is semisymmetric. Let $A^{(1)} = {}^{-1}(A^{-1})$, then $A^{(2)} = (A^{(1)})^* \circ A = ({}^{-1}(A^{-1}))^* \circ A = {}^{-1}A \circ A = F$.

If $A^{(2)} = F$, then, by Proposition 1, $A^{(1)} = {}^{-1}(A^{-1})$.

Proposition 2. A recursively r-differentiable quasigroup (Q, A) is strongly recursively r-differentiable if and only if the permutation $\theta = (E, A)$ has order r + 3.

Proof. Let the permutation $\theta = (E, A)$ have order r + 3, that is $\theta^{r+3} = (F, E)$, then by Theorem 1, $(A^{(r+1)}, A^{(r+2)}) = (F, E)$ and so $A^{(r+1)} = F$.

Conversely, suppose that a quasigroup (Q, A) is strongly recursively *r*-differentiable, then *r* is the least number such that $A^{(r+1)} = F$. By Proposition 1, $A^{(r+2)} = E$, so $\theta^{r+3} = (A^{(r+1)}, A^{(r+2)}) = (F, E)$.

Proposition 3. The direct product of strongly recursively r-differentiable quasigroups is a strongly recursively r-differentiable quasigroup.

Proof. Suppose that (Q, A) and (P, B), $|Q| = q_1$, $|P| = q_2$, are strongly recursively *r*-differentiable quasigroups. Then, the direct product $A \times B$ of these quasigroups is an *r*-differentiable quasigroup since

$$(A \times B)^{(i)} = A^{(i)} \times B^{(i)}, \ i \in N$$

(see the proof of Proposition 9 of [7]). Furthermore, from $A^{(r+1)} = F_Q$ and $B^{(r+1)} = F_P$ it follows that $(A \times B)^{(r+1)} = A^{(r+1)} \times B^{(r+1)} = F_Q \times F_P$. But $F_Q \times F_P$ is the left identity operation under the left multiplication of operations given on the set $Q \times P$, so by the definition, the operation $A \times B$ given on the set $Q \times P$ is a strongly recursively r-differentiable quasigroup of order q_1q_2 .

4. Strongly recursively *r*-differentiable quasigroups

In the theory of binary quasigroups the notion of a Stein system (shortly, an S-system) is known. This system can be defined in the following way [2].

Definition 2. [2] A system $Q(\Sigma)$ of operations given on a finite set Q is called an *S*-system if

1) Σ contains the operation F, E, the rest operations are quasigroup operations;

2) if $A, B \in \Sigma'$, where $\Sigma' = \Sigma \backslash F$, then $A \cdot B \in \Sigma'$;

3) if $A \in \Sigma$, then $A^* \in \Sigma$.

In this case, $\Sigma'(\cdot)$, $\Sigma''(\circ)$, where $\Sigma' = \Sigma \setminus F$ and $\Sigma'' = \Sigma \setminus E$, are isomorphic groups.

We recall some necessary information about S-systems. Let s be the number of operations in an S-system $Q(\Sigma)$, n be the order of the set Q. Then, by Theorem 4.3 of [2], the number s - 1 divides n - 1 and $k = (n - 1)/(s - 1) \ge s$ or k = 1.

The number k is called the index of an S-system $Q(\Sigma)$. In the case k = 1 we say that $Q(\Sigma)$ is a complete S-system.

Complete S-systems are described by V. Belousov in [2]. Incomplete S-systems are described by G. Belyavskaya and A. Cheban in [5, 6].

All operations of an S-system $Q(\Sigma)$ are orthogonal and by Theorem 4.2 [2], are idempotent if $s \ge 4$, that is A(x, x) = x for all $x \in Q$ and $A \in \Sigma$.

If $Q(\Sigma)$ is an S-system, then according to Theorem 4.1 [2], for any $A, B, C \in \Sigma$ the operation C(A, B):

$$C(A,B)(x,y) = C(A(x,y),B(x,y))$$

belongs to Σ and the set Δ of all mappings $\theta = (B, C)$, where $B, C \in \Sigma, B \neq C$, is a group.

Recall that an algebra $(Q, +, \cdot)$ with two operations is called a *near-field* if (Q, +) is an abelian group with the identity $0, (Q', \cdot)$ is a group, where $Q' = Q \setminus \{0\}$ and the right distributive law: (x + y)z = xz + yz holds [10].

By Theorem 4.6 of [2], any complete S-system $Q(\Sigma)$ is a system over some near-field $Q(+, \cdot)$, that is any its operation has the form

$$A_a(x,y) = a(y-x) + x$$

for a fixed element $a \in Q$.

Thus, for a complete S-system $Q(\Sigma)$ containing s quasigroups of order q we have $s = q = p^{\alpha}$ for some primary number since any near-field has such order, and for any prime power there exists a near-field of this order [10]. If a near-field is a field, then the quasigroups are linear over the group (Q, +) and have the form

$$A_a(x,y) = (1-a)x + ay.$$

All S-systems that are not complete are described in the article [5] by means of near-fields (by means of complete S-systems) and balanced incomplete block designs BIB(v, b, r, k, 1).

A balanced incomplete block design BIB(v, b, r, k, 1) is an arrangement of v elements by b blocks such that

every block contains exactly k different elements;

every element appears in exactly r different blocks;

every pair of different elements appears in exactly one block.

The parameters r and k of a BIB(v, b, r, k, 1) define the number v and b [11]. By Theorem 1 of [5], an S-system with operations of order q, of index k containing s operations exists if and only if there exists a $BIB(q, b, k, p^{\alpha}, 1)$ with a prime p. In this case,

$$q = ks - k + 1$$
, $b = ((ks - k + 1)/s)k$, $s = p^{\alpha}$.

Below S-systems will be used to finding of strongly recursively r-differentiable idempotent quasigroups. Since we consider only recursively r-differentiable quasigroups sometimes the word "recursively" will be omitted.

Theorem 2. A quasigroup (Q, A) of an S-system $Q(\Sigma)$ is (strongly) recursively r-differentiable if and only if r is the least number such that $A^{(r+1)} = F$ (the permutation $\theta = (E, A)$ has order r + 3).

Proof. If a quasigroup (Q, A) of an S-system $Q(\Sigma)$ is strongly r-differentiable, then by the definition, $A^{(r+1)} = F$ and $A^{(1)}, A^{(2)}, \ldots, A^{(r)}$ are quasigroups.

For the proof of the converse statement we first note that from the properties of S-systems $Q(\Sigma)$ pointed above it follows that all recursive derivatives of any quasigroup (Q, A), where $A \in \Sigma$, are in Σ . So, they can be quasigroup operations or the identity operations F, E.

Let a quasigroup operation A be in Σ , r be the least number such that $A^{(r+1)} = F$, then the recursive derivatives $A^{(i)}$, $1 \leq i \leq r$, of A either all are quasigroup operations or $A^{(i_0)} = E$ for some $i_0 \leq r$, and all operations $A^{(i)}$, $i < i_0$, are quasigroup operations.

In the first case, A is a strongly r-differentiable quasigroup. In the second case, the quasigroup A is $(i_0 - 1)$ -differentiable. On the other hand, by Proposition 1, we have $A^{(i_0-1)} = F$ since $A^{(i_0)} = E$. But $A^{(i_0-1)}$ is a quasigroup, that is we obtain the contradiction.

Let the permutation $\theta = (E, A)$ have order r+3, then $\theta^{(r+3)} = (A^{(r+1)}, A^{(r+2)}) = (F, E)$ whence $A^{(r+1)} = F$, $A^{(r+2)} = E$, moreover, this number r is the least one with such property. In this case, as has been shown above, the quasigroup (Q, A) is strongly r-differentiable. The converse follows from Proposition 2.

Theorem 3. Let $Q(\Sigma)$ be an S-system containing $p^{\alpha} \ge 3$ operations, A be a quasigroup operation of Σ , and the permutations $\theta_A = (E, A)$ have order r + 3 for some $r \ge 0$. Then

$$(r+3) \mid p^{\alpha}(p^{\alpha}-1).$$

Proof. Let $\Sigma = \{F, E, A_1, A_2, \dots, A_{s-2}\}$ be an S-system containing $s = p^{\alpha}$ operations of order $q = p^{\alpha}$ if the system Σ is complete, and of order q = ks - k + 1 if Σ is an S-system of index k.

By Theorem 4.1 of [2], the set \triangle of all mappings $\theta = (B, C), B, C \in \Sigma, B \neq C$, of any S-system is a group. The order of the group \triangle is $s(s-1) = p^{\alpha}(p^{\alpha}-1)$.

The permutation $\theta_A = (E, A) \in \triangle$ for any operation A of $\Sigma, A \neq E$.

If for $A \in \Sigma$ the permutation θ_A has order r+3, then $\theta_A^{r+3} = (F, E)$. Thus $(r+3) \mid p^{\alpha}(p^{\alpha}-1)$.

Theorem 4. Let $p^{\alpha} \ge 5$ be an odd prime power, $Q(\Sigma)$ be an S-system containing p^{α} operations. Then in Σ there exists a quasigroup operation A such that the permutation $\theta_A = (E, A)$ has order r + 3 for some $r + 3 = p^{\alpha_1}$, $\alpha_1 \le \alpha$, and A is a strongly recursively idempotent r-differentiable quasigroup operation of order $q = p^{\alpha}$. If there exists a BIB $(q, b, k, p^{\alpha}, 1)$, then A has order $q = kp^{\alpha} - k + 1$.

Proof. Let $p^{\alpha} \ge 5$ be an odd prime power, $Q(\Sigma)$ be an S-system containing $s = p^{\alpha}$ operations. Then by Theorem 4.1 of [2] the set \triangle of all mappings $\theta = (B, C)$, $B, C \in \Sigma, B \neq C$ is a group. Moreover, from the proof of Theorem 4.6 in [2] it follows that this group is twice transitive on Σ and contains a strongly transitive on Σ invariant abelian subgroup \triangle_0 . It is obvious that the group \triangle_0 has order $s = p^{\alpha}$.

Let $\overline{\theta}_C$ be the permutation of \triangle_0 such that $F\overline{\theta}_C = C$. Then $F\overline{\theta}_E = E$ and $\overline{\theta}_E = (E, A) = \theta_A$ for a unique operation A of Σ . Moreover, $A \neq F$. Indeed, if A = F, then $\overline{\theta}_E^2 = (E, F)(E, F) = (F, E)$, so $p^{\alpha} = 2^{\alpha}$ and the subgroup \triangle_0 has even order.

Suppose that the permutation $\overline{\theta}_E$ has order r+3. Then $r+3 = p^{\alpha_1}$ for $\alpha_1 \leq \alpha$ since $(r+3) \mid p^{\alpha}$. Hence, $\overline{\theta}_E^{r+3} = \theta_A^{r+3} = (F, E)$. By Theorem 2, (Q, A) is strongly *r*-differentiable quasigroup of order $q = p^{\alpha}$ if the S-system $Q(\Sigma)$ is complete, and has order $q = kp^{\alpha} - k + 1$ if it is incomplete with index k. Recall that by Theorem 4.2 of [2] any operation of an S-system is idempotent if $s \geq 4$.

According to Corollary 2, $A^r = {}^{-1} (A^{-1}), A^{(r+1)} = F, A^{(r+2)} = E$. Thus, we have the subsystem

$$\Sigma_1 = \{A, A^{(1)}, A^{(2)}, \dots, A^{(r)} = {}^{-1} (A^{-1}), A^{(r+1)} = F, A^{(r+2)} = E\} \subset \Sigma$$

for $r = p^{\alpha_1} - 3$.

Corollary 3. For any prime $p, p \ge 5$, there exists a strongly recursively (p-3)-differentiable idempotent quasigroup of order q = p (of order q = kp - k + 1 if there exists a BIB(q, b, k, p, 1)).

Proof. In this case the subgroup \triangle_0 of the group \triangle of an *S*-system has odd order p, that is, \triangle_0 is a cyclic group and so the permutation $\overline{\theta}_E = (E, A)$ of \triangle_0 has order p. Now the statements of the corollary follow from Theorem 4 by q = p. \Box

Proposition 4. For any prime power p^{α} , $p \ge 5$, there exists a strongly recursively idempotent (p-3)-differentiable quasigroup of order $q = p^{\alpha}$ (respectively, of order $q = (kp - k + 1)^{\alpha}$ if there exists a BIB(q, b, k, p, 1)).

Proof. By Corollary 3 there exists a strongly (p-3)-differentiable quasigroup of order p. Using Proposition 3 and taking the direct product of α copies of this quasigroup, we get a strongly (p-3)-differentiable idempotent quasigroup of order p^{α} . It is obvious that the direct product of idempotent quasigroups is an idempotent quasigroup.

Remark. Note that the direct product of two strongly recursively *r*-differentiable idempotent quasigroups of order $p_1^{\alpha_1}$ and $p_2^{\alpha_2}$, $p_1 \neq p_2$, over near-fields of the respective orders already is not a quasigroup over some near-field since has order $p_1^{\alpha_1}p_2^{\alpha_2}$ which is not a prime power.

Corollary 4. There exist strongly recursively 2-differentiable idempotent quasigroups of order q = 21, 25, 41, 45, 61; strongly recursively 4-differentiable idempotent quasigroups of order q = 49, 91 and strongly recursively 8-differentiable idempotent quasigroups of order q = 121.

Proof. These statements follow from Corollary 3 and the existence of the following designs:

BIB(21, 21, 5, 5, 1) (N7), BIB(25, 30, 6, 5, 1) (N11),

BIB(41, 82, 10, 5, 1) (N42), BIB(45, 99, 11, 5, 1) (N51),

BIB(61, 183, 15, 5, 1) (N108) (for these designs we have (2 = 5 - 3)-differentiable idempotent quasigroups of order q = 21, 25, 41, 45, 61 respectively.

The designs BIB(49, 56, 8, 7, 1) (N24) and BIB(91, 195, 15, 7, 1) (N111) give a strongly (4 = 7 - 3)-differentiable idempotent quasigroups of order q = 49, 91.

The design BIB(121, 132, 12, 11, 1) (N68) corresponds to a strongly (8 = 11-3) -differentiable idempotent quasigroup of order q = 121.

All these *BIB*-designs exist (near with each design we point its number in Table of Application I of [11]. \Box

Definition 3. An MDS-code K(n, A) is said to be *strongly recursive* if the quasigroup (Q, A) is strongly recursively (n - 3)-differentiable.

Corollary 5. For any prime power p^{α} , $p \ge 5$, there exists an idempotent strongly 2-recursive code K(p, A), where A is a quasigroup of order p^{α} .

Proof. By Theorem 4 of [7], a quasigroup A is r-differentiable if and only if the code K(r+3, A) is an MDS-code. Next use Corollary 3 for r = p - 3 and Proposition 4.

Denote by $K_s^i(n, A)$ the idempotent strongly 2-recursive MDS-code corresponding to a quasigroup (Q, A) and let $n_s^{ir}(2, q)$ denote the maximal number n such that there exists a (complete) idempotent strongly 2-recursive MDS-code $K_s^i(n, A)$ over an alphabet of q elements.

From Corollary 5 it follows

Corollary 6. $n_s^{ir}(2, p^{\alpha}) \ge p$ for any prime $p, p \ge 5$ and $\alpha \in N$.

Corollary 7. If there exist strongly recursively r-differentiable quasigroups of order q_1 and q_2 , then

$$n_s^{ir}(2, q_1q_2) \geqslant r+3.$$

Proof. That follows from Proposition 3 and Theorem 4 of [7].

Below, we give some illustrative examples of strongly recursively r-differentiable idempotent quasigroups over fields.

Example 1. Consider the following quasigroup operation A_2 of the S-system of quasigroups over the field GF(5): $A_2(x, y) = 2(y - x) + x = 4x + 2y$. The recursive derivatives of this quasigroup are:

 $\begin{aligned} A_2^{(1)}(x,y) &= A_2(y,A_2(x,y)) = 4y + 2(4x+2y) = 3x+3y; \\ A_2^{(2)}(x,y) &= A_2(A_2(x,y),A_2^{(1)}(x,y)) = 4(4x+2y) + 2(3x+3y) = 2x+4y; \\ A_2^{(3)}(x,y) &= A_2(A_2^{(1)}(x,y),A_2^{(2)})(x,y) = 4(3x+3y) + 2(2x+4y) = x. \end{aligned}$

Hence, A_2 is a strongly 2-differentiable quasigroup operation of the S-system over the field GF(5), and the orthogonal system $\Sigma = \{F, E, A_2, A_2^{(1)}, A_2^{(2)}\}$ corresponds to the code $K_s^i(5, A_2)$.

Example 2. Consider the quasigroup operation of the same form over the field GF(7):

$$\begin{aligned} A_2(x,y) &= 2(y-x) + x = 6x + 2y; \ A_2^{(1)}(x,y) = 5x + 3y; \ A_2^{(2)}(x,y) = 4x + 4y; \\ A_2^{(3)}(x,y) &= 3x + 5y; \ A_2^{(4)}(x,y) = 2x + 6y; \ A_2^{(5)}(x,y) = x. \end{aligned}$$

Thus, this quasigroup is strongly (7 - 3 = 4)-differentiable. The orthogonal system $\Sigma = \{F, E, A_2, A_2^{(1)}, A_2^{(2)}, A_2^{(3)}, A_2^{(4)}\}$ corresponds to the code $K_s^i(7, A_2)$.

Note that for a quasigroup operation A over GF(7) the group Δ (see the proof of Theorem 3) has order $7 \cdot 6$, so a permutation $\theta = (E, A)$ for $A \in \Sigma$ can have only order 3 or 7 $((E, A)^2 \neq (F, E)$ if A is a quasigroup operation).

For the quasigroup operation $A_3(x, y) = 3(y - x) + x = 5x + 3y$ over GF(7)the permutation $\theta = (E, A_3)$ has order 3 since $A_3^{(1)}(x, y) = A_3(y, A_3(x, y)) = 5y + 3(5x + 3y) = x$. In this case, the quasigroup operation A_3 is strongly 0-differential, $\theta \in \Delta \setminus \Delta_0$ since $|\Delta_0| = 7$.

The subsystem $\Sigma_1 = \{F, E, A_3\}$ of the complete S-system over GF(7) corresponds to the code $K_s^i(3, A_3)$.

Example 3. Among of quasigroups over the field GF(11) necessarily there are strongly (11 - 3 = 8)-differentiable quasigroups (by Corollary 3) and a priori can be strongly (5 - 3 = 2)- or (10 - 3 = 7)-differentiable quasigroups since the group Δ has order $11 \cdot 10$. Show that all these cases are possible.

The quasigroup operation $A_2(x,y) = 2(y-x) + x = 10x + 2y$ is strongly 8-differentiable with the following recursive derivatives:

$$\begin{aligned} A_2^{(1)}(x,y) &= 9x + 3y; \ A_2^{(2)}(x,y) = 8x + 4y; \ A_2^{(3)}(x,y) = 7x + 5y; \\ A_2^{(4)}(x,y) &= 6x + 6y; \ A_2^{(5)}(x,y) = 5x + 7y; \ A_2^{(6)}(x,y) = 4x + 8y; \\ A_2^{(7)}(x,y) &= 3x + 9y; \ A_2^{(8)}(x,y) = 2x + 10y; \ A_2^{(9)}(x,y) = x. \end{aligned}$$

The system $\Sigma = \{F, E, A_2, A_2^{(1)}, A_2^{(2)}, \dots, A_2^{(8)}\}$ corresponds to $K_s^i(11, A_2)$.

The commutative quasigroup operation $A_6(x, y) = 6(y - x) + x = 6x + 6y$ over the field GF(11) is strongly 2-differentiable: $A_6^{(1)}(x, y) = 3x + 9y$; $A_6^{(2)}(x, y) = 10x + 2y$; $A_6^{(3)}(x, y) = x$, corresponds to the subsystem $\Sigma_1 = \{F, E, A_6, A_6^{(1)}, A_6^{(2)}\}$ and to the code $K_s^i(5, A_6)$. The permutation $\theta = (E, A_6)$ has order 5 and is in the subset $\Delta \setminus \Delta_0$.

Finally, consider the quasigroup operation $A_9(x, y) = 9(y - x) + x = 3x + 9y$ over GF(11):

$$\begin{split} A_{9}^{(1)}(x,y) &= 5x + 7y; \ A_{9}^{(2)}(x,y) = 10x + 2y; \ A_{9}^{(3)}(x,y) = 6x + 6y; \\ A_{9}^{(4)}(x,y) &= 7x + 5y; \ A_{9}^{(5)}(x,y) = 4x + 8y; \ A_{9}^{(6)}(x,y) = 2x + 10y; \\ A_{9}^{(7)}(x,y) &= 8x + 4y; \ A_{9}^{(8)}(x,y) = x. \end{split}$$

Thus, the quasigroup operation A_9 is strongly 7-differentiable and corresponds to the subsystem Σ_1 of 10 (from 11) operations and to the code $K_s^i(10, A_9)$.

Note that the direct product of the strongly 2-differentiable quasigroups $A_2 = 4x + 2y$ over GF(5) (Example 1) and $A_6(x, y) = 6x + 6y$ over the field GF(11) (Example 3) is a strongly 2-differentiable quasigroup of order 55 and corresponds to the code $K_s^i(5, A_2 \times A_6)$ by Proposition 3 and Theorem 4 of [7].

References

- A.S. Abashin, Linear recursive MDS-codes of dimension 2 and 3, (Russian), Discret. Mat. 12 (1998), 140-153.
- [2] V.D. Belousov, Systems of quasigroups with generalized identities, (Russian), Uspehi Matem. Nauk 20(121) (1965), 75 146.
- [3] V.D. Belousov, Systems of orthogonal operations, (Russian), Mat. Sbornik 77(119) (1968), 38-58.
- [4] G.B. Belyavskaya, On r-differentiable quasigroups, Abstracts Int. Conf. Pure Applied Math., Kiev 2002, 11 12.
- [5] G.B. Belyavskaya and A.M. Cheban, S-systems of arbitrary index, I, (Russian), Mat. Issled. 7 (1972), vyp.1, 27 - 43.
- [6] G.B. Belyavskaya and A.M. Cheban, S-systems of arbitrary index, II, Mat. Issled. 7 (1972), vyp.2, 3-13.
- [7] E. Couselo, S. Gonsalez, V. Markov and A. Nechaev, Recursive MDS-codes and recursive differentiable quasigroup, Discrete Math. Appl. 8 (1998), 217 – 245.
- [8] E. Couselo, S. Gonzzlez, V. Markov and A. Nechaev, Parameters of recursive MDS-codes, Discrete Math. Appl. 10 (2000), 443 – 453.
- [9] V.I. Izbash and P. Syrbu. Recursively differentiable quasigroups and complete recursive codes, Comm. Math. Univ. Carolinae 45 (2004), 257 - 263.
- [10] M. Hall, The theory of groups, The Macmillian Company, New York, 1959.
- [11] M. Hall, Combinatorial Theory, Blaisdell Publishing Company, Toronto-London, 1967.

Received March 1, 2012

Institute of Mathematics and Computer Science Academy of Sciences of Moldova str. Academiei 5, MD-2028 Chisinau, Moldova E-mail: gbel1@rambler.ru