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Recursively r-di�erentiable quasigroups

within S-systems and MDS-codes

Galina B. Belyavskaya

Abstract. We study recursively r-di�erentiable binary quasigroups and such quasigroups with
an additional property (strongly recursively r-di�erentiable quasigroups). These quasigroups
we �nd in S-systems of quasigroups and give a lower bound of the parameters of idempotent
2-recursive MDS-codes that respect to strongly recursively r-di�erentiable quasigroups. Some
illustrative examples are given.

1. Introduction

In the article [7], the notion of a recursively r-di�erentiable k-ary quasigroup
which arise in the connect complete k-recursive codes is introduced. The minimum
Hamming distance of these codes achieves the Singleton bound.

Let Q = {a1, a2, . . . , aq} be a �nite set. Any subset K ⊆ Qn is called a code

of length n or an n-code over the alphabet Q. An n-code is called an [n, k]Q-code

if | K |= qk. An [n, k, d]Q-code is an [n, k]Q-code with the minimum Hamming
distance d between code words. An [n, k, d]Q-code is an MDS-code if d = n−k +1
(d 6 n− k + 1 is the Singleton bound).

A code K is a complete k-recursive code if there exists a function f : Qk → Q
(k 6 n) such that K is the set of all words u(0, n− 1) = (u(0), . . . , u(n − 1))
satisfying the condition u(i + k) = f(u(i), . . . , u(i + k − 1)) for i ∈ 0, n− k − 1,
where u(0), . . . , u(k − 1) are arbitrary elements of Q.

This code is a error-correcting code and is denoted by K(n, f). Any subcode
K1 ⊆ K of a complete k-recursive code is called k-recursive.

A complete k-recursive code K(n, f) is called idempotent if the function f is
idempotent, that is f(x, x, . . . , x) = x.

Let nr(k, q) (nir(k, q)) denote the maximal number n such that there exists
a complete k-recursive MDS-code (a complete idempotent k-recursive MDS-code)
over an alphabet of q elements.

By Theorem 6 of [7], the equality nr(2, q) = q+1 holds for any primary number
(prime power) q = pα > 3 and by Corollary 4 of [7],

nr(2, q) > min{pα1
1 + 1, pα2

2 + 1, . . . , pαt
t + 1}
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if q = pα1
1 pα2

2 . . . pαt
t is the canonical decomposition of the number q.

According to Proposition 10 from [7], nir(2, q) > q − 1 for any primary q > 3.
By Proposition 11 from [7], nir(2, p) > p if p is a prime number.

For binary function f a code K(n, f) the system of check functions has the
form f (t)(x, y) = f(f (t−2)(x, y), f (t−1)(x, y)) for t > 2, where f (0)(x, y) = f(x, y)
and f (1)(x, y) = f(y, f (0)(x, y)).

In [7] it is proved that r-di�erentiable quasigroups correspond to complete
recursive codes and various methods of constructions of binary recursively 1-
di�erentiable quasigroups are suggested. Moreover, in [7] it is proved that for
any q ∈ N , excepting 1, 2, 6 and possibly 14, 18, 26, 42, there exist recursively
1-di�erentiable quasigroups of order q, that is nr(2, q) > 4.

A quasigroup operation f is called recursively r-di�erentiable if all its recur-

sive derivatives f (1), f (2), . . . , f (r) are quasigroups. By Theorem 4 of [7], a quasi-
group (Q, f) is recursively r-di�erentiable if and only if the code K(r + 3, f) is an
MDS-code. In this case the code words are (x, y, f (0)(x, y), f (1)(x, y), . . . f (r)(x, y)),
(x, y) ∈ Q2.

A. Abashin in [1] consider special linear recursive MDS-codes with k=2 or 3.
V. Izbash and P. Syrbu in [9] prove that for any k-ary (k > 2) operation f the
equality f (r) = fθr holds, where θ : Qk → Qk, θ(xk

1) = (x2, x3, . . . , xk, f(xk
1)) for

all (xk
1) ∈ Qk. (Note that this result for k = 2 was announced in [4]). They also

establish a connection between recursive di�erentiability of a binary group and the
Fibonacci sequence.

In this article we establish properties of binary recursively r-di�erentiable
quasigroups, introduce the notion of a strongly recursively r-di�erentiab-le quasi-
group, and �nd such idempotent quasigroups in S-systems of quasigroups. A lower
bound of nir

s (2, q) for complete idempotent strongly 2-recursive MDS-codes with
primary q is found and illustrative examples are given.

2. Preliminaries

Let Q be a �nite or in�nite set, ΛQ be the set of all binary operations de�ned on
Q. On the set ΛQ it can be de�ned the Mann's right (left) multiplication A · B
(A ◦B) of operations A,B ∈ ΛQ in the following way:

(A ·B)(x, y) = A(x,B(x, y)) = A(F,B)(x, y),

(A ◦B)(x, y) = A(B(x, y), y) = A(B,E)(x, y),

where E(x, y) = y, F (x, y) = x are the right and the left identity operations.
For any operations A,B ∈ ΛQ the equality (A ◦ B)∗ = A∗ · B∗ holds, where

A∗(x, y) = A(y, x) (Lemma 4.5 in [2]).
The set Λr(·) (the set Λl(◦)) of all invertible from the right (from the left)

operations given on a set Q forms the group Λr(·) (the group Λl(◦)) under the
right (under the left) multiplication of operations.
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The operation E, F are the identity elements of the group Λr(·) and Λl(◦),
respectively, and A−1 ·A = A ·A−1 = E, −1A ◦A = A ◦−1A = F, where

A−1(x, y) = z ⇔ A(x, z) = y, −1A(x, y) = z ⇔ A(z, y) = x.

Every pair (A,B) of operations of the set ΛQ de�nes a mapping θ of the set
Q2 into Q2 in the following way:

θ(x, y) = (A(x, y), B(x, y)), x, y ∈ Q.

And conversely, any mapping θ of the set Q2 into Q2 uniquely de�nes the pair
of operations A,B ∈ ΛQ: if θ(a, b) = (c, d), then c = A(a, b), d = B(a, b), and
(A,B) = (C,D) if and only if A = C, B = D.

If θ is a permutation on a set Q2, then operations A,B de�ned by θ are orthog-
onal (shortly, A ⊥ B), that is the system of equations {A(x, y) = a, B(x, y) = b}
has a unique solution for any a, b ∈ Q. And conversely, an orthogonal pair of
operations, given on a set Q, corresponds to the permutation θ on the set Q2.

If A,B,C ∈ ΛQ, then the new binary operation D can be de�ned by the
following superposition:

D(x, y) = A(B(x, y), C(x, y))

or shortly, D = A(B,C) = Aθ, where θ = (B,C), that is D(x, y) = Aθ(x, y).
The identity operations F, E of ΛQ de�ne the identity permutation (F,E) = ε

on Q2. The equality (A,B)θ = (Aθ, Bθ) holds [2, 3].

3. Recursively r-di�erentiable quasigroups

Let (Q,A) be a �nite quasigroup given on a set Q. Then, the sequence of operations
A(0), A(1), . . . , A(t), . . . for A is de�ned in the following way:

A(0)(x, y) = A(x, y), A(1)(x, y) = A(y, A(0)(x, y)),

A(t)(x, y) = A(A(t−2)(x, y), A(t−1)(x, y))

for t > 2. This sequence can be written shortly as:

A(0) = A(F,E), A(1) = A(E,A(0)), A(t) = A(A(t−2), A(t−1)), t > 2.

According to [7], the operation A(r) of this sequence is called the r-th recursive

derivative of a quasigroup (Q,A).
By de�nition, a quasigroup (Q, A) is recursively r-di�erentiable if all its re-

cursive derivatives A(1), A(2), . . . , A(r) are quasigroup operations. In this case, the
system of operations Σ = {F,E,A, A(1), A(2), . . . , A(r)} is orthogonal (Proposition
7 of [7]).
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By Theorem 4 of [7], a quasigroup (Q,A) is recursively r-di�erentiable if and
only if the 2-recursive code K(r + 3, A) is an MDS-code.

First we establish some properties of �nite binary recursively r-di�erentiable
quasigroups.

Theorem 1. Let A(i) be the i-th recursive derivative of a quasigroup (Q,A) and

θ = (E,A), then A(i) = Aθi, θi = (A(i−2), A(i−1)), θ2 6= (F,E).

Proof. Note that the mapping θ = (E,A) of Q2 into Q2 is a permutation since A
is a quasigroup operation. By the de�nition,

A(1)(x, y) = A(y, A(x, y)) = A(E,A)(x, y) = Aθ(x, y),

A(2) = A(A,A(E,A)) = A(A,Aθ) = Aθ2,

since (E,A)2 = (E,A)(E,A) = (A,A(E,A)) = (A,Aθ) whence (E,A)2 6= (F,E)
as A 6= F .

Let A(k) = Aθk for all k, 1 6 k 6 i − 1, then by the induction we have
A(i) = A(A(i−2), A(i−1)) = A(Aθi−2, Aθi−1) = A(A,Aθ)θi−2 = Aθ2θi−2 = Aθi.
From these equalities the second equality of the theorem follows.

Note that, in the general case, the equality Aθ1 = Aθ2, where θ1, θ2 are two
permutations not necessarily implies θ1 = θ2.

The result of Theorem 1 for binary quasigroups was announced in [4] and was
generalized for k-ary quasigroups in [9].

Let A∗(x, y) = A(y, x), then A∗ = (−1(A−1))−1 =−1((−1A)−1) (see [3]).

Corollary 1. If A(1), A(2), . . . , A(t), . . . are the sequence of the recursive deriva-

tives of a quasigroup (Q,A), then for i > 1 we have

A(i) = (A(i−1) ·A∗)∗ = (A(i−1))∗ ◦A,

where (·) and (◦) are the right and left multiplication of the operations given on

the set Q.

Proof. Indeed, by Theorem 1,

A(i) = Aθi = A(i−1)(E,A) = (A(i−1))∗ ◦A = (A(i−1) ·A∗)∗,

since A(E,B) = A∗ ◦B and (A ◦B)∗ = A∗ ·B∗.

Proposition 1. Let a quasigroup (Q, A) be recursively r-di�erentiable. Then,

A(i) ⊥−1(A−1) for any i = 0, 1, 2, . . . , r − 1, r > 1.

If A(r+1) = F , r > 0, then A(r) =−1(A−1) and A(r+2) = E.

If A(r+2) = E, r > 0, then A(r+1) = F .
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Proof. By the criterion of orthogonality of two quasigroups (cf. [2]), A ⊥ B if
and only if A ·B−1 is a quasigroup operation. But by Corollary 1, the operations
A(i+1) = (A(i) · A∗)∗ by i > 0 are quasigroup operations, and therefore the oper-
ation (A(i+1))∗ = A(i) · A∗ is a quasigroup operation. Taking into account that
A∗ = (−1(A−1))−1, we have A(i) ⊥−1(A−1) for any i = 0, 1, 2, . . . , r − 1.

Let A(r+1) = F , then by Corollary 1, A(r+1) = (A(r))∗ ◦ A = F for r > 0,
so (A(r))∗ =−1A since Λl(◦) is a group with the identity F and the quasigroup
−1A is inverse for A in this group. Thus, A(r) =−1 (A−1). In this case we have
A(r+2) = A(A(r), A(r+1)) = A(A(r), F ) = A∗(F,A(r)) = A∗ ·A(r) = A∗ ·−1(A−1) =
E because A∗ = (−1(A−1))−1, Λr(·) is a group with the identity E and A∗ is the
inverse quasigroup for −1(A−1) in this group.

Let A(r+2) = E, r > 0, then (A(r+2))∗ = F and according to Corollary 1,
A(r+3) = (A(r+2))∗ ◦ A = F ◦ A = A since Λl(◦) is a group with the identity F .
But then

A(r+3) = A(A(r+1), A(r+2))) = A(A(r+1), E) = A ◦A(r+1) = A

and so A(r+1) = F .

De�nition 1. A quasigroup (Q,A) is called strongly recursively r-di�erentiable
if it is r-di�erentiable and A(r+1) = F (or A(r+2) = E). A quasigroup (Q, A) is
strongly recursively 0-di�erentiable if A(1) = F .

Note that a quasigroup not always is strongly recursively 0-di�erentiable, al-
though any quasigroup is recursively 0-di�erentiable. In contrast to recursively
r-di�erentiable quasigroups, a strongly recursively r-di�erentiable quasigroup is
not strongly recursively r1-di�erentiable if r1 < r.

Recall that a quasigroup (Q,A) is called semisymmetric if in (Q,A) the identity
A(x,A(y, x)) = y holds.

Corollary 2. Let (Q,A) be a strongly recursively r-di�erentiable quasigroup, then

A(r) =−1 (A−1), A(r+2) = E for any r > 0. A quasigroup (Q,A) is strongly

recursively 0-di�erentiable (1-di�erentiable) if and only if it is semisymmetric

(A(1) =−1(A−1) respectively).

Proof. The �rst statement follows from Proposition 1. It is easy to see that a quasi-
group (Q, A) is semisymmetric if and only if A∗ = A−1 (or A =−1(A−1)), so for a
semisymmetric quasigroup A(1) = A∗ ◦−1(A−1) = A−1 ◦−1(A−1) = F . If A(1) = F ,
then by Proposition 1, A = A(0) =−1(A−1), that is (Q,A) is semisymmetric.

Let A(1) =−1(A−1), then A(2) = (A(1))∗ ◦ A = (−1(A−1))∗ ◦ A =−1 A ◦ A = F .
If A(2) = F , then, by Proposition 1, A(1) =−1(A−1).

Proposition 2. A recursively r-di�erentiable quasigroup (Q,A) is strongly recur-

sively r-di�erentiable if and only if the permutation θ = (E,A) has order r + 3.
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Proof. Let the permutation θ = (E,A) have order r + 3, that is θr+3 = (F,E),
then by Theorem 1, (A(r+1), A(r+2)) = (F,E) and so A(r+1) = F.

Conversely, suppose that a quasigroup (Q,A) is strongly recursively r-di�eren-
tiable, then r is the least number such that A(r+1) = F . By Proposition 1,
A(r+2) = E, so θr+3 = (A(r+1), A(r+2)) = (F,E).

Proposition 3. The direct product of strongly recursively r-di�erentiable quasi-

groups is a strongly recursively r-di�erentiable quasigroup.

Proof. Suppose that (Q,A) and (P,B), |Q| = q1, |P | = q2, are strongly recursively
r-di�erentiable quasigroups. Then, the direct product A×B of these quasigroups
is an r-di�erentiable quasigroup since

(A×B)(i) = A(i) ×B(i), i ∈ N

(see the proof of Proposition 9 of [7]). Furthermore, from A(r+1) = FQ and
B(r+1) = FP it follows that (A × B)(r+1) = A(r+1) × B(r+1) = FQ × FP . But
FQ × FP is the left identity operation under the left multiplication of operations
given on the set Q×P , so by the de�nition, the operation A×B given on the set
Q× P is a strongly recursively r-di�erentiable quasigroup of order q1q2.

4. Strongly recursively r-di�erentiable quasigroups

In the theory of binary quasigroups the notion of a Stein system (shortly, an
S-system) is known. This system can be de�ned in the following way [2].

De�nition 2. [2] A system Q(Σ) of operations given on a �nite set Q is called an
S-system if

1) Σ contains the operation F,E, the rest operations are quasigroup operations;
2) if A,B ∈ Σ′, where Σ′ = Σ\F , then A ·B ∈ Σ′;
3) if A ∈ Σ, then A∗ ∈ Σ.

In this case, Σ′(·), Σ′′(◦), where Σ′ = Σ\F and Σ′′ = Σ\E, are isomorphic groups.

We recall some necessary information about S-systems. Let s be the number
of operations in an S-system Q(Σ), n be the order of the set Q. Then, by Theorem
4.3 of [2], the number s− 1 divides n− 1 and k = (n− 1)/(s− 1) > s or k = 1.

The number k is called the index of an S-system Q(Σ). In the case k = 1 we
say that Q(Σ) is a complete S-system.

Complete S-systems are described by V. Belousov in [2]. Incomplete S-systems
are described by G. Belyavskaya and A. Cheban in [5, 6].

All operations of an S-system Q(Σ) are orthogonal and by Theorem 4.2 [2],
are idempotent if s > 4, that is A(x, x) = x for all x ∈ Q and A ∈ Σ.

If Q(Σ) is an S-system, then according to Theorem 4.1 [2], for any A,B, C ∈ Σ
the operation C(A,B):

C(A,B)(x, y) = C(A(x, y), B(x, y))
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belongs to Σ and the set ∆ of all mappings θ = (B,C), where B,C ∈ Σ, B 6= C,
is a group.

Recall that an algebra (Q,+, ·) with two operations is called a near-�eld if
(Q,+) is an abelian group with the identity 0, (Q′, ·) is a group, where Q′ = Q\{0}
and the right distributive law: (x + y)z = xz + yz holds [10].

By Theorem 4.6 of [2], any complete S-system Q(Σ) is a system over some
near-�eld Q(+, ·), that is any its operation has the form

Aa(x, y) = a(y − x) + x

for a �xed element a ∈ Q.
Thus, for a complete S-system Q(Σ) containing s quasigroups of order q we

have s = q = pα for some primary number since any near-�eld has such order, and
for any prime power there exists a near-�eld of this order [10]. If a near-�eld is a
�eld, then the quasigroups are linear over the group (Q,+) and have the form

Aa(x, y) = (1− a)x + ay.

All S-systems that are not complete are described in the article [5] by means
of near-�elds (by means of complete S-systems) and balanced incomplete block
designs BIB(v, b, r, k, 1).

A balanced incomplete block design BIB(v, b, r, k, 1) is an arrangement of v
elements by b blocks such that

every block contains exactly k di�erent elements;
every element appears in exactly r di�erent blocks;
every pair of di�erent elements appears in exactly one block.

The parameters r and k of a BIB(v, b, r, k, 1) de�ne the number v and b [11].
By Theorem 1 of [5], an S-system with operations of order q, of index k con-

taining s operations exists if and only if there exists a BIB(q, b, , k, pα, 1) with a
prime p. In this case,

q = ks− k + 1, b = ((ks− k + 1)/s)k, s = pα.

Below S-systems will be used to �nding of strongly recursively r-di�erentiable
idempotent quasigroups. Since we consider only recursively r-di�erentiable quasi-
groups sometimes the word "recursively" will be omitted.

Theorem 2. A quasigroup (Q,A) of an S-system Q(Σ) is (strongly) recursively

r-di�erentiable if and only if r is the least number such that A(r+1) = F (the
permutation θ = (E,A) has order r + 3).

Proof. If a quasigroup (Q, A) of an S-system Q(Σ) is strongly r-di�erentiable,
then by the de�nition, A(r+1) = F and A(1), A(2), . . . , A(r) are quasigroups.

For the proof of the converse statement we �rst note that from the properties
of S-systems Q(Σ) pointed above it follows that all recursive derivatives of any
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quasigroup (Q,A), where A ∈ Σ, are in Σ. So, they can be quasigroup operations
or the identity operations F,E.

Let a quasigroup operation A be in Σ, r be the least number such that A(r+1) =
F , then the recursive derivatives A(i), 1 6 i 6 r, of A either all are quasigroup
operations or A(i0) = E for some i0 6 r, and all operations A(i), i < i0, are
quasigroup operations.

In the �rst case, A is a strongly r-di�erentiable quasigroup. In the second case,
the quasigroup A is (i0 − 1)-di�erentiable. On the other hand, by Proposition 1,
we have A(i0−1) = F since A(i0) = E. But A(i0−1) is a quasigroup, that is we
obtain the contradiction.

Let the permutation θ = (E,A) have order r+3, then θ(r+3) = (A(r+1), A(r+2))
= (F,E) whence A(r+1) = F , A(r+2) = E, moreover, this number r is the least
one with such property. In this case, as has been shown above, the quasigroup
(Q,A) is strongly r-di�erentiable. The converse follows from Proposition 2.

Theorem 3. Let Q(Σ) be an S-system containing pα > 3 operations, A be a

quasigroup operation of Σ, and the permutations θA = (E,A) have order r + 3 for

some r > 0. Then

(r + 3) | pα(pα − 1).

Proof. Let Σ = {F,E, A1, A2, . . . As−2} be an S-system containing s = pα opera-
tions of order q = pα if the system Σ is complete, and of order q = ks− k + 1 if Σ
is an S-system of index k.

By Theorem 4.1 of [2], the set 4 of all mappings θ = (B,C), B,C ∈ Σ, B 6= C,
of any S-system is a group. The order of the group 4 is s(s− 1) = pα(pα − 1).

The permutation θA = (E,A) ∈ 4 for any operation A of Σ, A 6= E.
If for A ∈ Σ the permutation θA has order r + 3, then θr+3

A = (F,E). Thus
(r + 3) | pα(pα − 1). �

Theorem 4. Let pα > 5 be an odd prime power, Q(Σ) be an S-system containing

pα operations. Then in Σ there exists a quasigroup operation A such that the

permutation θA = (E,A) has order r + 3 for some r + 3 = pα1 , α1 6 α, and A
is a strongly recursively idempotent r-di�erentiable quasigroup operation of order

q = pα. If there exists a BIB(q, b, k, pα, 1), then A has order q = kpα − k + 1.

Proof. Let pα > 5 be an odd prime power, Q(Σ) be an S-system containing s = pα

operations. Then by Theorem 4.1 of [2] the set 4 of all mappings θ = (B,C),
B,C ∈ Σ, B 6= C is a group. Moreover, from the proof of Theorem 4.6 in [2] it
follows that this group is twice transitive on Σ and contains a strongly transitive
on Σ invariant abelian subgroup 40. It is obvious that the group 40 has order
s = pα.

Let θC be the permutation of 40 such that FθC = C. Then FθE = E and
θE = (E,A) = θA for a unique operation A of Σ. Moreover, A 6= F . Indeed, if

A = F , then θ
2

E = (E,F )(E,F ) = (F,E), so pα = 2α and the subgroup 40 has
even order.
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Suppose that the permutation θE has order r+3. Then r+3 = pα1 for α1 6 α

since (r + 3) | pα. Hence, θ
r+3

E = θr+3
A = (F,E). By Theorem 2, (Q,A) is strongly

r-di�erentiable quasigroup of order q = pα if the S-system Q(Σ) is complete, and
has order q = kpα−k +1 if it is incomplete with index k. Recall that by Theorem
4.2 of [2] any operation of an S-system is idempotent if s > 4.

According to Corollary 2, Ar =−1 (A−1), A(r+1) = F, A(r+2) = E. Thus, we
have the subsystem

Σ1 = {A,A(1), A(2), . . . , A(r) =−1 (A−1), A(r+1) = F, A(r+2) = E} ⊂ Σ
for r = pα1 − 3.

Corollary 3. For any prime p, p > 5, there exists a strongly recursively (p− 3)-
di�erentiable idempotent quasigroup of order q = p (of order q = kp − k + 1 if

there exists a BIB(q, b, k, p, 1)).

Proof. In this case the subgroup 40 of the group 4 of an S-system has odd order
p, that is, 40 is a cyclic group and so the permutation θE = (E,A) of 40 has
order p. Now the statements of the corollary follow from Theorem 4 by q = p.

Proposition 4. For any prime power pα, p > 5, there exists a strongly recursively

idempotent (p− 3)-di�erentiable quasigroup of order q = pα (respectively, of order
q = (kp− k + 1)α if there exists a BIB(q, b, k, p, 1)).

Proof. By Corollary 3 there exists a strongly (p − 3)-di�erentiable quasigroup
of order p. Using Proposition 3 and taking the direct product of α copies of
this quasigroup, we get a strongly (p− 3)-di�erentiable idempotent quasigroup of
order pα. It is obvious that the direct product of idempotent quasigroups is an
idempotent quasigroup.

Remark. Note that the direct product of two strongly recursively r-di�erentiable
idempotent quasigroups of order pα1

1 and pα2
2 , p1 6= p2, over near-�elds of the

respective orders already is not a quasigroup over some near-�eld since has order
pα1
1 pα2

2 which is not a prime power.

Corollary 4. There exist strongly recursively 2-di�erentiable idempotent quasi-

groups of order q = 21, 25, 41, 45, 61; strongly recursively 4-di�erentiable idem-

potent quasigroups of order q = 49, 91 and strongly recursively 8-di�erentiable
idempotent quasigroups of order q = 121.

Proof. These statements follow from Corollary 3 and the existence of the following
designs:

BIB(21, 21, 5, 5, 1) (N7), BIB(25, 30, 6, 5, 1) (N11),
BIB(41, 82, 10, 5, 1) (N42), BIB(45, 99, 11, 5, 1) (N51),
BIB(61, 183, 15, 5, 1) (N108) (for these designs we have (2 = 5 − 3)-di�eren-

tiable idempotent quasigroups of order q = 21, 25, 41, 45, 61 respectively.
The designs BIB(49, 56, 8, 7, 1) (N24) and BIB(91, 195, 15, 7, 1) (N111) give a

strongly (4 = 7− 3)-di�erentiable idempotent quasigroups of order q = 49, 91.
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The design BIB(121, 132, 12, 11, 1) (N68) corresponds to a strongly (8 =11−3)
-di�erentiable idempotent quasigroup of order q = 121.

All these BIB-designs exist (near with each design we point its number in
Table of Application I of [11].

De�nition 3. An MDS-code K(n, A) is said to be strongly recursive if the quasi-
group (Q,A) is strongly recursively (n− 3)-di�erentiable.

Corollary 5. For any prime power pα, p > 5, there exists an idempotent strongly

2-recursive code K(p, A), where A is a quasigroup of order pα.

Proof. By Theorem 4 of [7], a quasigroup A is r-di�erentiable if and only if the code
K(r + 3, A) is an MDS-code. Next use Corollary 3 for r = p− 3 and Proposition
4.

Denote by Ki
s(n, A) the idempotent strongly 2-recursive MDS-code correspond-

ing to a quasigroup (Q,A) and let nir
s (2, q) denote the maximal number n such

that there exists a (complete) idempotent strongly 2-recursive MDS-code Ki
s(n, A)

over an alphabet of q elements.

From Corollary 5 it follows

Corollary 6. nir
s (2, pα) > p for any prime p, p > 5 and α ∈ N.

Corollary 7. If there exist strongly recursively r-di�erentiable quasigroups of

order q1 and q2, then

nir
s (2, q1q2) > r + 3.

Proof. That follows from Proposition 3 and Theorem 4 of [7].

Below, we give some illustrative examples of strongly recursively r-di�erentiable
idempotent quasigroups over �elds.

Example 1. Consider the following quasigroup operation A2 of the S-system of
quasigroups over the �eld GF (5): A2(x, y) = 2(y−x)+x = 4x+2y. The recursive
derivatives of this quasigroup are:

A
(1)
2 (x, y) = A2(y, A2(x, y)) = 4y + 2(4x + 2y) = 3x + 3y;

A
(2)
2 (x, y) = A2(A2(x, y), A(1)

2 (x, y)) = 4(4x + 2y) + 2(3x + 3y) = 2x + 4y;
A

(3)
2 (x, y) = A2(A

(1)
2 (x, y), A(2)

2 )(x, y) = 4(3x + 3y) + 2(2x + 4y) = x.

Hence, A2 is a strongly 2-di�erentiable quasigroup operation of the S-system

over the �eld GF (5), and the orthogonal system Σ = {F,E,A2, A
(1)
2 , A

(2)
2 } corre-

sponds to the code Ki
s(5, A2).

Example 2. Consider the quasigroup operation of the same form over the �eld
GF (7):

A2(x, y) = 2(y−x) + x = 6x + 2y; A
(1)
2 (x, y) = 5x + 3y; A

(2)
2 (x, y) = 4x + 4y;

A
(3)
2 (x, y) = 3x + 5y; A

(4)
2 (x, y) = 2x + 6y; A

(5)
2 (x, y) = x.
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Thus, this quasigroup is strongly (7 − 3 = 4)-di�erentiable. The orthogonal

system Σ = {F,E,A2, A
(1)
2 , A

(2)
2 , A

(3)
2 , A

(4)
2 } corresponds to the code Ki

s(7, A2).
Note that for a quasigroup operation A over GF (7) the group ∆ (see the proof

of Theorem 3) has order 7 · 6, so a permutation θ = (E,A) for A ∈ Σ can have
only order 3 or 7 ((E,A)2 6= (F,E) if A is a quasigroup operation).

For the quasigroup operation A3(x, y) = 3(y − x) + x = 5x + 3y over GF (7)
the permutation θ = (E,A3) has order 3 since A

(1)
3 (x, y) = A3(y, A3(x, y)) =

5y + 3(5x + 3y) = x. In this case, the quasigroup operation A3 is strongly 0-
di�erential, θ ∈ ∆\∆0 since | ∆0 |= 7.

The subsystem Σ1 = {F,E,A3} of the complete S-system over GF (7) corre-
sponds to the code Ki

s(3, A3).

Example 3. Among of quasigroups over the �eld GF (11) necessarily there are
strongly (11− 3 = 8)-di�erentiable quasigroups (by Corollary 3) and a priori can
be strongly (5− 3 = 2)- or (10− 3 = 7)-di�erentiable quasigroups since the group
∆ has order 11 · 10. Show that all these cases are possible.

The quasigroup operation A2(x, y) = 2(y − x) + x = 10x + 2y is strongly
8-di�erentiable with the following recursive derivatives:

A
(1)
2 (x, y) = 9x + 3y; A

(2)
2 (x, y) = 8x + 4y; A

(3)
2 (x, y) = 7x + 5y;

A
(4)
2 (x, y) = 6x + 6y; A

(5)
2 (x, y) = 5x + 7y; A

(6)
2 (x, y) = 4x + 8y;

A
(7)
2 (x, y) = 3x + 9y; A

(8)
2 (x, y) = 2x + 10y; A

(9)
2 (x, y) = x.

The system Σ = {F,E,A2, A
(1)
2 , A

(2)
2 , . . . , A

(8)
2 } corresponds to Ki

s(11, A2).
The commutative quasigroup operation A6(x, y) = 6(y−x)+x = 6x+6y over

the �eld GF (11) is strongly 2-di�erentiable: A
(1)
6 (x, y) = 3x + 9y; A

(2)
6 (x, y) =

10x+2y; A
(3)
6 (x, y) = x, corresponds to the subsystem Σ1 = {F,E,A6, A

(1)
6 , A

(2)
6 }

and to the code Ki
s(5, A6). The permutation θ = (E,A6) has order 5 and is in the

subset ∆\∆0.

Finally, consider the quasigroup operation A9(x, y) = 9(y − x) + x = 3x + 9y
over GF (11):

A
(1)
9 (x, y) = 5x + 7y; A

(2)
9 (x, y) = 10x + 2y; A

(3)
9 (x, y) = 6x + 6y;

A
(4)
9 (x, y) = 7x + 5y; A

(5)
9 (x, y) = 4x + 8y; A

(6)
9 (x, y) = 2x + 10y;

A
(7)
9 (x, y) = 8x + 4y; A

(8)
9 (x, y) = x.

Thus, the quasigroup operation A9 is strongly 7-di�erentiable and corresponds
to the subsystem Σ1 of 10 (from 11) operations and to the code Ki

s(10, A9).
Note that the direct product of the strongly 2-di�erentiable quasigroups A2 =

4x + 2y over GF (5) (Example 1) and A6(x, y) = 6x + 6y over the �eld GF (11)
(Example 3) is a strongly 2-di�erentiable quasigroup of order 55 and corresponds
to the code Ki

s(5, A2 ×A6) by Proposition 3 and Theorem 4 of [7].
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