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Generalized IP-loops
Ivan I. Deriyenko

Abstract. Some generalization of the inverse identities for loops are presented and it is proved
that loops of order n < 7 satisfy one of these generalized identities. Included examples presented
method of computation of these identities. Some universal relations between left, right and mid-
dle translations are described.

1. Introduction

Let @ = {1,2,...,n} be a finite set, S, - the set of all permutations of Q). The
multiplication (composition) of permutations ¢,v € S, is defined as u(z) =
o(¥(z)). All permutations will be written in the form of cycles, cycles will be
separated by dots, e.g.

(1234567
(p:

476152 3) =(14)(2736)(5) = (14.2736.5.).

By a cyclic type of permutation ¢ we mean the sequence {l1,ls,...,l,}, where
l; denotes the number of cycles of the length 4. In this case we will write

C(e) ={l,la,...,1,} and P(go):{xlf,ml;,...,xﬁ; .

For example, forthe above permutation ¢ we have C(¢) = {1,1,0,1,0,0,0} and

P(p) = {@1, x5, 25, x}, 5, 25, 25}

Let Q(-) be a quasigroup with the multiplication denoted by juxtaposition.
Then Lo(z) = a -z is called a left translation, R,(z) = z - a is called a right
translation. By a middle translation (shortly: track) we mean a permutation ¢,
such that = - p,(z) = a for every x € Q. The permutation ¢, ! is denoted by A,
ie., Ag(z) - © = a for every x € Q. Moreover, for all i,j € Q, i # j, we define left
spins L;; = LZ-Lj_l, right spins R;; = RiRj_1 and middle spins p;; = gpigoj_l.

The "matrices" L = [L;j], R = [R;;] and ® = [p;;]| are called the left (right,
middle) spectrum of a quasigroup Q(-), respectively. By the indicator of the spec-
trum L (cf. [5]) we mean the polynomial L* = >"" | P(L;), where L; is the ith
row of L and P(fz) = Z.?:l; i# P(Lz])
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The indicators R*, ®* of R and ® are defined analogously.
As it is well known (cf. [6]), two permutations ¢, ¥ € S, are conjugated if there
exists a permutation p € S,, such that ppp~! = ).

Theorem 1.1. (Theorem 5.1.3. in [6]) Two permutations are conjugate if and
only if they have the same cyclic type. O

We will use the following notation: Lj; = L; 'L;, R}, = R 'R;, ¢}, = o7 tp;.

7,

2. IP-identities

As it is well known (cf. for example [1]), IP-loops satisfy the following two identi-
ties:
e (xy)=y, (y-x)-axt=y (1)

In any IP-loop we also have:

(x-y) =y tah (2)

Let Q(-) be a quasigroup, «, 3,7, p, 0,7 — fixed permutations of . Consider
the following identities:

a(z) - Bz y) =7(y) (3)
Bly-z) - alz) =(y) (4)
a(z) - By -z) =7(y) (5)
Bla-y) - alz) =(y) (6)
p(x-y)=o(y) 7(z) (7)

Identities (3) — (6) generalize (1), (7) is a generalization of (2).

Theorem 2.1. If (3) and (5) (or (4) and (6)) hold for some «, 3,7, then (7) holds
for some p,0,T.

Proof. Let (3) and (5) be satisfied, i.e., let
ar(z) - Pl - y) = 7(y) (8)
ax(z) - Ba(y - ) = 72(y) (9)

for some aq, 51,71, @2, B2, v2. Multiplying the second identity by 81 and a(as(x))
we obtain

ar(az()) - Br(az(x) - B2(y - ) = ar(aa(w)) - B1(72(y)),

which for as(x) = u and B2(y - x) = v gives

ai(u) - Bi(u-v) = ai(u) - fi(12(y))-
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From this, applying (8), we get
a1(u) - f1(12(y)) = 1 (v).
So,
Y1(B2(y - ) = ar(az(x)) - f1(v2(y))-

This shows that (7) is satisfied for p = 7162, 0 = @12, 7 = B170.

Analogously we can show that (4) and (6)) imply (7). O
Theorem 2.2. In any quasigroup:

e (3) holds if and only if R; = ﬂ’1¢7(i)a,
4) holds if and only if L; = 5714,0;(12.)0(,
5) holds if and only if L; = 3~ o e,
6) holds if and only if R; = 5_190;&)04,
7) holds if and only if L; = p_lRT(i)a
for alli € Q.

e o o
~ o~ o~~~

Proof. We prove only the first equivalence. The proof of other equivalences is very

similar.
Let (3) holds. Then for y =i we have

a(z) - BRi(x) = (i) = a(z) - pypale),

which means that 8R; = ¢, whence we obtain R; = ﬁ’lgo,y(i)a.

The converse statement is obvious. O
Theorem 2.3. In a quasigroup Q(-) we have:

(a) R*=®* if (3) or (6) holds,

(b) L* =®* if (4) or (5) holds,

(¢) L*=R* if (7) holds.
Proof. Let (3) holds. Then R; = ¢, ;or, whence R;j = 7. (i)(j)0- This,
by Theorem 2.2, gives R}, = B oy i)y () 8- So, R* = &*.

In other cases the proof is similar. O
Corollary 2.4. If in a quasigroup Q(-) for every i € Q

(a) Ri= "oy or Ry = /371@;(11)0[’ then R* = ®*,

(b) L; = ﬂ’1<p7(i)a or Ly = ﬂ’lcp;(li)a, then L* = o*,

(¢) L; = p’lRT(i)a, then L* = R*. O
Theorem 2.5. Relations L; = ﬁ_lgov(i)oz, L, = B_lw;(li)a, R, = ﬁ_lgow(i)a,

R; = ﬁ_lcp;(li)a and L; = p_lRT(i)O' are universal, i.e., they are saved by isotopy.



180 LI. Deriyenko

Proof. Assume that quasigroups (o) and Q(-) are isotopic, i.e.,

d(zoy) = p(=)-n(y)

for some permutations §, u,n of Q.
Translations L;, R;, ¢; of Q(-) and translations L9, R, ¢ of Q(o) are con-
nected by formulas:

Li =0L5yn™ " Ri=0Ry apypu™, @i = ne§-yyn

(for details see [5]). Hence, if the formula L; = 8~ ¢, ;) c is satisfied in Q(-), then
in Q(o) it has the form

6LZ—1<¢)77_1 = ﬁ_l(nwgfw@w%)a-
Thus

Lioayy = 07 87 05 -n i e,
which for j = u~Y(i) gives

= (6787 ) 5100 (0™ o)

So, the formula L; = ¢, ;o is universal.
In other cases the proof is analogous. O

3. Examples

We will use universal relations mentioned in Theorem 2.5 to determine conditions
under which identities (3) — (7) are satisfied by quasigroups belonging to the iso-
topy classes of quasigroups listed in the book [2]. We omit classes of quasigroups
isotopic to groups since groups satisfy each of these identities for some permuta-
tions.

1. The first class is represented by the loop No. 2.1.1:

|1 2 3 45 L1 = (1.2.3.4.5.) = (1.2.3.4.5.)
; ; f i 4 g = (12.345.) = (12.354.)
o > L3—<p3 (13254) (13245)
414 3 5 1 2 L4 = (p4 = (14 235. ) R4 = (14 253. )
sls 4 2 3 1 = (15.243.) = (15.234.)

In this loop L; = ¢; for all 4, so from the first universal relation L; = ﬁ’lap,y(i)a
we see that this is possible for « = 8 = v = ¢, which, by Theorem 2.2, means that
this loop satisfies the identity:

z-(y-z)=y.
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This universal relation is possible also for other « and 3. Indeed, for (1) = 1,
from Theorem 2.2 and (3), we obtain a(x) - B(x) = 1, which for this loop implies
a = (. Hence for v(2) = 3 we have Ly = a lpsa. This is possible only for

= (1.23.45.). Then v = a. So, the identity

a(z) - aly - x) = a(y), (10)

where oo = (1.23.45.) also is possible in this loop.

Now we check connections between R; and ;. For this we use indicators R*
and ®*. In the case R* # ®* no any connections, in the case R* = ®* connections
are possible.

For this loop we have

Dy = {12,013, P14, P15} = {(12.354.), (13.245.), (14.253.), (15.234.)}
P2 = {21,923, P21, P25} = {(12.345.), (14325.), (15423.), (13524.)}
D3 = {31, P32, V34, P35} = {(13.254.), (15234.), (12435.), (14532.)}
By = {pa1, Paz, paz, pas} = {(14.235.), (13245.), (15342.), (12543.)}
5 = {ws1, 52, P53, p5a} = {(15.243.), (14235.), (12354.), (13452.)}

and

P(El) Z] 9 P( ) ToX3 + Toxz + Xoxz + Toxz = 4T3
P(62)=ZJ 12 P(p25) = 2223 + 25 + 5 + T5 = 2273 + 375
P(®3) = P(P4) = P(®5) = P(®2) = waw3 + 35

* =30 | P(®;) = bagxs + 1215
Analogously,

Ry = {Ri, Ri3, Rus, Ry} = {(12.345.), (13.254.), (14.235.), (15.243.)}
Ry = {Ry1, Ros, Ros, Ros} = {(12.354.), (15324.), (13425.), (14523.)}
Rs = {Rs1, Rsa, Rsa, Ras} = {(13.245.), (14234.), (15432.), (12534.)}
Ry = {Ru1, Raz, Rus, Rus} = {(14.253.), (15243.), (12345.), (13542.)}
Rs = {Rs1, Rs2, Rss, Rsa} = {(15.234.), (13245.), (14352.), (12453.)}

and
P(El) = 4.’)32.%'37 P(Eg) = P(Eg) = P(R4) = P(E{)) = T3 + 31‘5
R = 5$2$3 + ].2565

So, R* = ®*. Thus, the relation R; = ﬁ_lgpy(i)a or R, = ﬁ_lgog(li)a is possible
(Corollary 2.4). If the first relation holds, then R;; = ﬂ’lcp,y(i)v(j)ﬂ. Fori =1
must be (1) = 1 since two conjugated permutations have the same cyclic type
(Theorem 1.1). So, Ryj = B~ '¢1.(;) 0, which for v(2) = 2 gives Riz = 3 'p120.
The last equation has three solutions: (3; = (1.2.3.45.), B2 = (1.2.35.4.) and
B3 = (1.2.34.5.). Hence, in view of Theorem 2.3, the identity (3) may be true in
this class of quasigroups for « = § = v = ;. Comparing this fact with (10), where
a = (1.23.45.), and the end of the proof of Theorem 2.1 (p = 1102, 0 = 103,
T = f172), we see that a; = 81 = v1 = (1.23.45.), ag = B2 = 72 = (1.2.3.45.) and
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p=o0=1=(1.23.4.5.). So, in this loop we have

p(z-y) = py) - p(x)
for p = (1.23.4.5.).

2. Using the same method we can see that L* = R* = &* for loops no.
3.1.1, 4.1.1, 5.1.1, 6.1.1 and 7.1.1. For example, for the loop no. 3.1.1 we have
L* = R* = & = 6(223 + 326) and L; = ¢, ;o where o = (1.2.3.465.),
8 =v=1(1.234.5.6.). So, in this loop a(z) - B(y - ) = B(y) for the above «, 3. In
this loop also R; = 8o, for a = (1.2.3.46.5.), 3 = v = (1.23.4.56.), which
means that this loop satisfies a(x) - 8(z - y) = B(y) for the above «, 3. Hence, it
satisfies also p(z - y) = p(y) - p(z) for p = (1.2.3.4.56.).

3. For loops no. 8.1.1, 8.2.1, 83.1, 9.1.1, 9.2.1, 9.3.1, 10.1.1, 10.2.1, 10.3.1,
11.1.1, 11.2.1, 11.3.1, 12.1.1, 12.2.1 and 12.3.1, one of the following relations take
place: L* = R* # ®*, L* # R* = ®*, R* # L* = ®*.
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