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Generalized IP-loops

Ivan I. Deriyenko

Abstract. Some generalization of the inverse identities for loops are presented and it is proved
that loops of order n < 7 satisfy one of these generalized identities. Included examples presented
method of computation of these identities. Some universal relations between left, right and mid-
dle translations are described.

1. Introduction

Let Q = {1, 2, . . . , n} be a �nite set, Sn - the set of all permutations of Q. The
multiplication (composition) of permutations ϕ,ψ ∈ Sn is de�ned as ϕψ(x) =
ϕ(ψ(x)). All permutations will be written in the form of cycles, cycles will be
separated by dots, e.g.

ϕ =
(

1 2 3 4 5 6 7
4 7 6 1 5 2 3

)
= (1 4)(2 7 3 6)(5) = (1 4. 2 7 3 6. 5.).

By a cyclic type of permutation ϕ we mean the sequence {l1, l2, . . . , ln}, where
li denotes the number of cycles of the length i. In this case we will write

C(ϕ) = {l1, l2, . . . , ln} and P (ϕ) = {xl1
1 , x

l2
2 , . . . , x

ln
n }.

For example, forthe above permutation ϕ we have C(ϕ) = {1, 1, 0, 1, 0, 0, 0} and
P (ϕ) = {x1

1, x
1
2, x

0
3, x

1
4, x

0
5, x

0
6, x

0
7}.

Let Q(·) be a quasigroup with the multiplication denoted by juxtaposition.
Then La(x) = a · x is called a left translation, Ra(x) = x · a is called a right

translation. By a middle translation (shortly: track) we mean a permutation ϕa

such that x · ϕa(x) = a for every x ∈ Q. The permutation ϕ−1
a is denoted by λa,

i.e., λa(x) · x = a for every x ∈ Q. Moreover, for all i, j ∈ Q, i 6= j, we de�ne left

spins Lij = LiL
−1
j , right spins Rij = RiR

−1
j and middle spins ϕij = ϕiϕ

−1
j .

The "matrices" L = [Lij ], R = [Rij ] and Φ = [ϕij ] are called the left (right,
middle) spectrum of a quasigroup Q(·), respectively. By the indicator of the spec-

trum L (cf. [5]) we mean the polynomial L∗ =
∑n

i=1 P (Li), where Li is the ith
row of L and P (Li) =

∑n
j=1, i 6=j P (Lij).
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The indicators R∗, Φ∗ of R and Φ are de�ned analogously.
As it is well known (cf. [6]), two permutations ϕ,ψ ∈ Sn are conjugated if there

exists a permutation ρ ∈ Sn such that ρϕρ−1 = ψ.

Theorem 1.1. (Theorem 5.1.3. in [6]) Two permutations are conjugate if and

only if they have the same cyclic type.

We will use the following notation: L′ij = L−1
i Lj , R

′
ij = R−1

i Rj , ϕ
′
ij = ϕ−1

i ϕj .

2. IP-identities

As it is well known (cf. for example [1]), IP-loops satisfy the following two identi-
ties:

x−1 · (x · y) = y, (y · x) · x−1 = y. (1)

In any IP-loop we also have:

(x · y)−1 = y−1 · x−1. (2)

Let Q(·) be a quasigroup, α, β, γ, ρ, σ, τ � �xed permutations of Q. Consider
the following identities:

α(x) · β(x · y) = γ(y) (3)

β(y · x) · α(x) = γ(y) (4)

α(x) · β(y · x) = γ(y) (5)

β(x · y) · α(x) = γ(y) (6)

ρ(x · y) = σ(y) · τ(x). (7)

Identities (3) � (6) generalize (1), (7) is a generalization of (2).

Theorem 2.1. If (3) and (5) (or (4) and (6)) hold for some α, β, γ, then (7) holds
for some ρ, σ, τ .

Proof. Let (3) and (5) be satis�ed, i.e., let

α1(x) · β1(x · y) = γ1(y) (8)

α2(x) · β2(y · x) = γ2(y) (9)

for some α1, β1, γ1, α2, β2, γ2. Multiplying the second identity by β1 and α1(α2(x))
we obtain

α1(α2(x)) · β1(α2(x) · β2(y · x)) = α1(α2(x)) · β1(γ2(y)),

which for α2(x) = u and β2(y · x) = v gives

α1(u) · β1(u · v) = α1(u) · β1(γ2(y)).
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From this, applying (8), we get

α1(u) · β1(γ2(y)) = γ1(v).

So,
γ1(β2(y · x)) = α1(α2(x)) · β1(γ2(y)).

This shows that (7) is satis�ed for ρ = γ1β2, σ = α1α2, τ = β1γ2.
Analogously we can show that (4) and (6)) imply (7).

Theorem 2.2. In any quasigroup:

• (3) holds if and only if Ri = β−1ϕγ(i)α,

• (4) holds if and only if Li = β−1ϕ−1
γ(i)α,

• (5) holds if and only if Li = β−1ϕγ(i)α,

• (6) holds if and only if Ri = β−1ϕ−1
γ(i)α,

• (7) holds if and only if Li = ρ−1Rτ(i)σ

for all i ∈ Q.

Proof. We prove only the �rst equivalence. The proof of other equivalences is very
similar.

Let (3) holds. Then for y = i we have

α(x) · βRi(x) = γ(i) = α(x) · ϕγ(i)α(x),

which means that βRi = ϕγ(i)α, whence we obtain Ri = β−1ϕγ(i)α.
The converse statement is obvious.

Theorem 2.3. In a quasigroup Q(·) we have:

(a) R∗ = Φ∗ if (3) or (6) holds,

(b) L∗ = Φ∗ if (4) or (5) holds,

(c) L∗ = R∗ if (7) holds.

Proof. Let (3) holds. Then Ri = β−1ϕγ(i)α, whence Rij = β−1ϕγ(i)γ(j)β. This,
by Theorem 2.2, gives R′

ij = β−1ϕγ(i)γ(j)β. So, R
∗ = Φ∗.

In other cases the proof is similar.

Corollary 2.4. If in a quasigroup Q(·) for every i ∈ Q
(a) Ri = β−1ϕγ(i)α or Ri = β−1ϕ−1

γ(i)α, then R
∗ = Φ∗,

(b) Li = β−1ϕγ(i)α or Li = β−1ϕ−1
γ(i)α, then L

∗ = Φ∗,

(c) Li = ρ−1Rτ(i)σ, then L
∗ = R∗.

Theorem 2.5. Relations Li = β−1ϕγ(i)α, Li = β−1ϕ−1
γ(i)α, Ri = β−1ϕγ(i)α,

Ri = β−1ϕ−1
γ(i)α and Li = ρ−1Rτ(i)σ are universal, i.e., they are saved by isotopy.
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Proof. Assume that quasigroups Q(◦) and Q(·) are isotopic, i.e.,

δ(x ◦ y) = µ(x) · η(y)

for some permutations δ, µ, η of Q.
Translations Li, Ri, ϕi of Q(·) and translations L◦i , R

◦
i , ϕ

◦
i of Q(◦) are con-

nected by formulas:

Li = δL◦µ−1(i)η
−1, Ri = δR◦

η−1(i)µ
−1, ϕi = ηϕ◦δ−1(i)µ

−1

(for details see [5]). Hence, if the formula Li = β−1ϕγ(i)α is satis�ed in Q(·), then
in Q(◦) it has the form

δL◦µ−1(i)η
−1 = β−1(ηϕ◦δ−1γ(i)µ

−1)α .

Thus

L◦µ−1(i) = δ−1β−1ηϕ◦δ−1γ(i)µ
−1αη ,

which for j = µ−1(i) gives

L◦j = (δ−1β−1η)ϕ◦δ−1γµ(i)(µ
−1αη) .

So, the formula Li = β−1ϕγ(i)α is universal.
In other cases the proof is analogous.

3. Examples

We will use universal relations mentioned in Theorem 2.5 to determine conditions
under which identities (3) � (7) are satis�ed by quasigroups belonging to the iso-
topy classes of quasigroups listed in the book [2]. We omit classes of quasigroups
isotopic to groups since groups satisfy each of these identities for some permuta-
tions.

1. The �rst class is represented by the loop No. 2.1.1:

· 1 2 3 4 5

1 1 2 3 4 5
2 2 1 4 5 3
3 3 5 1 2 4
4 4 3 5 1 2
5 5 4 2 3 1

L1 = ϕ1 = (1.2.3.4.5.)
L2 = ϕ2 = (12.345.)
L3 = ϕ3 = (13.254.)
L4 = ϕ4 = (14.235.)
L5 = ϕ5 = (15.243.)

R1 = (1.2.3.4.5.)
R2 = (12.354.)
R3 = (13.245.)
R4 = (14.253.)
R5 = (15.234.)

In this loop Li = ϕi for all i, so from the �rst universal relation Li = β−1ϕγ(i)α
we see that this is possible for α = β = γ = ε, which, by Theorem 2.2, means that
this loop satis�es the identity:

x · (y · x) = y.
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This universal relation is possible also for other α and β. Indeed, for γ(1) = 1,
from Theorem 2.2 and (3), we obtain α(x) · β(x) = 1, which for this loop implies
α = β. Hence for γ(2) = 3 we have L2 = α−1ϕ3α. This is possible only for
α = (1.23.45.). Then γ = α. So, the identity

α(x) · α(y · x) = α(y), (10)

where α = (1.23.45.) also is possible in this loop.
Now we check connections between Ri and ϕi. For this we use indicators R∗

and Φ∗. In the case R∗ 6= Φ∗ no any connections, in the case R∗ = Φ∗ connections
are possible.

For this loop we have
Φ1 = {ϕ12, ϕ13, ϕ14, ϕ15} = {(12.354.), (13.245.), (14.253.), (15.234.)}
Φ2 = {ϕ21, ϕ23, ϕ24, ϕ25} = {(12.345.), (14325.), (15423.), (13524.)}
Φ3 = {ϕ31, ϕ32, ϕ34, ϕ35} = {(13.254.), (15234.), (12435.), (14532.)}
Φ4 = {ϕ41, ϕ42, ϕ43, ϕ45} = {(14.235.), (13245.), (15342.), (12543.)}
Φ5 = {ϕ51, ϕ52, ϕ53, ϕ54} = {(15.243.), (14235.), (12354.), (13452.)}

and
P (Φ1) =

∑5
j=2 P (ϕ1j) = x2x3 + x2x3 + x2x3 + x2x3 = 4x2x3

P (Φ2) =
∑5

j=1, j 6=2 P (ϕ2j) = x2x3 + x5 + x5 + x5 = x2x3 + 3x5

P (Φ3) = P (Φ4) = P (Φ5) = P (Φ2) = x2x3 + 3x5

Φ∗ =
∑5

i=1 P (Φi) = 5x2x3 + 12x5

Analogously,

R1 = {R12, R13, R14, R15} = {(12.345.), (13.254.), (14.235.), (15.243.)}
R2 = {R21, R23, R24, R25} = {(12.354.), (15324.), (13425.), (14523.)}
R3 = {R31, R32, R34, R35} = {(13.245.), (14234.), (15432.), (12534.)}
R4 = {R41, R42, R43, R45} = {(14.253.), (15243.), (12345.), (13542.)}
R5 = {R51, R52, R53, R54} = {(15.234.), (13245.), (14352.), (12453.)}

and

P (R1) = 4x2x3, P (R2) = P (R3) = P (R4) = P (R5) = x2x3 + 3x5

R∗ = 5x2x3 + 12x5

So, R∗ = Φ∗. Thus, the relation Ri = β−1ϕγ(i)α or Ri = β−1ϕ−1
γ(i)α is possible

(Corollary 2.4). If the �rst relation holds, then Rij = β−1ϕγ(i)γ(j)β. For i = 1
must be γ(1) = 1 since two conjugated permutations have the same cyclic type
(Theorem 1.1). So, R1j = β−1ϕ1γ(j)β, which for γ(2) = 2 gives R12 = β−1ϕ12β.
The last equation has three solutions: β1 = (1.2.3.45.), β2 = (1.2.35.4.) and
β3 = (1.2.34.5.). Hence, in view of Theorem 2.3, the identity (3) may be true in
this class of quasigroups for α = β = γ = βi. Comparing this fact with (10), where
α = (1.23.45.), and the end of the proof of Theorem 2.1 (ρ = γ1β2, σ = α1α2,
τ = β1γ2), we see that α1 = β1 = γ1 = (1.23.45.), α2 = β2 = γ2 = (1.2.3.45.) and
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ρ = σ = τ = (1.23.4.5.). So, in this loop we have

ρ(x · y) = ρ(y) · ρ(x)

for ρ = (1.23.4.5.).
2. Using the same method we can see that L∗ = R∗ = Φ∗ for loops no.

3.1.1, 4.1.1, 5.1.1, 6.1.1 and 7.1.1. For example, for the loop no. 3.1.1 we have
L∗ = R∗ = Φ∗ = 6(2x2

3 + 3x6) and Li = β−1ϕγ(i)α, where α = (1.2.3.465.),
β = γ = (1.23.4.5.6.). So, in this loop α(x) · β(y · x) = β(y) for the above α, β. In
this loop also Ri = β−1ϕγ(i)α for α = (1.2.3.46.5.), β = γ = (1.23.4.56.), which
means that this loop satis�es α(x) · β(x · y) = β(y) for the above α, β. Hence, it
satis�es also ρ(x · y) = ρ(y) · ρ(x) for ρ = (1.2.3.4.56.).

3. For loops no. 8.1.1, 8.2.1, 8.3.1, 9.1.1, 9.2.1, 9.3.1, 10.1.1, 10.2.1, 10.3.1,
11.1.1, 11.2.1, 11.3.1, 12.1.1, 12.2.1 and 12.3.1, one of the following relations take
place: L∗ = R∗ 6= Φ∗, L∗ 6= R∗ = Φ∗, R∗ 6= L∗ = Φ∗.

References

[1] V.D. Belousov, Foundations of the theory of quasigroups and loops, (Rus-
sian) "Nauka", Moscow 1967.

[2] J. Dénes and A.D. Keedwell, Latin squares and their applications, Akadé-
mai Kiadó, Budapest, 1974.

[3] I.I. Deriyenko, On middle translations of �nite quasigroups, Quasigroups
and Related Systems 16 (2008), 17 − 24.

[4] I.I. Deriyenko, Con�gurations of conjugated permutations, Quasigroups and
Related Systems 18 (2010), 17 − 24.

[5] I.I. Deriyenko, Indicators of quasigroups, Quasigroups and Related Systems
19 (2011), 223 − 226.

[6] M. Hall, The theory of groups, Macmillan, 1959.

Received November 15, 2012

Department of Higher Mathematics and Informatics, Kremenchuk National University,
Pershotravneva 20, 39600, Kremenchuk, Ukraine
E-mail: ivan.deriyenko@gmail.com


