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D-loops

Ivan I. Deriyenko and Wieslaw A. Dudek

Abstract. D-loops are loops with the antiautomorphic inverse property. The class of such
loops is larger than the class of IP-loops. The smallest D-loops which is not an IP-loop has six
elements. We prove several basic properties of such loops and present methods of constructions
of D-loops from IP-loops. Unfortunately, a loop isotopic to a D-loop may not be a D-loop.

1. Introduction

A loop is a quasigroup Q(◦) with an identity element always denoted by 1. A
loop Q(◦) has the inverse property, i.e., it is an IP-loop, if for each its element a
there exists in Q a uniquely determined inverse element a′ such that a′ ◦ (a ◦ b) =
(b ◦ a) ◦ a′ = b. This means that in an IP-loop for right and left translations, i.e.,
for Ra(x) = x ◦ a, La(x) = a ◦ x, we have

R−1
a = Ra′ , L−1

a = La′ . (1)

It is not di�cult to shown that in an IP-loop Q(◦) for all a, b ∈ Q hold

a ◦ a′ = a′ ◦ a = 1, (a′)′ = a (2)

and

(a ◦ b)′ = b′ ◦ a′ . (3)

On the other hand, in any loop Q(◦) for each a ∈ Q there are uniquely de-
termined left and right loop-inverse elements a−1

L
, a−1

R
∈ Q for which we have

a−1
L

◦ a = a ◦ a−1
R

= 1. A two-sided loop-inverse element to a ∈ Q is denoted by
a−1. Clearly, (a−1)−1 = a. Hence, an element a−1 ∈ Q is loop-inverse to a ∈ Q
if and only if a ∈ Q is loop-inverse to a−1. In a loop each inverse element is
loop-inverse but a loop-inverse element may not be inverse.
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Example 1.1. Consider the following loop Q(◦):
◦ 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7
2 2 3 1 6 7 5 4
3 3 1 2 7 6 4 5
4 4 7 6 5 1 3 2
5 5 6 7 1 4 2 3
6 6 4 5 2 3 7 1
7 7 5 4 3 2 1 6

In this loop we have a−1
L

= a−1
R

for each a ∈ Q. Hence, each element of this
loop is loop-inverse. But a = 5 is not an inverse element since 4 ◦ (5 ◦ 6) 6= 6. The
map h(x) = x−1

R
is an antiautomorphism of this loop, i.e., it satis�es the identity

h(x ◦ y) = h(y) ◦ h(x). �

Recall that a loop Q(◦) satis�es the antiautomorphic inverse property if for
each x ∈ Q there exists a two-sided loop-inverse element x−1 such that (x◦y)−1 =
y−1 ◦x−1 holds for all x, y ∈ Q. A simple example of such loop is an IP-loop. The
above example proves that there are also loops with this property which are not
IP-loops. Thus, the class of loops with this property is much larger than the class
of IP-loops.

This enables us to introduce the following de�nition.

De�nition 1.2. A loop Q(◦) is called a D-loop if it satis�es the dual automorphic

property for ϕ(x) = x−1
R
, i.e., if

(x ◦ y)−1
R

= y−1
R

◦ x−1
R

(4)

holds for all x, y ∈ Q.

Theorem 1.3. A loop Q(◦) is a D-loop if and only if it satis�es the identity

(x ◦ y)−1
L

= y−1
L

◦ x−1
L
. (5)

Proof. Suppose that Q(◦) is a D-loop. Since x−1
L

◦ x = 1, from (4) it follows

1 = 1−1
R

= (x−1
L

◦ x)−1
R

= x−1
R

◦ (x−1
L

)−1
R
,

which together with 1 = x−1
L

◦ (x−1
L

)−1
R

gives x−1
L

= x−1
R
. Thus (4) implies (5).

Analogously, using x ◦ x−1
R

= 1 and (x−1
R

)−1
L

◦ x
R

= 1 we can prove that (5)
implies (4).

Corollary 1.4. For all elements of D-loops we have

a−1
L

= a−1
R

and (a−1)−1 = a. �

This means that in the multiplication table of aD-loop Q(◦) its neutral element
is located symmetrically with respect to the main diagonal and the class of all D-
loops coincides with the class of loops with the antiautomorphic inverse property
but we'll keep the term D-loop since it is shorter and more convenient to use.
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2. Constructions of D-loops

Below we present several methods of veri�cation when a given loop is a D-loop.
To describe these methods we must reminder some de�nitions from [2], [5] and [6].

De�nition 2.1. Let Q(·) be a loop. A permutation ϕa of Q, where a ∈ Q, is
called a right middle translation or a right track (shortly: track) of Q(·) if

x · ϕa(x) = a (6)

holds for all x ∈ Q. By a left middle translation or a left track we mean a permu-
tation λa such that

λa(x) · x = a. (7)

It is clear that λa = ϕ−1
a and ϕ1(x) = x−1

R for all a, x ∈ Q.

The permutation ϕa selects in the multiplication table of a given loop the
number of columns in an element a appears. For the loop de�ned in Example 1.1

ϕ4 =
(

1 2 3 4 5 6 7
4 7 6 1 5 2 3

)
= (1 4)(2 7 3 6)(5).

Further, permutations will be written in the form of cycles, cycles will be sepa-
rated by dots. For example, the above permutation ϕ4 will be written as ϕ4 =
(1 4. 2 7 3 6. 5.).

It is clear that a loop Q(·), where Q = {1, 2, . . . , n}, can be identi�ed with the
set {ϕ1, ϕ2, . . . , ϕn, } of its tracks.

Theorem 2.2. A loop Q(·) is a D-loop if and only if

ϕ1ϕaϕ1 = ϕ−1
a−1 (8)

for every a ∈ Q, where a−1 is (right) inverse to a.

Proof. Let Q(·) be a D-loop. Then x−1
R = x−1 for every x ∈ Q and, according to

(6), for all a, x ∈ Q we have ϕ−1
a (x) · x = a. Hence

a−1 = (ϕ−1
a (x) · x)−1 = x−1 · (ϕ−1

a (x))−1 = ϕ1(x) · ϕ1ϕ
−1
a (x).

Since also a−1 = ϕ1(x) · ϕa−1ϕ1(x), from the above we obtain ϕ1ϕ
−1
a = ϕa−1ϕ1,

which implies (8).
Conversely, let x · y = a. Then y = ϕa(x). Hence

y−1
R · x−1

R = ϕ1ϕa(x) · ϕ1(x) = ϕ1ϕaϕ1(x−1) · x−1

(8)
= ϕ−1

a−1(x−1) · x−1 = λa−1(x−1) · x−1 (7)
= a−1

R = (x · y)−1
R .

This completes the proof.
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Corollary 2.3. A loop Q(·) is a D-loop if and only if it satis�es one of the

following identities:

(a) ϕ1ϕ
−1
a ϕ1 = ϕa−1 ,

(b) ϕ1Raϕ1 = La−1 ,

(c) ϕ1Laϕ1 = Ra−1 .

Proof. Indeed, (8) can be written in the form ϕ1ϕa−1ϕ1 = ϕ−1
a , which, in view

of ϕ1ϕ1 = idQ, is equivalent to (a). Moreover, (x · a)−1 = a−1 · x−1 means that
ϕ1Ra = La−1ϕ1. The last is equivalent to (b) and (c).

Example 2.4. Consider the loop Q(·):

· 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 1 4 3 6 5
3 3 5 1 6 4 2
4 4 6 5 2 1 3
5 5 3 6 1 2 4
6 6 4 2 5 3 1

We will use Theorem 2.2 to verify that this loop is a D-loop.
We have

ϕ1 = (1. 2. 3. 4 5. 6.) ϕ4 = (1 4. 2 3 5 6.)
ϕ2 = (1 2. 3 6. 4. 5.) ϕ5 = (1 5. 2 6 4 3.)
ϕ3 = (1 3. 2 4 6 5.) ϕ6 = (1 6. 2 5 3 4.)

We have to check the condition (8) for a = 2, 3, 4, 5, 6 because ϕ1ϕ1ϕ1 = ϕ−1
1 holds

in each loop. Permutations ϕ1 and ϕ2 have disjoint cycles hence ϕ1ϕ2ϕ1 = ϕ2 =
ϕ−1

2 . In other cases we obtain:

ϕ1ϕ3ϕ1 = (1 3. 2 5 6 4.) = ϕ−1
3 ϕ1ϕ5ϕ1 = (1 4. 2 6 5 3.) = ϕ−1

4

ϕ1ϕ4ϕ1 = (1 5. 2 3 4 6.) = ϕ−1
5 ϕ1ϕ6ϕ1 = (1 6. 2 4 3 5.) = ϕ−1

6

This shows that Q(◦) is a D-loop. �

Note that in general loops isotopic to D-loops are not D-loops.

Example 2.5. The following loop

◦ 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 1 6 3 4 5
3 3 6 2 5 1 4
4 4 5 1 6 2 3
5 5 3 4 1 6 2
6 6 4 5 2 3 1
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is isotopic to a D-loop Q(◦) from the previous example. This isotopy has the form
γ(x◦ y) = α(x) ·β(y), where α = (1 4 2. 3. 5. 6.), β = (1 2 5 4 6. 3.), γ = (1 6 4 3 5 2.).
The loop Q(◦) is not a D-loop since 3−1

L
6= 3−1

R
. �

Theorem 2.6. Let Q(·) be an IP-loop and let a ∈ Q be �xed. If an element a′ ∈ Q
is inverse to a in Q(·), then Q(◦) with the operation

x ◦ y = Ra′(x) · La(y) (9)

is a D-loop with the same identity as in Q(·).
Proof. It is clear that Q(◦) is a quasigroup. Let an element a′ ∈ Q be inverse to
a in Q(·). Then

x ◦ 1 = Ra′(x) · La(1) = (x · a′) · a = x.

Similarly 1 ◦ x = x. Hence Q(◦) is a loop with the same identity as in Q(·).
Moreover, for every x ∈ Q there exists x ∈ Q such that

1 = x ◦ x = Ra′(x) · La(x) = (x · a′) · (a · x),

which gives a · x = (x · a′)−1 = (a′)−1 · x−1 = a · x−1. Thus x = x−1 for every
x ∈ Q. Hence

(x ◦ y)−1 = (Ra′(x) · La(y))−1 = ((x · a′) · (a · y))−1

= (a · y)−1 · (x · a′)−1 = (y−1 · a−1) · ((a′)−1 · x−1)

= (y−1 · a′) · (a · x−1) = Ra′(y−1) · La(x−1) = y−1 ◦ x−1.

Therefore Q(◦) is a D-loop.

Corollary 2.7. Any IP-loop of order n determines n− 1 isotopic D-loops.

Example 2.8. Starting from the following IP-loop:

· 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7
2 2 3 1 6 7 5 4
3 3 1 2 7 6 4 5
4 4 7 6 5 1 2 3
5 5 6 7 1 4 3 2
6 6 4 5 3 2 7 1
7 7 5 4 2 3 1 6

and using (9) with a = 2 we obtain a D-loop:

◦ 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7
2 2 3 1 6 7 5 4
3 3 1 2 5 4 7 6
4 4 5 6 7 1 2 3
5 5 4 7 1 6 3 2
6 6 7 5 3 2 4 1
7 7 6 4 2 3 1 5
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which is not an IP-loop because 3 ◦ (2 ◦ 5) 6= 5. Hence a = 2 is not an inverse
element in Q(◦). Putting x ∗ y = R3(x) ◦ L2(y) we obtain a quasigroup:

∗ 1 2 3 4 5 6 7

1 1 2 3 7 6 4 5
2 2 3 1 6 7 5 4
3 3 1 2 5 4 7 6
4 7 5 6 4 1 2 3
5 6 4 7 1 5 3 2
6 4 7 5 3 2 6 1
7 5 6 4 2 3 1 7

which is isotopic to the initial D-loop Q(◦) but it is not a D-loop. This means
that in Theorem 2.6 the assumption on a can not be ignored. �

Proposition 2.9. An element a ∈ Q used in Theorem 2.6 has the same inverse

element in Q(·) and Q(◦) de�ned by (9) if and only if

x · a = x ◦ a and a′ · x = a′ ◦ x (10)

for all x ∈ Q.

Proof. Let a′ ∈ Q be inverse to a in Q(·) and Q(◦). Then a = (a′)′ and

z = (z ◦ a′) ◦ a = (Ra′(z) · La(a′)) ◦ a = Ra′(z) ◦ a,

which for z = x · a gives x · a = x ◦ a.
Similarly,

z = a′ ◦ (a ◦ z) = a′ ◦ (Ra′(a) · La(z)) = a′ ◦ La(z)

for z = a′ · x implies a′ · x = a′ ◦ x.
Conversely, if a′ ∈ Q is inverse to a in Q(·) and (10) are satis�ed, then

(x ◦ a) ◦ a′ = (x · a) ◦ a′ = Ra′(x · a) · La(a′) = ((x · a) · a′) · (a · a′) = x.

Analogously a′ ◦ (a ◦ x) = a′ · (a ◦ x) = x. Hence a′ is inverse to a in Q(◦).

Corollary 2.10. An element a ∈ Q used in Theorem 2.6 has the same inverse

element in Q(·) and Q(◦) de�ned by (9) if and only if the multiplication tables of

these two loops have the same a�columns and the same a′�rows.

Proposition 2.11. An element a ∈ Q used in Theorem 2.6 has the same inverse

element in Q(·) and Q(◦) de�ned by (9) if and only if

LaLa = La2 and RaRa = Ra2 (11)

where La and Ra are translations in Q(·).
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Proof. Let a ∈ Q has the same inverse a′ in Q(·) and Q(◦). Then for every x ∈ Q
we have

x = a′ ◦ (a ◦ x) = Ra′(a′) · La(Ra′(a) · La(x))
= Ra′(a′)LaLa(x) = La′·a′LaLa(x) = L(a2)′LaLa(x),

whence, applying (1), we get LaLa = L−1
(a2)′ = La2 .

Similarly, for every z ∈ Q we have

z ◦ a = Ra′(z) · La(a) = Ra2Ra′(z),

which for z = Ra(x), by (1), gives

Ra(x) ◦ a = Ra2Ra′Ra(x) = Ra2(x).

Hence RaRa = Ra2 . This proves (11).
The converse statement is obvious.

Below we present a simple method of construction of new loops from given
loops. This method is based on exchange of tracks. Next, this method will be
applied to the construction of D-loops.

Let {ϕ1, ϕ2, . . . , ϕn} be tracks of a D-loop Q(·) with the identity 1. We say
that for i 6= j 6= 1 tracks ϕi, ϕj are decomposable if there exist two nonempty
subsets X,Y of Q such that Q = X ∪ Y, X ∩ Y = ∅, 1 ∈ X and{

ϕi = ϕ̄iϕ̂i
ϕj = ϕ̄jϕ̂j

(12)

where ϕ̄i, ϕ̄j are permutations of X, ϕ̂i, ϕ̂j are permutations of Y.
Putting {

ψi = ϕ̄iϕ̂j
ψj = ϕ̄jϕ̂i

(13)

and ψk = ϕk for k 6∈ {i, j} we obtain the new system of tracks which de�nes on Q
the new loop Q(◦) with the same identity as in Q(·).

Example 2.12. The loop Q(·) de�ned by

· 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
2 2 3 4 1 6 7 8 5
3 3 4 1 2 7 8 5 6
4 4 1 2 3 8 5 6 7
5 5 8 7 6 1 4 3 2
6 6 5 8 7 2 1 4 3
7 7 6 5 8 3 2 1 4
8 8 7 6 5 4 3 2 1
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is a group (so, it is a D-loop) with the following tracks:

ϕ1 = (1.24.3.4.5.6.7.8.) ϕ2 = (12.34.5876.) ϕ3 = (13.2.4.57.68.)
ϕ4 = (14.23.5678.) ϕ5 = (15.37.2846.) ϕ6 = (16.38.2547.)
ϕ7 = (17.35.2648.) ϕ8 = (18.36.2745.)

For (i, j) ∈ {(2, 3), (2, 4), (3, 4), (5, 7), (6, 8)} tracks ϕi, ϕj are decomposable. In
the case (i, j) = (6, 8) we have{

ϕ6 = ϕ̄6ϕ̂6, where ϕ̄6 = (16.38.), ϕ̂6 = (2547.)
ϕ8 = ϕ̄8ϕ̂8, where ϕ̄8 = (18.36.), ϕ̂8 = (2745.)

whence, according to (13), we obtain{
ψ6 = ϕ̄6ϕ̂8 = (16.38.2745.)
ψ8 = ϕ̄8ϕ̂6 = (18.36.2547.)

and ψk = ϕk for k = 1, 2, 3, 4, 5, 7.
This new system of tracks {ψ1, ψ2, . . . , ψ8} de�nes the loop Q(◦):

◦ 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8

2 2 3 4 1 8 7 6 5
3 3 4 1 2 7 8 5 6

4 4 1 2 3 6 5 8 7

5 5 6 7 8 1 4 3 2
6 6 5 8 7 2 1 4 3

7 7 8 5 6 3 2 1 4
8 8 7 6 5 4 3 2 1

where items changed by tracks ψ6 and ψ8 are entered in the box. �

This new loop Q(◦) can be used for the construction of another loop since it
has the same pair of decomposable tracks as Q(·). So, for the construction of new
loops we can use not only one but also two or more pairs of decomposable tracks.
Using di�erent pairs of decomposable tracks we obtain di�erent loops which may
not be isotopic. Obtained loops may not be isotopic to the initial loop Q(·), too.
Example 2.13. Direct computations show that this loop

· 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
2 2 1 5 7 3 8 4 6
3 3 8 6 1 4 2 5 7
4 4 6 1 5 7 3 8 2
5 5 7 4 2 8 1 6 3
6 6 4 8 3 1 7 2 5
7 7 5 2 8 6 4 3 1
8 8 3 7 6 2 5 1 4

is a D-loop. It hasn't got any decomposable pair of tracks. �
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Theorem 2.14. Let Q(·) be a D-loop with the identity 1. If ϕi, ϕj, where i · j = 1
and i 6= j, are decomposable tracks of Q(·), then a loop Q(◦) obtained from Q(·)
by exchange of tracks is a D-loop.

Proof. Since Q(◦) is a loop it is su�cient to show that ψ1ψkψ1 = ψ−1
k−1 for every

k ∈ Q (Theorem 2.2). For k 6∈ {i, j} we have ψk = ϕk, so for k 6∈ {i, j} this
condition is satis�ed by the assumption. For k = i we have

ψ1ψiψ1 = ϕ1ϕ̄iϕ̂jϕ1 = (ϕ1ϕ̄iϕ1)(ϕ1ϕ̂jϕ1) = ϕ̄j
−1ϕ̂i

−1 = ψ−1
j = ψ−1

i−1

because ϕ2
1 = ε, ϕ̄iϕ̂j = ϕ̂jϕ̄i and i · j = 1.

For k = j the proof is analogous. So, Q(◦) is a D-loop.

The assumption i ·j = 1 is essential. Indeed, in Example 2.12 tracks ϕ3, ϕ4 are
decomposable, 4 · 3 6= 1, 4−1 = 2 and ψ1ψ4ψ1 = ψ4 6= ψ−1

2 . So, a loop determined
by tracks ψ1, . . . , ψ8 is not a D-loop.

The D-loop Q(◦) constructed in Example 2.12 is not isotopic to the initial
group Q(·) since (7 ◦ 7) ◦ 2 6= 7 ◦ (7 ◦ 2). In this loop we also have 7 ◦ (7 ◦ 2) 6= 2,
so it is not an IP-loop, too.

Example 2.15. The loop Q(·) de�ned by

· 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
2 2 1 5 7 3 8 4 6
3 3 8 4 1 7 2 6 5
4 4 6 1 3 8 7 5 2
5 5 7 8 2 6 1 3 4
6 6 4 7 8 1 5 2 3
7 7 5 2 6 4 3 8 1
8 8 3 6 5 2 4 1 7

is a D-loop with the following tracks:

ϕ1 = (1.2.34.56.78.) ϕ2 = (12.367.485.) ϕ3 = (13.4.25768.)
ϕ4 = (14.3.27586.) ϕ5 = (15.6.23847.) ϕ6 = (16.5.28374.)
ϕ7 = (17.8.24635.) ϕ8 = (18.7.26453.)

For (i, j) ∈ {(3, 4), (5, 6), (7, 8)} tracks ϕi, ϕj are decomposable. Each pair of such
tracks gives a D-loop. Obtained loops are isotopic but they are not isotopic to
Q(·) since they and Q(·) have di�erent indicators Φ∗. (Isotopic loops have the
same indicators � see [7].)

If for the construction of a new loop we use two pairs of decomposable tracks:
ϕ3, ϕ4 and ϕ5, ϕ6, or ϕ3, ϕ4 and ϕ7, ϕ8, or ϕ5, ϕ6 and ϕ7, ϕ8, then we obtain three
isotopic D-loops. These loops are not isotopic either to Q(·) or to the previous
because have di�erent indicators Φ∗.

Also in the case when we use three pairs of decomposable tracks obtained
D-loop. It is not isotopic to any of the previous.
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So, from this D-loop we obtain three nonisotopic D-loops which also are not
isotopic to the initial D-loop Q(·).

As it is well known with each quasigroup Q(·) we can conjugate �ve new quasi-
groups (called parastrophes of Q(·)) by permuting the variables in the de�ning
equation. Namely, if Q0 = Q(·) is a �xed quasigroup, then its parastrophes have
the form

Q(\) x\z = y ⇐⇒ x · y = z,

Q(/) z/y = x ⇐⇒ x · y = z,

Q(∗) y ∗ x = z ⇐⇒ x · y = z,

Q(•) y • z = x ⇐⇒ x · y = z,

Q(/) z / x = y ⇐⇒ x · y = z.

Theorem 2.16. Parastrophes of a D-loop Q(·) are isomorphic to one of the fol-

lowing quasigroups: Q(·), Q(\), Q(/).

Proof. Indeed, if Q(·) is a D-loop, ϕ1 � its track determined by the identity of
Q(·), then, according to the de�nition of D-loops, we have

ϕ1(x · y) = ϕ1(y) · ϕ1(x).

Hence

ϕ1(y ∗ x) = ϕ1(z) ⇐⇒ ϕ1(x · y) = ϕ1(z) ⇐⇒ ϕ1(y) · ϕ1(x) = ϕ1(z).

So, ϕ1(y ∗ x) = ϕ1(y) · ϕ1(x), i.e., Q(∗) and Q(·) are isomorphic.

Further,

ϕ1(y • z) = ϕ1(x) ⇐⇒ ϕ1(x · y) = ϕ1(z) ⇐⇒ ϕ1(y) · ϕ1(x) = ϕ1(z)

⇐⇒ ϕ1(y)\ϕ1(z) = ϕ1(x).

Thus, ϕ1(y • z) = ϕ1(y\z). Consequently, Q(•) ∼= Q(\).

Analogously,

ϕ1(z / x) = ϕ1(y) ⇐⇒ ϕ1(x · y) = ϕ1(z) ⇐⇒ ϕ1(y) · ϕ1(x) = ϕ1(z)

⇐⇒ ϕ1(z)/ϕ1(x) = ϕ1(y),

whence ϕ1(z / x) = ϕ1(z/x). So, Q(/) ∼= Q(/).

3. Loops isotopic to D-loops

As was mentioned earlier, loops isotopic to D-loops are not D-loops in general, but
in some cases principal isotopes of D-loops are D-loops. Below we �nd conditions
under which D-loops are isotopic to groups and conditions under which a principal
isotope of a D-loop is a D-loop.
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De�nition 3.1. Let Q(·), where Q = {1, 2, . . . , n}, be a quasigroup. By a spin of
a quasigroup Q(·) we mean a permutation

ϕij = ϕiϕ
−1
j = ϕiλj ,

where ϕi and λj are right and left tracks of Q(·) respectively.

Obviously ϕii = ε for i ∈ Q and ϕij 6= ϕik for j 6= k, but the situation where
ϕij = ϕkl for some i, j, k, l ∈ Q also is possible (cf. [6]). Hence the collection
Φ of all spins of a given quasigroup Q(·) can be divided into disjoint subsets
Φi = {ϕij : j ∈ Q} (called spin-basis) in which all elements are di�erent. Generally,
Φi are not closed under the composition of permutations but in some cases Φi are
groups.

In [6] the following result is proved.

Theorem 3.2. A quasigroup Q(·) is isotopic to some group if and only if its

spin-basis Φ1 is a group. �

In this case Φ1 = Φi for all i ∈ Q.

Theorem 3.3. In D-loops we have Φ = 〈Φ1〉 = {ϕ1iϕ1j : i, j ∈ Q}.

Proof. Indeed, by Corollary 2.3

ϕ1iϕ1j = ϕ1ϕ
−1
i ϕ1ϕ

−1
j = (ϕ1ϕ

−1
i ϕ1)ϕ−1

j = ϕi−1ϕ−1
j = ϕi−1j ∈ Φ

and conversely, each ϕij ∈ Φ can be written in the form ϕij = ϕ1i−1ϕ1j .

Corollary 3.4. A D-loop is isotopic to a group if and only if 〈Φ1〉 = Φ1.

Proof. If a D-loop Q(·) is isotopic to a group, then, by Theorem 3.2, Φ1 is a group.
Hence 〈Φ1〉 = Φ1.

Conversely, if 〈Φ1〉 = Φ1, then ϕ1iϕi1 = ϕ11 implies ϕ−1
1i = ϕi1 ∈ Φ = 〈Φ1〉 =

Φ1 which means that Φ1 is a group. Thus Q(◦) is isotopic to some group.

Corollary 3.5. A D-loop is isotopic to a group if and only if Φ1 is closed under

a composition of permutations.

Proof. If a D-loop Q(·) is isotopic to a group, then, by Theorem 3.2, Φ1 is a group.
Hence Φ1 is closed under a composition of permutations.

Conversely, if Φ1 is closed under a composition of permutations, then, in view
of Theorem 3.3, from ϕ1iϕi1 = ϕ11 it follows ϕ−1

1i = ϕi1 ∈ Φ = 〈Φ1〉 = Φ1, which
means that Φ1 is a group. Thus Q(·) is isotopic to some group.

Corollary 3.6. A D-loop Q(·) is isotopic to a group if and only if for all i, j ∈ Q
there exists k ∈ Q such that ϕiϕ1ϕj = ϕk.

Proof. Indeed, ϕ1jϕ1i = ϕ1k means that ϕ1ϕ
−1
j ϕ1ϕ

−1
i = ϕ1ϕ

−1
k . Thus ϕ−1

j ϕ1ϕ
−1
i =

ϕ−1
k . Hence ϕk = ϕiϕ1ϕj .
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Theorem 3.7. If a quasigroup Q(·) is isotopic to a D-loop Q(◦), then there exists

a permutation σ of Q and an element p ∈ Q and such that

ϕpϕ
−1
i ϕp = ϕσ(i) (14)

for all tracks ϕi of Q(·).

Proof. Let a quasigroup Q(·) be isotopic to a D-loop Q(◦). Then

γ(x · y) = α(x) ◦ β(y) (15)

for some permutations α, β, γ of Q. Thus for all i, x ∈ Q we have

γ(i) = γ(x · ϕi(x)) = α(x) ◦ βϕi(x),

where ϕi is a right track of Q(·). Hence

γ(i) = z ◦ βϕiα−1(z)

for all i ∈ Q and z = α(x). This together with γ(i) = z ◦ ψγ(i)(z) gives

βϕiα
−1 = ψγ(i),

i.e.,
ϕi = β−1ψγ(i)α, ϕ−1

i = α−1ψ−1
γ(i)β. (16)

Thus for p = γ−1(1), where 1 is the identity of Q(◦), we obtain

ϕpϕ
−1
i ϕp = (β−1ψ1α)(α−1ψ−1

γ(i)β)(β−1ψ1α) = β−1(ψ1ψ
−1
γ(i)ψ1)α.

Since Q(◦) is a D-loop, for k = γ−1ψ1γ(i), by Corollary 2.3, we have

β−1(ψ1ψ
−1
γ(i)ψ1)α = β−1ψγ(i)−1α = β−1ψψ1γ(i)α = β−1ψγ(k)α = ϕk.

So, ϕpϕ
−1
i ϕp = ϕk, which means that (14) is valid for σ = γ−1ψ1γ.

The converse statement is more complicated.

Theorem 3.8. Let a quasigroup Q(·) and a loop Q(◦) with the identity 1 be

isotopic, i.e., let (15) holds. If ϕi are tracks of Q(·), ψi � tracks of Q(◦) and (14)
is satis�ed for p = γ−1(1), σ = γ−1ψ1γ and all i ∈ Q, then Q(◦) is a D-loop.

Proof. Indeed, (15) holds, then for p = γ−1(1) and any i ∈ Q, in view of (16), we
have

ψ1ψ
−1
i ψ1 = (βϕγ−1(1)α

−1)(αϕ−1
γ−1(i)β

−1)(βϕγ−1(1)α
−1) = β(ϕpϕ−1

γ−1(i)ϕp)α
−1

= βϕσ(γ(i))α
−1 = βϕγ−1ϕ1(i)α

−1 = ψψ1(i) = ψi−1 ,

where i−1 is calculated in Q(◦).
Thus ψ1ψ

−1
i ψ1 = ψi−1 , which means that Q(◦) is a D-loop.



D-loops 195

Lemma 3.9. A loop Q(◦) is a principal isotope of a quasigroup Q(·) if and only

if

x ◦ y = R−1
b (x) · L−1

a (y),

for some a, b ∈ Q such that a · b = 1, where 1 is the identity of Q(◦) and La, Rb
are translations of Q(·).

Proof. Indeed, if Q(◦) is a loop with the identity 1 and x◦y = α(x) ·β(y) for some
permutations α, β of Q, then for a = α(1), b = β(1) we have

1 = 1 ◦ 1 = α(1) · β(1) = a · b,

x = x ◦ 1 = α(x) · β(1) = α(x) · b,

y = 1 ◦ y = α(1) · β(y) = a · β(y).

Thus
α(x) = R−1

b (x), β(y) = L−1
a (y).

Hence x ◦ y = R−1
b (x) · L−1

a (y).
The converse statement is obvious.

Corollary 3.10. A quasigroup Q(·) is a principal isotope of a loop Q(◦) with the

identity 1 if and only if

x · y = Rb(x) ◦ La(y),

for some translations La, Rb of Q(·) such that a · b = 1.

Proposition 3.11. In any principal isotope Q(·) of a D-loop Q(◦) with the identity
1 we have

ϕ1ϕ
−1
i ϕ1 = ϕi−1 ,

where i−1 is calculated in Q(◦).

Proof. It is a consequence of (15) and (16).

Corollary 3.12. A principal isotope Q(·) of a D-loop Q(◦) is a D-loop if and

only if Q(·) and Q(◦) have the same inverse elements. �

Corollary 3.13. A principal isotope Q(·) of a D-loop Q(◦) is a D-loop if and

only if Q(·) and Q(◦) have the same tracks induced by the identity of Q(◦), i.e., if
and only if ϕ1 and ψ1, where 1 he identity of Q(◦). �

4. Proper D-loops

A D-loop is proper if it is not an IP-loop. The smallest D-loop has six elements.
Below we present a full list of all nonisotopic proper D-loops of order 6. They
represent (respectively) the classes 8.1.1, 9.1.1, 10.1.1 and 11.1.1 mentioned in the
book [4].
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· 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 1 6 5 3 4
3 3 6 1 2 4 5
4 4 5 2 1 6 3
5 5 3 4 6 1 2
6 6 4 5 3 2 1

· 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 3 1 6 4 5
3 3 1 2 5 6 4
4 4 6 5 1 2 3
5 5 4 6 2 3 1
6 6 5 4 3 1 2

· 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 1 6 5 4 3
3 3 5 1 2 6 4
4 4 6 2 1 3 5
5 5 3 4 6 2 1
6 6 4 5 3 1 2

· 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 1 4 5 6 3
3 3 4 2 6 1 5
4 4 5 6 2 3 1
5 5 6 1 3 2 4
6 6 3 5 1 4 2
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