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D-loops
Ivan I. Deriyenko and Wieslaw A. Dudek

Abstract. D-loops are loops with the antiautomorphic inverse property. The class of such
loops is larger than the class of [P-loops. The smallest D-loops which is not an IP-loop has six
elements. We prove several basic properties of such loops and present methods of constructions
of D-loops from IP-loops. Unfortunately, a loop isotopic to a D-loop may not be a D-loop.

1. Introduction

A loop is a quasigroup Q(o) with an identity element always denoted by 1. A
loop Q(o) has the inverse property, i.e., it is an IP-loop, if for each its element a
there exists in @ a uniquely determined inverse element a’ such that a’ o (a0 b) =
(boa)oad =b. This means that in an IP-loop for right and left translations, i.e.,
for Ry(z) =z oa, Ly(x) = aox, we have

R;'=Ry, L;'=L,. (1)

a

It is not difficult to shown that in an IP-loop Q(o) for all a,b € @ hold
acad =doa=1, (d)=a (2)

and
(aob) =V od . (3)

On the other hand, in any loop Q(o) for each a € @ there are uniquely de-

termined left and right loop-inverse elements a~!,a~! € @ for which we have
—1

L 7R

a, oa=ao a;l = 1. A two-sided loop-inverse element to a € @ is denoted by
a~!. Clearly, (a=!)~! = a. Hence, an element a~! € Q is loop-inverse to a € Q
if and only if a € Q is loop-inverse to a~'. In a loop each inverse element is

loop-inverse but a loop-inverse element may not be inverse.

2010 Mathematics Subject Classification: 20N05

Keywords: Quasigroup, loop, D-loop, antiautomorphic inverse property, track.

The main results of this paper were presented at the conference Loops’l1l which was held
in Trest, Czech Republic, July, 2011.



184 I. I. Deriyenko and W. A. Dudek

Example 1.1. Consider the following loop Q(o):

ol 2 3 4 5 6 7
1(1 2 3 4 5 6 7
212 3 1 6 7 5 4
313 1 2 7 6 4 5
414 7 6 5 1 3 2
5|5 6 7 1 4 2 3
6|6 4 5 2 3 7 1
7|7 5 4 3 2 1 6

In this loop we have a_ ! = a_* for each a € Q. Hence, each element of this
loop is loop-inverse. But a = 5 is not an inverse element since 4 o (506) # 6. The
map h(z) = x;l is an antiautomorphism of this loop, i.e., it satisfies the identity
h(z oy) = h(y) o h(z). O

Recall that a loop Q(o) satisfies the antiautomorphic inverse property if for
each x € Q there exists a two-sided loop-inverse element x~! such that (zoy)™! =
y~loz~! holds for all z,y € Q. A simple example of such loop is an IP-loop. The
above example proves that there are also loops with this property which are not
IP-loops. Thus, the class of loops with this property is much larger than the class
of IP-loops.

This enables us to introduce the following definition.

Definition 1.2. A loop Q(o) is called a D-loop if it satisfies the dual automorphic
property for (z) = a1, ie., if

(woy) ' =y, oay’ (4)
holds for all x,y € Q.
Theorem 1.3. A loop Q(o) is a D-loop if and only if it satisfies the identity

(xoy) =y, oa, . (5)
Proof. Suppose that Q(o) is a D-loop. Since :c;l oz =1, from (4) it follows

1 —1)—1

1:1;1:($L_10x);1:$; o(a’:L R

which together with 1 =z "o (z ') ! gives ;' = 2 !. Thus (4) implies (5).
Analogously, using z o 2! = 1 and (z'); ' oz, = 1 we can prove that (5)
implies (4). O

Corollary 1.4. For all elements of D-loops we have

a;l= a;l and (a V) '=a. O

This means that in the multiplication table of a D-loop Q(o) its neutral element
is located symmetrically with respect to the main diagonal and the class of all D-
loops coincides with the class of loops with the antiautomorphic inverse property
but we’ll keep the term D-loop since it is shorter and more convenient to use.
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2. Constructions of D-loops

Below we present, several methods of verification when a given loop is a D-loop.
To describe these methods we must reminder some definitions from [2], [5] and [6].

Definition 2.1. Let Q(-) be a loop. A permutation ¢, of @, where a € @Q, is
called a right middle translation or a right track (shortly: track) of Q(-) if
T pa(r) = a (6)

holds for all x € Q). By a left middle translation or a left track we mean a permu-
tation A\, such that
Aa(2) - 2 = a. (7)
It is clear that A, = ¢! and ¢y (z) = 25" for all a,z € Q.

The permutation ¢, selects in the multiplication table of a given loop the
number of columns in an element a appears. For the loop defined in Example 1.1

o4 = (}1 Zolyy ;) — (14)(2736)(5).

Further, permutations will be written in the form of cycles, cycles will be sepa-
rated by dots. For example, the above permutation ¢4 will be written as ¢4 =
(14.2736.5.).

It is clear that a loop Q(-), where Q@ = {1,2,...,n}, can be identified with the
set {¢1,¥2,...,¢n, } of its tracks.

Theorem 2.2. A loop Q(-) is a D-loop if and only if

preapr = ok 8)
for every a € Q, where a™* is (right) inverse to a.

Proof. Let Q(-) be a D-loop. Then xgl = 2! for every z € Q and, according to
(6), for all a,z € Q we have ¢, !(z) -2 = a. Hence

at=(p (@) )T =2 (0 (@) T = () - iy ().

Since also a=! = ¢y () - a-191(x), from the above we obtain p19, ' = ¢,-101,
which implies (8).
Conversely, let = - y = a. Then y = p,(x). Hence

Yr' TR = ¢19a(@) - 01(2) = prpapr(aTh) 27!
3 _ _ _ _ 4 (7 _ _
Qo) et =am @) e Dagt = ()Rt

This completes the proof. O
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Corollary 2.3. A loop Q(-) is a D-loop if and only if it satisfies one of the
following identities:

(@) o107 01 = a1,
(b) SﬁlRa% = Laﬁlf
(¢) w1Lap1 = Ry-1.

Proof. Indeed, (8) can be written in the form p1¢,-191 = @, !, which, in view
of p1p1 = idg, is equivalent to (a). Moreover, (z-a)™' = a~! - z~! means that

p1Rq = Ly-1¢1. The last is equivalent to (b) and (c). O
Example 2.4. Consider the loop Q(-):

1 2 3 4 5 6
11 2 3 4 5 6
212 1 4 3 6 5
313 5 1 6 4 2
414 6 5 2 1 3
55 3 6 1 2 4
6|6 4 2 5 3 1

We will use Theorem 2.2 to verify that this loop is a D-loop.
We have

@1 = (1.2.3.45.6.) 04 = (14.2356.)
@y =(12.36.4.5.) ©s5 = (15.2643.)
¢3 = (13.2465.) 06 = (16.2534.)

We have to check the condition (8) for a = 2, 3,4, 5,6 because p1p1¢91 = gofl holds
in each loop. Permutations ¢; and @9 have disjoint cycles hence ¢1p201 = 3 =
©5 . In other cases we obtain:

o131 = (13.2564.) = @3 ©r1o501 = (14.2653.) = ;!
O1pap1 = (15.2346.) = 5 o161 = (16.2435.) = 5"
This shows that Q(o) is a D-loop. O

Note that in general loops isotopic to D-loops are not D-loops.

Example 2.5. The following loop

o|l1l 2 3 4 5 6
11 2 3 4 5 6
212 1 6 3 4 5
3/!3 6 2 5 1 4
414 5 1 6 2 3
515 3 4 1 6 2
6|6 4 5 2 3 1
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is isotopic to a D-loop Q(o) from the previous example. This isotopy has the form
Y(xoy) = alz)-B(y), where a« = (142.3.5.6.), 5 =(12546.3.), y =(164352.).
The loop Q(o) is not a D-loop since 3;1 #* 3;1. O

Theorem 2.6. Let Q(-) be an IP-loop and let a € Q be fixed. If an element a’ € Q
is inverse to a in Q(-), then Q(o) with the operation

roy= Ry (I) ! La(y) (9)
is a D-loop with the same identity as in Q(-).

Proof. Tt is clear that Q(o) is a quasigroup. Let an element o’ € @ be inverse to
a in Q(-). Then
xol=Ry(z) Ly(1)=(z-d') a=u=x.
Similarly 1 o x = 2. Hence Q(o) is a loop with the same identity as in Q(-).
Moreover, for every x € @ there exists T € @) such that

l=20T=Ry(z) Lo(T)=(z-d) (a-T),

1

which gives a - T = (v -a')™! = (¢/)"! 27! =a-27'. Thus T = 27! for every

x € Q. Hence
(oy) ™! = (Ra(@) - La(y)) " = ((w-a)-(a-y) "
=@y @) = e (@) e
=@ a) (aa7)=Ra(y™) La(a™!) =y ozt
Therefore (o) is a D-loop. O

Corollary 2.7. Any IP-loop of order n determines n — 1 isotopic D-loops.
Example 2.8. Starting from the following IP-loop:

1 2 3 4 5 6 7
11 2 3 4 5 6 7
212 3 1 6 7 5 4
3113 1. 2 7 6 4 5
414 7 6 5 1 2 3
55 6 7 1 4 3 2
6|6 4 5 3 2 7 1
7|7 5 4 2 3 1 6

and using (9) with ¢ = 2 we obtain a D-loop:

ol 2 3 4 5 6 7
1(1 2 3 4 5 6 7
212 3 1 6 7 5 4
313 1 2 5 4 7 6
414 5 6 7 1 2 3
5|5 4 7 1 6 3 2
6|6 7 5 3 2 4 1
7|7 6 4 2 3 1 5
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which is not an IP-loop because 3 o (2 o ) # 5. Hence a = 2 is not an inverse
x)o Ly

element in Q(o). Putting x x y = R3(z) o L2(y) we obtain a quasigroup:
*1 2 3 4 5 6 7
1/1 2 3 7 6 4 5
212 3 1 6 7 5 4
313 1 2 5 4 7 6
417 5 6 4 1 2 3
5/6 4 7 1 5 3 2
64 7 5 3 2 6 1
7|5 6 4 2 3 17

which is isotopic to the initial D-loop Q(o) but it is not a D-loop. This means
that in Theorem 2.6 the assumption on a can not be ignored. 0

Proposition 2.9. An element a € Q used in Theorem 2.6 has the same inverse
element in Q(-) and Q(o) defined by (9) if and only if

r-a=z0a and a-r=dox (10)
forall x € Q.
Proof. Let o/ € Q be inverse to a in Q(-) and Q(o). Then a = (a')" and
z=(zo0d)oa=(Ru(2) Ly(d'))oa= Ru(z)oa,

which for z =z -a gives x-a =z o a.
Similarly,

z=d o(aoz)=d o (Ruy(a) Lu(z)) =a oL, (2)

for z=a’' -z implies ' - x = a’ o x.
Conversely, if o’ € @ is inverse to a in Q(-) and (10) are satisfied, then

(roa)od = (z-a)oad = Ry(x-a) Ly(a')=((z-a)-d)-(a-d)=ux.
Analogously @’ o (aoz) =a’ - (aox) = x. Hence d is inverse to a in Q(o). O

Corollary 2.10. An element a € @ used in Theorem 2.6 has the same inverse
element in Q(-) and Q(o) defined by (9) if and only if the multiplication tables of
these two loops have the same a—columns and the same a’—rows.

Proposition 2.11. An element a € Q used in Theorem 2.6 has the same inverse
element in Q(-) and Q(o) defined by (9) if and only if

L,L,=L, and R,R,= R, (11)

where L, and R, are translations in Q(-).
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Proof. Let a € @ has the same inverse a’ in Q(-) and Q(o). Then for every = € Q
we have

x=ao(aox)=Ry(a) - Ly(Ry(a)- La(z))
= Ra/(a/)LaLa(x) = La/.a/LaLa(QL‘) = L(a2)’LaLa($)7

whence, applying (1), we get L,L, = L(jllg), = L.
Similarly, for every z € @ we have
zoa= Ry (2) Ly(a) = Ry2Ry (2),
which for z = R, (z), by (1), gives
Ru(x)oa = Ry2Ra Ro(x) = Ryz2(x).

Hence R,R, = R,2. This proves (11).
The converse statement is obvious. O

Below we present a simple method of construction of new loops from given
loops. This method is based on exchange of tracks. Next, this method will be
applied to the construction of D-loops.

Let {p1,92,...,¢n} be tracks of a D-loop Q(-) with the identity 1. We say
that for ¢ # j # 1 tracks ¢;, ¢, are decomposable if there exist two nonempty
subsets X,Y of Q such that Q = X UY, XNY =0,1¢€ X and

Vi = PjP;

where ;, p; are permutations of X, ¢;,¢; are permutations of Y.
Putting

Y = @i
{ Y; = Pjpi (13)

and ¢ = ¢y, for k & {i,j} we obtain the new system of tracks which defines on @
the new loop Q(o) with the same identity as in Q(-).

Example 2.12. The loop Q(-) defined by

0 O Ui WK

0~ O Uik WN =
N O U0 W
S OO0 N - bW W
L0 O W N |
BN = 00~ O Ot
W N &=L |
N = B WO Uloo |~
= R W N0 CGtoo|oo
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is a group (so, it is a D-loop) with the following tracks:

o1 = (1.24.3456.7.8) o= (12.34.5876.) 3 = (13.2.4.57.68.)
@4 = (14.23.5678.) 05 = (15.37.2846.) g = (16.38.2547.)
¢7 = (17.35.2648.) o5 = (18.36.2745.)

For (i,7) € {(2,3),(2,4),(3,4),(5,7),(6,8)} tracks ¢;,p; are decomposable. In
the case (7,7) = (6,8) we have

{ e = PePs, where @g = (1638), Dg = (2547)
s = psps, where pg = (18.36.), ¢s = (2745.)

whence, according to (13), we obtain

V6 = Pops = (16.38.2745.)
Vs = Psps = (18.36.2547.)

and ¢, = p for k=1,2,3,4,5,7.
This new system of tracks {1,119, ...,1s} defines the loop Q(o):

oll 2 3 4 5 6 7 8
1711 2 3 4 5 6 7 8
212 3 4 1 8 7 [6] 5
313 4 1 2 7 8 5 6
414 1 2 3 [6 5 [8 7
5/5 6] 7 [8] 1 4 3 2
6/6 5 8 7 2 1 4 3
7|7 [8] 5 6] 3 2 1 4
818 7 6 5 4 3 2 1
where items changed by tracks s and g are entered in the box. O

This new loop Q(o) can be used for the construction of another loop since it
has the same pair of decomposable tracks as Q(-). So, for the construction of new
loops we can use not only one but also two or more pairs of decomposable tracks.
Using different pairs of decomposable tracks we obtain different loops which may
not be isotopic. Obtained loops may not be isotopic to the initial loop Q(+), too.

Example 2.13. Direct computations show that this loop
1

[\V]
w
[«
N
oo

0 O U W N Y-
N O U W N
WUl IO 00— N
NN OO = O Ut W
S 00 W N O = =T x|k
N O~ 00 k= W oy
U I~ Wk oo
= W N O Uk
B = OT W N~ O

is a D-loop. It hasn’t got any decomposable pair of tracks. O
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Theorem 2.14. Let Q(-) be a D-loop with the identity 1. If ¢;,p;, wherei-j =1
and i # j, are decomposable tracks of Q(-), then a loop Q(o) obtained from Q(-)
by exchange of tracks is a D-loop.

Proof. Since (o) is a loop it is sufficient to show that ¥1¢pyn = 1/112,11 for every
k € Q (Theorem 2.2). For k & {i,j} we have ¢, = ¢y, so for k & {i,j} this
condition is satisfied by the assumption. For k = ¢ we have

Prbihs = 0180501 = (L1Pi01) (P1@5ep1) = & "B =7t = YTk
because ¢ = ¢, @;p; = P;@; and i -j = 1.
For k = j the proof is analogous. So, Q(o) is a D-loop. O

The assumption 7-j = 1 is essential. Indeed, in Example 2.12 tracks ¢3, @4 are
decomposable, 4-3 # 1, 4~ = 2 and 14901 = g # 5 '. So, a loop determined
by tracks ¥1,...,1s is not a D-loop.

The D-loop Q(o) constructed in Example 2.12 is not isotopic to the initial
group Q(-) since (707) 02 # 7o (702). In this loop we also have 7o (70 2) # 2,
so it is not an IP-loop, too.

Example 2.15. The loop Q(-) defined by
-1 2 3 4 5 6 7 8
111 2 3 4 5 6 7 8
212 1 5 7 3 8 4 6
3/!3 8 4 1 7 2 6 5
414 6 1 3 8 7 5 2
51/5 7 8 2 6 1 3 4
66 4 7 8 1 5 2 3
717 5 2 6 4 3 8 1
818 3 6 5 2 4 1 7

is a D-loop with the following tracks:

o1 = (1.2.34.56.78) ¢, = (12.367.485.) 3 = (13.4.25768.)
o4 = (14.3.27586.) 05 = (15.6.23847.) g = (16.5.28374.)
o7 = (17.8.24635.) o5 = (18.7.26453.)

For (i,7) € {(3,4),(5,6), (7,8)} tracks ¢;, p; are decomposable. Each pair of such
tracks gives a D-loop. Obtained loops are isotopic but they are not isotopic to
Q(:) since they and Q(-) have different indicators ®*. (Isotopic loops have the
same indicators — see [7].)

If for the construction of a new loop we use two pairs of decomposable tracks:
p3, w4 and @5, g, Or 3, 4 and Y7, s, Or Y5, Ye and 7, ps, then we obtain three
isotopic D-loops. These loops are not isotopic either to Q(-) or to the previous
because have different indicators ®*.

Also in the case when we use three pairs of decomposable tracks obtained
D-loop. It is not isotopic to any of the previous.
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So, from this D-loop we obtain three nonisotopic D-loops which also are not
isotopic to the initial D-loop Q(-). O

As it is well known with each quasigroup Q(-) we can conjugate five new quasi-
groups (called parastrophes of Q(-)) by permuting the variables in the defining
equation. Namely, if Qo = Q(+) is a fixed quasigroup, then its parastrophes have
the form

QN\)  \z=y = zy=3
Q) zly=r = z-y=z
Q%) Y*xT =2 <= T Y=2,
Q(e) yez =1 <= x-Yy=2,
Q<) zAr =Yy <= T -Yy=2.

Theorem 2.16. Parastrophes of a D-loop Q(-) are isomorphic to one of the fol-
lowing quasigroups: Q(), Q(\), Q(/)-

Proof. Indeed, if Q(-) is a D-loop, ¢; — its track determined by the identity of
Q(+), then, according to the definition of D-loops, we have

p1(z-y) = e1(y) - er(2).
Hence
p1(y*x) = p1(2) <= p1(z-y) = p1(2) <= @1(y) - e1(z) = @1(2).
So, p1(y *xx) = 1(y) - p1(x), i.e., Q(x) and Q(-) are isomorphic.
Further,
pir(yez) =pi1(x) <= pi(z-y) =pi(2) <= p1(y) - e1(z) = 1(2)
= p1(Y)\p1(z) = o1 ().
Thus, ¢1(y ® z) = ¢1(y\z). Consequently, Q(e) = Q(\).
Analogously,
p1(za2) = p1(y) = @1(z-y) = v1(2) = @1(y) - 1(x) = 1(2)
= ¢1(2)/e1(z) = 01(y),
whence p1(z<z) = p1(z/x). So, Q(<) = Q(/). O

3. Loops isotopic to D-loops

As was mentioned earlier, loops isotopic to D-loops are not D-loops in general, but
in some cases principal isotopes of D-loops are D-loops. Below we find conditions
under which D-loops are isotopic to groups and conditions under which a principal
isotope of a D-loop is a D-loop.
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Definition 3.1. Let Q(-), where @ = {1,2,...,n}, be a quasigroup. By a spin of
a quasigroup Q(-) we mean a permutation

Yij = tPM;l =i,
where ¢; and A; are right and left tracks of Q(-) respectively.

Obviously ¢;; = € for ¢ € Q and ¢;; # @i for j # k, but the situation where
©i; = @i for some i, j,k,l € Q also is possible (cf. [6]). Hence the collection
® of all spins of a given quasigroup Q(-) can be divided into disjoint subsets
®; = {pi; : j € Q} (called spin-basis) in which all elements are different. Generally,
®; are not closed under the composition of permutations but in some cases ®; are
groups.

In [6] the following result is proved.

Theorem 3.2. A quasigroup Q(-) is isotopic to some group if and only if its
spin-basis ®1 is a group. ]

In this case &, = ®; for all i € Q.
Theorem 3.3. In D-loops we have ® = (®1) = {p1:¢1; : 1,j € Q}.
Proof. Indeed, by Corollary 2.3

p1i01; = 10, L0105 = (01907 To1) 0 = i =1 €
and conversely, each ¢;; € ® can be written in the form ¢;; = ¢1,-1¢01;. O
Corollary 3.4. A D-loop is isotopic to a group if and only if (P1) = ;.

Proof. If a D-loop Q(-) is isotopic to a group, then, by Theorem 3.2, ®; is a group.
Hence (1) = ®;.

Conversely, if ($;) = @1, then ¢1;0i1 = 11 implies cpl_il =y € D= (D) =
®; which means that ®; is a group. Thus Q(o) is isotopic to some group. O

Corollary 3.5. A D-loop is isotopic to a group if and only if ®1 is closed under
a composition of permutations.

Proof. If a D-loop Q(-) is isotopic to a group, then, by Theorem 3.2, ®; is a group.
Hence @, is closed under a composition of permutations.

Conversely, if ®; is closed under a composition of permutations, then, in view
of Theorem 33, from Y1iPi1 = P11 it follows (,01_11 = pi1 € P = <‘I)1> = (I)l, which
means that ®; is a group. Thus Q(-) is isotopic to some group. O

Corollary 3.6. A D-loop Q(-) is isotopic to a group if and only if for alli,j € Q
there exists k € Q) such that ;010 = ¢y.

Proof. Indeed, ¢1;01; = 11 means that <p1<pj_1<p1g0i_1 = gpup;l. Thus <pj_1<p1g0i_1 =
<p,;1. Hence ¢, = pip19;. O
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Theorem 3.7. If a quasigroup Q(-) is isotopic to a D-loop Q(0), then there exists
a permutation o of Q and an element p € Q and such that

PpP7 b = Poli) (14)
for all tracks p; of Q(-).
Proof. Let a quasigroup Q(-) be isotopic to a D-loop Q(o). Then
Y(z-y) = alz) o By) (15)
for some permutations «, 3,y of Q. Thus for all i,z € ) we have
V(@) = v(z - @i(x)) = a(z) o Bpi(x),
where ¢; is a right track of Q(-). Hence
(i) = z 0 fpia(2)
for all i € Q and z = «(x). This together with (i) = z 0 9,(;)(2) gives
Boia™! = 1),

ie.,
@i = By, o7t =a"" ;(114)5- (16)
Thus for p = v~1(1), where 1 is the identity of Q(o), we obtain
eppi op = (B 1) (@™ T, B) (B~ ia) = B (¥aw] v )
Since Q(o) is a D-loop, for k = v~ 141v(i), by Corollary 2.3, we have
5_1(11)11#;&)1#1)01 =By yra = By o = BTy = o
So, ¥,; 'y = @k, which means that (14) is valid for o = v~ 14/17. O

The converse statement is more complicated.

Theorem 3.8. Let a quasigroup Q(-) and a loop Q(o) with the identity 1 be
isotopic, i.e., let (15) holds. If p; are tracks of Q(-), v; — tracks of Q(o) and (14)
is satisfied for p=~y"1(1), o =y Y1y and all i € Q, then Q(o) is a D-loop.

Proof. Indeed, (15) holds, then for p = y~1(1) and any i € Q, in view of (16), we
have

1111%/1{1%/11 = (ﬂ%ﬁ'y”(1)0471)(QW;—ll(i)ﬂil)(ﬂWw*(1)0471) = ﬂ(@p‘ﬁ;—ll(i)@n)ail

= Beo(r(i)@ " = Bey1p, @7 = Yy ) = Vit

where i~! is calculated in Q(o).
Thus t11; "1 = 1;—1, which means that Q(o) is a D-loop. O
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Lemma 3.9. A loop Q(o) is a principal isotope of a quasigroup Q(-) if and only
if

zoy=Ry, () L' (y),
for some a,b € Q such that a-b = 1, where 1 is the identity of Q(o) and L., Ry
are translations of Q(-).

Proof. Indeed, if Q(o) is a loop with the identity 1 and zoy = a(z)- S(y) for some
permutations «, § of @, then for a = «(1), b = (1) we have

Thus

Hence zoy = R, ' (z) - L7 (y).

a
The converse statement is obvious. O

Corollary 3.10. A quasigroup Q(-) is a principal isotope of a loop Q(o) with the
identity 1 if and only if
Tr-y= Rb(x) © La(y)v

for some translations Lo, Ry of Q(-) such that a-b=1. O

Proposition 3.11. In any principal isotope Q(-) of a D-loop Q(o) with the identity
1 we have

197 o1 = i1,

where i~1 is calculated in Q(o).
Proof. It is a consequence of (15) and (16). O

Corollary 3.12. A principal isotope Q(-) of a D-loop Q(o) is a D-loop if and
only if Q(-) and Q(o) have the same inverse elements. O

Corollary 3.13. A principal isotope Q(-) of a D-loop Q(o) is a D-loop if and
only if Q(-) and Q(o) have the same tracks induced by the identity of Q(o), i.e., if
and only if p1 and 1, where 1 he identity of Q(o). O

4. Proper D-loops

A D-loop is proper if it is not an IP-loop. The smallest D-loop has six elements.
Below we present a full list of all nonisotopic proper D-loops of order 6. They
represent (respectively) the classes 8.1.1, 9.1.1, 10.1.1 and 11.1.1 mentioned in the
book [4].
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