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Construction of subdirectly irreducible SQS-skeins

of cardinality n2m

Enas M. A. Elzayat

Abstract. We give a construction for subdirectly irreducible SQS-skeins of cardinality n2m

having a monolith with a congruence class of cardinality 2m for each integer m > 2. Moreover,
the homomorphic image of the constructed SQS-skein modulo its atom is isomorphic to the
initial SQS-skein. Consequently, we will construct an SK(n2m) with a derived SL(n2m) such
that SK(n2m) and SL(n2m) are subdirectly irreducible and have the same congruence lattice.
Also, we may construct an SK(n2m) with a derived SL(n2m) in which the congruence lattice
of SK(n2m) is a proper sublattice of the congruence lattice of SK(n2m).

1. Introduction

A Steiner quadruple (triple) system is a pair (S;B) where S is a �nite set and B is
a collection of 4-subsets (3-subsets) calledblocks of S such that every 3-subset (2-
subset) of S is contained in exactly one block of B (see [8] and [11]). Let SQS(m)
denote a Steiner quadruple system (brie�y quadruple system) of cardinality m
and STS(n) denote Steiner triple system (brie�y triple system) of cardinality n.
It is well-known that SQS(m) exists i� m ≡ 2 or 4 (mod 6) and STS(n) exists
if and only if n ≡ 1 or 3 (mod 6) [8] and [11]. Let (S;B) be an SQS. If one
considers Sa = S − {a} for any point a ∈ S and deletes that point from all blocks
which contain it then the resulting system (Sa;B(a)) is a triple system, where
B(a) = {b − {a} ∀b ∈ B, a ∈ b}. Now, (Sa;B(a)) is called a derived triple system

(or brie�y DTS) of (S;B) (cf. [8] and [11]).

A sloop (brie�y SL) L = (L; ·, 1) is a groupoid with a neutral element 1 satis-
fying the identities:

x · y = y · x, 1 · x = x, x · (x · y) = y.

A sloop L is called Boolean if it satis�es the associative law. The cardinality
of the Boolean sloop is equal 2m.
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There is one to one correspondence between STSs and Steiner loops (sloops)
[8].

An SQS-skein (brie�y an SK) (Q; q) is an algebra with a unique ternary
operation q satisfying:

q(x, y, z) = q(x, z, y) = q(z, x, y), q(x, x, y) = y, q(x, y, q(x, y, z)) = z.

An SQS-skein (Q; q) is called Boolean if it satis�es in addition the identity:

q(a, x, q(a, y, z)) = q(x, y, z).

There is one to one correspondence between SQSs and SQS-skeins (cf. [8] and
[11]).

The sloop associated with a derived triple system is also called derived. A
derived sloop of an SQS-skein (Q; q) with respect to a ∈ Q is the sloop (Qa; ·, a)
with the binary operation · de�ned by x · y = q(a, x, y).

A subsloop N of L (sub-SQS-skein of Q) is called normal if and only if N = [1]θ
(N = [a]θ ) for a congruence θ on L (Q) (cf. [8] and [12]). The associated
congruence θ with the normal subsloop (sub-SQS-skein) N is given by:

θ = {(x, y) : x · y (or q(a, y, z)) ∈ N}.

Quackenbush in [12] and similarly Armanious in [1] have proved that the con-
gruences of sloops (SQS-skeins) are permutable, regular and uniform. Also, we
may say that the congruence lattice of each of sloops and SQS-skeins is modular.
Moreover, they proved that a maximal subsloop (sub-SQS-skein) has the same
property as in groups.

Theorem 1. (cf. [1] and [8]) Every subsloop (sub-SQS-skein) of a �nite sloop

(L; ·, 1) (SQS-skein (Q; q)) with cardinality 1
2 |L| ( 1

2 |Q|) is normal.

A Boolean sloop is a Boolean group. If (G; +) is a Boolean group, then
(G; q(x, y, z) = x + y + z) is a Boolean SQS-skein [1].

Guelzow [10] and Armanious [2], [3] gave generalized doubling constructions
for nilpotent subdirectly irreducible SQS-skeins and sloops of cardinality 2n. In
[6] the authors gave recursive construction theorems as n → 2n for subdiredtly
irreducible sloops and SQS-skeins. All these constructions supplies us with sub-
directly irreducible SQS-skeins having a monolith θ satisfying |[x]θ| = 2 (the min-
imal possible order of a proper normal SQS-skeins). Also in these constructions,
the authors begin with a subdirectly irreducible SK(n) to construct a subdirectly
irreducible SK(2n) satisfying the property that the cardinality of the congruence
class of its monolith is equal 2. Armanious [5] has given another construction of a
subdirectly irreducible SK(2n). He begins with a �nite simple SK(n) to costruct
a subdirectly irreducible SK(2n) having a monolith θ with |[x]θ| = n (the maximal
possible order of a proper normal sub-SQS-skein).

In [7] the authors begin with an arbitrary SL(n) to construct subdirectly irre-
ducible SL(n2m) for each possible integers n > 4 and m > 2.
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In this article, we begin with an arbitrary SK(n) for each possible value n > 4
to construct subdirectly irreducible SK(n2m) for each integer m > 2. This con-
struction enables us to construct subdirectly irreducible SQS-skein having a mono-
lith θ satisfying that its congruence class is SK(2m). Moreover, its homomorphic
image modulo θ is isomorphic to Q .

We will show that our construction supplies us with construction of an SK(n2m)
with a derived SL(n2m) such that the congruence lattices of SK(n2m) and SL(n2m)
are the same for each possible case. Moreover, we may construct an SK(n2m) with
a derived SL(n2m) such that the congruence lattices of SK(n2m) is a proper sub-
lattice of the congruence lattice of SL(n2m).

2. Subdirectly irreducible SQS-skeins Q×αB

Let Q := (Q; q) be an SK(n) and B := (B; •, 1) be a Boolean SL(2m), where Q =
{x0, x1, x2, . . . , xn−1} and B = {1, a1, a2, . . . , a2m−1}. In this section we extend the
SQS-skein Q to a subdireclty irreducible SQS-skein Q ×α B of cardinality n2m

having Q as a homomorphic image.
We divide the set of elements of the direct product Q × B into two sub-

sets {x0, x1} × B and {x2, . . . , xn−1} × B. Consider the cyclic permutation α =
(a1a2 . . . a2m−1) on the set {1, a1, a2, . . . , a2m−1} and the characteristic function χ
from the direct product Q×B to B de�ned as follows

χ((y1, i1), (y2, i2), (y3, i3)) = im • in • α−1(im • in) for ym = yn = x0, yk = x1 and {m,n, k} = {1, 2, 3}
im • in • α(im • in) for ym = yn = x1, yk = x0 and {m,n, k} = {1, 2, 3}
1 otherwise.

It is clear that χ((y1, i1), (y2, i2), (y3, i3)) = 1 in two cases:

(i) y1 = y2 = y3 = x0 or y1 = y2 = y3 = x1.

(ii) y1, y2 or y3 ∈ Q− {x0, x1} .

For this characteristic function we obtain the following result:

Lemma 2. The characteristic function χ satis�es the properties:

(i) χ((x, a), (y, b), (z, c)) = χ((x, a), (z, c), (y, b)) = χ((z, c), (x, a), (y, b));

(ii) χ((x, a), (x, a), (y, b)) = 1;

(iii) χ((x, a), (y, b), (q(x, y, z), a • b • c • χ((x, a), (y, b), (z, c)))) =
χ((x, a), (y, b), (z, c)).

Proof. According to the de�nition of χ, we may deduce that (i) is valid.
In (ii), if x = x0 and y = x1 then χ((x0, a), (x0, a), (x1, b)) = a•a•α−1(a•a) =

1. If x = x1 and y = x0, then χ((x1, a), (x1, a), (x0, b)) = a • a • α(a • a) = 1.
Otherwise if x ory 6= x0 or x1, then χ((x, a), (x, a), (y, b)) = 1.
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To prove the third property, we have only three essential cases:
(1) If x = y = x0 and z = x1 then

χ((x0, a), (x0, b), (q(x0, x0, x1), a • b • c • χ((x0, a), (x0, b), (x1, c))))
= χ((x0, a), (x0, b), (x1, c • α−1(a • b))) = a • b • α−1(a • b)
= χ((x0, a), (x0, b), (x1, c)).

(2) If x = y = x1 and z = x0 then

χ((x1, a), (x1, b), (q(x1, x1, x0), a • b • c • χ((x1, a), (x1, b), (x0, c))))
= χ((x1, a), (x1, b), (x0, c • α(a • b))) = a • b • α(a • b)
= χ((x1, a), (x1, b), (x0, c)).

Note that
χ((x0, a), (x0, b), (x1, c)) = χ((x0, a), (x1, c), (x0, b)) = χ((x1, c), ((x0, a), (x0, b))

and
χ((x1, a), (x1, b), (x0, c)) = χ((x1, a), (x0, c), (x1, b)) = χ((x0, c), ((x1, a), (x1, b)).

(3) Otherwise, i.e., when i) x = y = z = x0 or x = y = z = x1

ii) x, y or z /∈ {x0, x1} ,
we have

χ((x, a), (y, b), (q(x, y, z), a•b•c•χ((x, a), (y, b), (z, c)))) = χ((x, a), (y, b), (z, c) = 1.

This completes the proof of the lemma.

Lemma 3. Let (Q; q) be an arbitrary SK(n), and (B; •, 1) be a Boolean SL(2m)
for m > 2. Also let q′ be a ternary operation on the set Q×B de�ned by :

q′((x, a), (y, b), (z, c)) := (q(x, y, z), a • b • c • χ((x, a), (y, b), (z, c))).

Then Q ×α B = (Q×B; q′) is an SK(n2m) for each possible number n > 4.

Proof. Let Q = {x0, x1, x2, . . . , xn−1} and B = {1, a1, a2, . . . , a2m−1}. For all
(x, a), (y, b), (z, c) ∈ Q × B, according to Lemma 2 (i) and the properties of the
operations ”q” and ” • ” we �nd that:

q′((x, a), (y, b), (z, c)) = q′((x, a), (z, c), (y, b)) = q′((z, c), (x, a), (y, b)).

By using Lemma 2 (ii)

q′((x, a), (x, a), (y, b) = (q(x, x, y), a • a • b • χ((x, a), (x, a), (y, b))) = (y, b).

Also, Lemma 2 (iii) gives us that

q′((x, a), (y, b), (q
′
((x, a), (y, b), (z, c)))

= q′((x, a), (y, b), (q(x, y, z), a • b • c • χ((x, a), (y, b), (z, c)) = (z, c).

Hence Q×αB = (Q×B; q′) is an SQS-skein.
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In the next theorem we prove that the constucted Q×αB is a subdirectly
irreducible SQS-skein having a monolith θ1 satisfying that the cardinality of its
congruence class equal 2m .

Theorem 4. The constructed sloop Q×αB = (Q×B; q′) is a subdirectly irreducible

SQS-skein.

Proof. The projection Π : (x, a) → x from Q × B into Q is an onto homomorphism
and the congrurnce Ker Π := θ1 on Q × B is given by:

θ1 =
⋃n−1

i=0

{
(xi, 1) , (xi, a1) , . . . ,

(
xi, a2m−1

)}2
,

so one can directly see that [(x0, 1)]θ1 =
{
(x0, 1), (x0, α1), . . . , (x0, a2m−1)

}
.

Now C(Q) ∼= C((Q×αB)/θ1) ∼= [θ1 : 1]. Our proof will now be complete if we
show that θ1 is the unique atom of C(Q×αB).

First, assume that θ1 is not an atom of C(Q×αB), then we can �nd an atom γ
satisfying that: γ ⊂ θ1 and |[(xi, ai)] γ| = r < |[(xi, ai)] θ1| = 2m. In the following
we get a contradiction by proving [(x1, 1)] γ is not a normal sub-SQS-skein of
Q×αB .

Suppose [(x1, 1)]γ =
{
(x1, 1), (x1, as1), . . . ., (x1, asr−1)

}
. If

{
as1 , as2 , . . . , asr−1

}
is an increasing successive subsequence of

{
a1, a2, . . . , a2m−1

}
and if α(as

i
) =

asi+1 for all i = 1, 2, . . . , r − 1, then α(asr−1) = asr /∈
{
as1 , as2 , . . . , asr−1

}
. If{

as1 , as2 , . . . , asr−1

}
is an increasing and not successive subsequence selected from{

a1, a2, . . . , a2m−1

}
then there exists an element aj ∈

{
as1 , as2 , . . . , asr−1

}
such

that α(aj) = aj+1 /∈
{
as1 , as2 , . . . , asr−1

}
. For both cases, we can always �nd an

element (x1, ak) ∈ [(x1, 1)] γ such that (x1, α(ak)) /∈ [(x1, 1)] γ (ak = asr−1 for the
�rst case, and ak = aj for the second case).

We can determine the class containing (x0, 1) when we use the fact that
[(x0, 1)] γ = q′ ([(x1, 1)] γ, (x1, 1) , (x0, 1)), hence we will �nd that

[(x0, 1)] γ =
{
(x0, 1) , (x0, α (as1)) , (x0, α (as2)) , . . . ,

(
x0, α

(
asr−1

))}
.

By the same way [(x2, 1)] γ = q′ ([(x1, 1)] γ, (x1, 1) , (x2, 1)), and this leads to

[(x2, 1)] γ =
{
(x2, 1) , (x2, as1) , (x2, as2) , . . . ,

(
x2, asr−1

)}
.

From the other side [(x2, 1)] γ = q′ ([(x0, 1)] γ, (x0, 1) , (x2, 1)), here we will �nd
that

[(x2, 1)] γ =
{
(x2, 1) , (x2, α (as1)) , (x2, α (as2)) , . . . ,

(
x2, α

(
asr−1

))}
.

This means that for each ak ∈
{
as1 , as2 , . . . , asr−1

}
α (ak) ∈

{
as1 , as2 , . . . , asr−1

}
.

This contradicts the assumption that (x1, α(ak)) /∈ [(x1, 1)] γ. Hence, we may say
that there is no atom γ of C(Q×αB) satisfying γ ⊂ θ1. Therefore, θ1 is an atom
of the lattice C(Q×αB).
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Secondly, to prove that θ1 is the unique atom of C(Q ×α B). Assume that δ
is another atom of C(Q ×α B), then θ1 ∩ δ = 0. Hence, one can easily see that
there is only one element (x, ai) ∈ [(x, ai)]δ with the �rst component x (note that
[(x, ai)] θ1 =

{
(x, 1), (x, a1), . . . , (x, ai), . . . , (x, a2m−1)

}
). For this reason we may

say that the class [(x0, 1)]δ has at most one pair (x1, ai) with �rst component x1.
So we have two possibilities; either

(i) [(x0, 1)]δ contains only one pair (x1, ai) with �rst component x1, or

(ii) [(x0, 1)]δ has not any pairs with �rst component x1.

For the �rst case, let ((x, a), (x1, as)) ∈ δ such that x0 6= x 6= x1, and as 6= ai.
Then

q′((x0, 1), (x, a), (x1, as)) ∈ [(x0, 1)]δ.

In this case (x1, ai) ∈ [(x0, 1)] δ. Thus

q′((x0, 1), (x1, ai), q′((x0, 1), (x, a), (x1, as))) ∈ [(x0, 1)]δ.

Hence, (x, ai • a • as) ∈ [(x0, 1)] δ.
By using the properties of congruences, ((x0, 1) , (x1, ai)) , ((x1, as) , (x, a)) and

((x1, ai) , (x1, ai)) ∈ δ, we shall �nd that (q′((x0, 1), (x1, as), (x1, ai)), (x, a)) ∈ δ.
This means that

q′((x0, 1), (x, a), q′((x0, 1), (x1, as), (x1, ai))) ∈ [(x0, 1)]δ.

So,
(x, a • α(ai • as)) ∈ [(x0, 1)] δ.

Since the class [(x0, 1)] δ contains at most one element with a �rst component x, it
follows that α(ai •as) = ai •as hence ai •as = 1, which contradicts the choice that
as 6= ai. This implies that [(x0, 1)] δ is not a normal sub-SQS-skein of Q ×α B .

For the second case (ii) when [(x0, 1)]δ has not any pair with �rst component
x1. Let (x, a) ∈ [(x0, 1)]δ such that x0 6= x 6= x1, and let (x, b) and (x, c) are two
elements in Q × B such that a 6= b. Then

q′((x0, 1), (x, a), q′((x0, 1), (x1, c), (x, b))) ∈ [q′((x0, 1), (x1, c), (x, b))] δ.

This means that (x1, c • a • b) ∈ [q′((x0, 1), (x1, c), (x, b))] δ. Also,

q′((x0, 1), (x1, c), q′((x0, 1), (x, a), (x, b))) ∈ q′((x0, 1), (x1, c), [(x, b)]δ)
= [q′((x0, 1), (x1, c), (x, b))] δ.

Therefore (x1, c • α−1(a • b)) ∈ [q′((x0, 1), (x1, c), (x, b))] δ.
By using the fact that the class [q′((x0, 1), (x1, c), (x, b))] δ contains only one

element with the �rst component x1, we may say that α−1(a • b) = a • b, hence
a • b = 1, which contradicts that a 6= b.Thus [(x0, 1)]δ is not a normal sub-SQS-
skein of Q ×α B .This mean that there is no another atom δ, and θ1 is the unique
atom of C(Q×αB). Therefore, Q×αB is a subdirectly irreducible SQS-skein.
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Note that in the constructed SQS-skein Q ×α B , we may choose B a Boolean
SL(2m) for each m > 2. Therefore, as a consequence of the proof of Theorem 3,
we obtain

Corollary 5. Let B be a Boolean SL(2m) for an integer m > 2. Then the con-

gruence class [(x0, 1)]θ1 of the monolith θ1 of the constucted subdirectly irreducible

SQS-skein Q ×α B is a Boolean SK(2m).

Also, Theorem 3 enable us to construct a subdirectly irreducible SQS-skein
Q ×α B having a monolith θ1 satisfying that (Q ×α B)/ θ1

∼= Q .

Corollary 6. Every SQS-skein Q is isomorphic to the homomorphic image of

the subdirectly irreducible SQS-skein Q ×αB over its monolith, for each Boolean

sloop B.

Remark: The SQS-skein Q×α B having L×α B as a derived sloop.

Let (Q; q) be an SK(n) and (L; ∗, x0) be a derived SL(n) of Q with respect to
the element x0 with the same congruence lattice. This means that for L = Q =
{x0, x1, . . . , xn−1}, the binary operation ” ∗ ” is de�ned by x ∗ y = q(x0, x, y).

By using the construction in [7], we construct subdirectly irreducible SL(n2m).
This means that if we begin with our derived sloop L := (L; ∗, x0) of cardinality
n and the Boolean sloop B := (B; •, 1) of cardinality 2m, we get subdirectly
irreducible sloop L×αB =(L×B; ◦, (x0, 1)), where

(x, a) ◦ (y, b) := (x ∗ y, a • b • χ((x, a), (y, b)))
and

χ((x, a), (y, b))L =


a • α−1(a) for x = x0, y = x1,
b • α−1(b) for x = x1, y = 1,
c • α(c) for x = x1 = y and a • b = c,
1 otherwise.

It is easy to see that χ((x, a), (y, b))L = χ((x0, 1), (x, a), (y, b)) (the characte-
ristic function of our construction) for all x, y ∈ L = Q. Hence (x, a) ◦ (y, b) =
q′((x0, 1), (x, a), (y, b)) for all (x, a) , (y, b) ∈ L × B = Q × B, this means directly
that the constructed sloop L×αB is a derived sloop of the constructed SQS-skein
Q×α B. Therefore, we have the following result:

Corollary 7. Let L be a derived sloop of the SQS-skein Q with respect to the

element x0, then the sloop L×αB is a derived sloop of the SQS-skein Q×α B with

respect to (x0, 1).

Note that Q is isomorphic to the homomorphic image of Q ×α B over its
monolith (Corollary 5) and also L is isomorphic to the homomorphic image of
L×α B over its monolith [7]. Hence according to [7], Theorem 4 and Corollary 6,
we may say that:

There is always an SQS-skein Q×α B with a derived sloop L×α B, in which

both Q×α B and L×α B are subdirectly irreducible of cardinality n2m having the

same congruence lattice for each possible integers n > 4 and m > 2.
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The construction of a semi-Boolean SQS-skein (each derived sloop L of Q is
Boolean) given in [9] satis�es that C(Q) is a proper sublattice of the congruence
lattice of its derived sloop C(L). This means that we may begin with SQS-skein Q
with a derived sloop L in which the congruence lattice of Q is a proper sublattice
of the congruence lattice of L, this leads to C(L ×α B) is a proper sublattice of
C(Q ×α B).

Consequently, we may construct SQS-skein Q×αB with a derived sloop L×αB
such that Q ×α B and L ×α B are subdirectly irreducible of cardinality n2m and

have the same congruence lattice, if we begin with L derived sloop of Q with the

same congruence lattice. Also, we may construct SQS-skein Q×α B with a derived

sloop L×α B in which the congruence lattice of Q×α B is a proper sublattice of

the congruence lattice of L×α B, if we begin with L derived sloop of Q such that

the congruence lattice of Q is a proper sublattice of the congruence lattice of L.
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