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Construction of subdirectly irreducible SQS-skeins

of cardinality n2™

Enas M. A. Elzayat

Abstract. We give a construction for subdirectly irreducible SQS-skeins of cardinality n2™
having a monolith with a congruence class of cardinality 2™ for each integer m > 2. Moreover,
the homomorphic image of the constructed SQS-skein modulo its atom is isomorphic to the
initial SQS-skein. Consequently, we will construct an SK(n2") with a derived SL(n2™) such
that SK(n2™) and SL(n2™) are subdirectly irreducible and have the same congruence lattice.
Also, we may construct an SK(n2™) with a derived SL(n2™) in which the congruence lattice
of SK(n2™) is a proper sublattice of the congruence lattice of SK(n2™).

1. Introduction

A Steiner quadruple (triple) system is a pair (S; B) where S is a finite set and B is
a collection of 4-subsets (3-subsets) calledblocks of S such that every 3-subset (2-
subset) of S is contained in exactly one block of B (see [8] and [11]). Let SQS(m)
denote a Steiner quadruple system (briefly quadruple system) of cardinality m
and STS(n) denote Steiner triple system (briefly triple system) of cardinality n.
It is well-known that SQS(m) exists iff m = 2 or 4 (mod 6) and STS(n) exists
if and only if n = 1 or 3 (mod 6) [8] and [11]. Let (S;B) be an SQS. If one
considers S, = S — {a} for any point a € S and deletes that point from all blocks
which contain it then the resulting system (S,;B(a)) is a triple system, where
B(a) = {b—{a} Vb € B,a € b}. Now, (S,; B(a)) is called a derived triple system
(or briefly DTS) of (S; B) (cf. [8] and [11]).

A sloop (briefly SL) L = (L;-,1) is a groupoid with a neutral element 1 satis-
fying the identities:

xy=y-xz, l-z=z x (xy) =y

A sloop L is called Boolean if it satisfies the associative law. The cardinality
of the Boolean sloop is equal 2.
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There is one to one correspondence between STSs and Steiner loops (sloops)
8]

An SQS-skein (briefly an SK) (Q;q) is an algebra with a unique ternary
operation ¢ satisfying:

q(z,y,2) = q(z,2,y) = q(z,2,y), qlz,z,y) =y, q@,y,q(z,y,2)) =2
An SQS-skein (Q;q) is called Boolean if it satisfies in addition the identity:

Q(a'a'ra Q(avy’ Z)) = Q(-f, Y, Z)

There is one to one correspondence between SQSs and SQS-skeins (cf. [8] and
1))

The sloop associated with a derived triple system is also called derived. A
derived sloop of an SQS-skein (Q); ¢) with respect to a € @ is the sloop (Qu; -, a)
with the binary operation - defined by z -y = ¢(a, z,y).

A subsloop N of L (sub-SQS-skein of Q) is called normal if and only if N = [1]4
(N = [a]@ ) for a congruence 6 on L (Q) (cf. [8] and [12]). The associated
congruence 6 with the normal subsloop (sub-SQS-skein) N is given by:

0={(z,y):2x-y (orqla,y,2)) € N}.

Quackenbush in [12] and similarly Armanious in [1] have proved that the con-
gruences of sloops (SQS-skeins) are permutable, regular and uniform. Also, we
may say that the congruence lattice of each of sloops and SQS-skeins is modular.
Moreover, they proved that a maximal subsloop (sub-SQS-skein) has the same
property as in groups.

Theorem 1. (cf. [1] and [8]) Every subsloop (sub-SQS-skein) of a finite sloop
(L;-, 1) (SQS-skein (Q;q)) with cardinality § |L| (3 |Q|) is normal. O

A Boolean sloop is a Boolean group. If (G;+) is a Boolean group, then
(Gyq(z,y,2) = x4+ y + 2) is a Boolean SQS-skein [1].

Guelzow [10] and Armanious [2], [3] gave generalized doubling constructions
for nilpotent subdirectly irreducible SQS-skeins and sloops of cardinality 2n. In
[6] the authors gave recursive construction theorems as n — 2n for subdiredtly
irreducible sloops and SQS-skeins. All these constructions supplies us with sub-
directly irreducible SQS-skeins having a monolith 6 satisfying |[z]0] = 2 (the min-
imal possible order of a proper normal SQS-skeins). Also in these constructions,
the authors begin with a subdirectly irreducible SK(n) to construct a subdirectly
irreducible SK(2n) satisfying the property that the cardinality of the congruence
class of its monolith is equal 2. Armanious [5] has given another construction of a
subdirectly irreducible SK(2n). He begins with a finite simple SK(n) to costruct
a subdirectly irreducible SK(2n) having a monolith 6 with |[z]0| = n (the maximal
possible order of a proper normal sub-SQS-skein).

In [7] the authors begin with an arbitrary SL(n) to construct subdirectly irre-
ducible SL(n2™) for each possible integers n > 4 and m > 2.
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In this article, we begin with an arbitrary SK(n) for each possible value n > 4
to construct subdirectly irreducible SK(n2™) for each integer m > 2. This con-
struction enables us to construct subdirectly irreducible SQS-skein having a mono-
lith 6 satisfying that its congruence class is SK(2"). Moreover, its homomorphic
image modulo @ is isomorphic to Q.

We will show that our construction supplies us with construction of an SK(n2™)
with a derived SL(n2™) such that the congruence lattices of SK(n2™) and SL(n2™)
are the same for each possible case. Moreover, we may construct an SK(n2™) with
a derived SL(n2™) such that the congruence lattices of SK(n2™) is a proper sub-
lattice of the congruence lattice of SL(n2™).

2. Subdirectly irreducible SQS-skeins () x,B

Let @ := (Q;¢) be an SK(n) and B := (B;e,1) be a Boolean SL(2™), where Q) =
{zo,21,22,...,2n—1} and B ={1,a1,a2,...,a,m_, }- In this section we extend the
SQS-skein @ to a subdireclty irreducible SQS-skein @) X, B of cardinality n2™
having @ as a homomorphic image.

We divide the set of elements of the direct product @ x B into two sub-
sets {xg,21} X B and {z3,...,2,-1} X B. Consider the cyclic permutation « =
(arag...aym_,) on the set {1,a1,as,...,a,m_, } and the characteristic function x
from the direct product @ x B to B defined as follows

x((y1,11), (Y2, 42), (y3,13)) =

Z‘m,.Z‘n.Oéil(im.in) for Ym = Yn = To, Yk = X1 and {m n k} {17273}
Z‘m.Z‘n.O‘(im.in) for ym = yn = 21, Y = o and {m n, k} {1a273}
1 otherwise.

Tt is clear that x((y1,41), (y2,i2), (y3,i3)) = 1 in two cases:
(1) y1 =Yy2=y3 =m0 OF Y1 = Y2 = Y3 = T1.
(i) y1,y2 or y3 € Q@ — {xo, 71}
For this characteristic function we obtain the following result:

Lemma 2. The characteristic function x satisfies the properties:
(Z) X(((L (L), (yv b)a (Zv C)) = X((l'v CL), (27 C)v (ya b)) = X((Zv C)7 (.’E, a)7 (ya b))v
(ZZ) X((x,a),(x,a),(y,b)) =1

(@) x((z,a),(y,b),(q(z,y,2),aebecex((z,a),(y,b),(2,¢)))) =
x((z,a), (y,b), (2, ¢)).

Proof. According to the definition of x, we may deduce that (¢) is valid.

In (i7), if * = 29 and y = z; then x((z0, a), (v, a), (v1,b)) = aeaea " (aea) =
1. If ¢ = 27 and y = xg, then x((x1,a), (z1,a),(x0,b)) = aeaealaea) = 1.
Otherwise if z ory # x¢ or z1, then x((z,a), (z,a), (y,b)) = 1.
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To prove the third property, we have only three essential cases:
(1) If 2 =y = ¢ and z = x; then

X((zo, @), (20,b), (¢(z0, 0, 21),a @ b e cex((xo,a), (z0,b), (1,¢))))
= x((z0,a), (x0,b), (x1,cea " (aeb)) =aebea (aeb)
= X((zo, a), (20, b), (z1,0)).

(2) If =y =21 and z = z( then
x((z1,a), (21,b), (¢(x1,21,20),a 0 b e co x((x1,0a), (x1,D), (20, ¢))))
= x((z1,0a), (z1,b), (xg,coa(aeb))) =aebea(aeb)
= x((z1,a), (21,b), (0, ).

Note that

dX((x07a)’ (‘TO’ b)) (1‘1,6)) = X((zO’ a)7 (931,6), (‘TO’ b)) = X((Ihc)’ ((IO, a)7 (:C07 b))

X((fﬁ,a), ($17 b)v (1‘0,0)) = X((‘rlv a)’ ("TO’C)v ($17 b)) = X((fCo,C), ((xlv a)v (wlv b))

(3) Otherwise, i.e., when i) x =y=z2z=x¢ or x =y =2z =2,
i) x,y or z ¢ {xo,x1},
we have

x((z,a), (y,0), (¢(z,y, z), asbecex((z,a), (y,b), (2, ¢)))) = x((z,a), (y,b), (z,¢) = 1.
This completes the proof of the lemma. O

Lemma 3. Let (Q;q) be an arbitrary SK(n), and (B;e,1) be a Boolean SL(2™)
for m > 2. Also let ¢’ be a ternary operation on the set QQ x B defined by :

q((z,a),(,0), (2,0)) = (¢(x,y,2),a e b e co x((x,a), (y,b), (,¢))).
Then Q xo B =(Q x B;q’) is an SK(n2™) for each possible number n > 4.

Proof. Let Q = {zo,z1,22,...,2n—1} and B = {1,a;1,4a2,...,a,m_,}. For all
(z,a), (y,b),(z,¢) € Q x B, according to Lemma 2 (i) and the properties of the
operations "¢” and ” e” we find that:

¢ ((z,a),(y,0),(z,¢)) = ¢'((z,a), (2,¢), (y,0)) = ¢'((2, ), (x,a), (y,]))-
By using Lemma 2 (i)
q,((xa a)7 (I,CL), (y7 b) = (Q(J:,Ivy)a aeaebe X((xv a)7 (I,CL), (y7 b))) = (y7 b)
Also, Lemma 2 (ii%) gives us that
q/((a?, a), (y,b), (q/((I, a), (y,b), (2,¢)))
=q'((x,a), (y,0), (q(x,y,2),a e be cox((z,a),(y,b), (2,¢)) = (z,¢).
Hence Q x4 B = (Q x B;¢') is an SQS-skein. O
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In the next theorem we prove that the constucted @)x,B is a subdirectly
irreducible SQS-skein having a monolith #; satisfying that the cardinality of its
congruence class equal 2.

Theorem 4. The constructed sloop Q% B = (QXxB;q’) is a subdirectly irreducible
SQS-skein.

Proof. The projection I : (z,a) — z from Q x B into @ is an onto homomorphism
and the congrurnce Ker Il := 6, on @ x B is given by:

2

b1 = Uj;ol {(xi, 1) s (xi,al) s (xi7a,2m71>} ,

so one can directly see that [(zo,1)]61 = {(z0,1), (w0, 1), ..., (To,aym_,)} -

Now C(Q) = C((Qx,B)/61) = [61 : 1]. Our proof will now be complete if we
show that 0 is the unique atom of C(Qx,B).

First, assume that 6, is not an atom of C(@x,B), then we can find an atom =
satisfying that: v C 6y and |[(z;, ;)] v| = r < |[(xs,a;)] 61] = 2™. In the following
we get a contradiction by proving [(z1,1)]7 is not a normal sub-SQS-skein of
@Qx,B.

Suppose [(z1,1)]y = {(J;l, 1), (x1,as, )y - (21, asrfl)} JIf {%130527 ... 7%7,,1}
is an increasing successive subsequence of {ay,as,...,a,m_, } and if a(as) =
oo forall i = 1,2,...,r — 1, then a(as, ,) = as, ¢ {as,,asy,...,as,_,}. If
{asl yOsyse ey asr_l} is an increasing and not successive subsequence selected from
{al,ag,...,anfl} then there exists an element a; € {asl,a52, .. .,asrfl} such
that a(a;) = aj11 ¢ {as,, sy, as,_, } . For both cases, we can always find an
element (x1,ax) € [(x1,1)] v such that (z1,a(ar)) ¢ [(x1,1)] v (ar = as,_, for the
first case, and ay, = a; for the second case).

We can determine the class containing (xg,1) when we use the fact that
[(xo, D]y =¢ ([(x1,1)] 7, (z1,1), (x0,1)), hence we will find that

[(3307 1)] Y= {(5507 1) ) (3307 « (a81)) ’ ('T0>a (a52)) PR ('rO?a (asv-—l))} :
By the same way [(z2,1)]y = ¢ ([(x1,1)]7, (x1,1), (22,1)), and this leads to
[(z2, )]y = {(22,1), (2,04,) , (¥2,05,) , - .., (z2,05,_,) } -

From the other side [(z2,1)]y = ¢’ ([(z0,1)]7, (z0,1), (x2,1)), here we will find
that

Qs

(w2, )]y = {(22,1), (w2, (as,)) , (22, @ (as,)) - - - (w2, 0 (as,_,)) } -

This means that for each a; € {%1 s sy e ,asrfl} alag) € {as1 gy ey Qs }
This contradicts the assumption that (z1,a(ay)) ¢ [(x1,1)]y. Hence, we may say
that there is no atom v of C(@x,B) satisfying v C 6;. Therefore, 6; is an atom
of the lattice C(Qx,B).
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Secondly, to prove that 6 is the unique atom of C(Q X, B). Assume that ¢
is another atom of C(Q x, B), then §; N§ = 0. Hence, one can easily see that
there is only one element (z,a;) € [(x,a;)]0 with the first component z (note that
[(z,a:)]61 = {(=,1),(z,a1),...,(z,a;),...,(x,aym_,)}). For this reason we may
say that the class [(zg, 1)]0 has at most one pair (x1, a;) with first component .
So we have two possibilities; either

(7) [(wo,1)]0 contains only one pair (z1,a;) with first component x4, or

(#i) [(xo,1)]d has not any pairs with first component ;.

For the first case, let ((x,a), (z1,as)) € § such that xg # x # x1, and as # a;.
Then

q/((x07 1)v (zv a)a (xla as)) € [(an 1)]5

In this case (x1,a;) € [(zg,1)]d. Thus

q/((ZOa 1)7 (wl,ai)a ql((x07 1)7 (.T, a)v (l‘l,CLS))) € [(Zo, 1)]6

Hence, (z,a;eaeas) € [(zo,1)]0.

By using the properties of congruences, ((xg,1), (z1,a;)), ((z1,as), (z,a)) and
((x1,a;), (x1,a;)) € &, we shall find that (¢'((zo,1), (z1,as), (z1,a;)),(x,a)) € 0.
This means that

q/((l‘o, 1)7 (x,a), q/((l‘o, 1)7 (1‘1, as)v (xlvai))) € [(Jfo, 1)]5

So,
(z,aeala; ®as)) € [(xo,1)]0.

Since the class [(zg, 1)] § contains at most one element with a first component =, it
follows that a(a; eas) = a; eas hence a; @a; = 1, which contradicts the choice that
as # a;. This implies that [(zg,1)] 4 is not a normal sub-SQS-skein of @ x, B.

For the second case (i4) when [(xg,1)]d has not any pair with first component
x1. Let (z,a) € [(x0,1)]d such that xg # x # x1, and let (x,b) and (z,c) are two
elements in @ x B such that a # b. Then

q/((x07 1)a (x, a)v q,((x07 1)7 (xlv C), (1’, b))) € [q/((mOa 1)7 (Il’ C)v (xv b))] d.

This means that (z1,ceaeb) € [¢'((zo,1), (z1,¢), (z,b))] . Also,

q/((‘rOv 1)a (xla C)vq,((l'()v 1)7 (xa a)’ (:L’, b))) € q/((xOv 1)a (xla C)v [({E, b)}(s)
= [q/((l‘o, 1)7 (:Clvc)v (:177 b))} J.

Therefore (z1,cea(aeb)) € [¢'((z0,1), (z1,¢), (z,b))] 4.

By using the fact that the class [¢'((zo, 1), (z1,¢), (z,b))] § contains only one
element with the first component x;, we may say that a~'(a e b) = a e b, hence
a b =1, which contradicts that a # b.Thus [(x,1)]d is not a normal sub-SQS-
skein of @) X, B.This mean that there is no another atom ¢, and 6; is the unique
atom of C(Q) X, B). Therefore, @ x,, B is a subdirectly irreducible SQS-skein. [
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Note that in the constructed SQS-skein @) X, B, we may choose B a Boolean
SL(2™) for each m > 2. Therefore, as a consequence of the proof of Theorem 3,
we obtain

Corollary 5. Let B be a Boolean SL(2™) for an integer m > 2. Then the con-
gruence class [(xo,1)]01 of the monolith 61 of the constucted subdirectly irreducible
SQS-skein @ x, B is a Boolean SK(2™). O

Also, Theorem 3 enable us to construct a subdirectly irreducible SQS-skein
@ X4 B having a monolith 6 satisfying that (Q x, B)/ 61 = Q.

Corollary 6. Every SQS-skein Q is isomorphic to the homomorphic image of
the subdirectly irreducible SQS-skein Q X, B over its monolith, for each Boolean
sloop B. O

Remark: The SQS-skein @ X, B having L X, B as a derived sloop.

Let (Q;q) be an SK(n) and (L; *,xg) be a derived SL(n) of @ with respect to
the element zy with the same congruence lattice. This means that for L = @ =
{zo,x1,...,Zn_1}, the binary operation ” x” is defined by = * y = ¢(xo, z,y).

By using the construction in [7], we construct subdirectly irreducible SL(n2™).
This means that if we begin with our derived sloop L := (L;*, ) of cardinality
n and the Boolean sloop B := (Bj;e, 1) of cardinality 2™, we get subdirectly
irreducible sloop Lx,B =(L x Bj;o, (xg,1)), where

(z,a) 0 (y,b) := (z xy,aebex((x,a),(y,))))

aea~l(a) for xz=umg, y=2,
beal(b) for x=ux, y=1,

ceafc) for t=x1=yandaeb=c,
1 otherwise.

and

X((Z‘, a)’ (yv b))L =

It is easy to see that x((z,a), (y,0))r = x((z0,1), (z,a), (y,b)) (the characte-
ristic function of our construction) for all x,y € L = Q. Hence (z,a) o (y,b) =
q ((zo, 1), (x,a), (y,b)) for all (z,a),(y,b) € L x B =@Q x B, this means directly
that the constructed sloop Lx,B is a derived sloop of the constructed SQS-skein
@ X B. Therefore, we have the following result:

Corollary 7. Let L be a derived sloop of the SQS-skein Q) with respect to the
element xg, then the sloop Lx B is a derived sloop of the SQS-skein Q X, B with
respect to (xg, 1). O

Note that @ is isomorphic to the homomorphic image of @ x, B over its
monolith (Corollary 5) and also L is isomorphic to the homomorphic image of
L x4 B over its monolith [7]. Hence according to [7], Theorem 4 and Corollary 6,
we may say that:

There is always an SQS-skein Q X, B with a derived sloop L x, B, in which
both Q X, B and L x, B are subdirectly irreducible of cardinality n2™ having the
same congruence lattice for each possible integers n > 4 and m > 2.
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The construction of a semi-Boolean SQS-skein (each derived sloop L of @ is
Boolean) given in [9] satisfies that C'(Q) is a proper sublattice of the congruence
lattice of its derived sloop C(L). This means that we may begin with SQS-skein @
with a derived sloop L in which the congruence lattice of @ is a proper sublattice
of the congruence lattice of L, this leads to C(L x, B) is a proper sublattice of
C(Q x4 B).

Consequently, we may construct SQS-skein Q X o, B with a derived sloop L x, B
such that Q X, B and L X, B are subdirectly irreducible of cardinality n2™ and
have the same congruence lattice, if we begin with L derived sloop of Q with the
same congruence lattice. Also, we may construct SQS-skein Q X B with a derived
sloop L x4 B in which the congruence lattice of Q X, B is a proper sublattice of
the congruence lattice of L X, B, if we begin with L derived sloop of Q such that
the congruence lattice of Q) is a proper sublattice of the congruence lattice of L.
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