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A new characterization of

Osborn-Buchsteiner loops

Tèmító. pé. Gbó. láhàn Jaiyéo. lá and John Olúso. lá Adéníran

Abstract. In the study of loops of Bol-Moufang types, a question that quickly comes to mind
is this. Since a loop is an extra loop if and only if it is a Moufang loop and a CC-loop(or C-
loop), then can one generalize this statement by identifying a "new identity" for a loop which
generalizes the C-loop identity such that we can say "An Osborn loop is a Buchsteiner loop if and
only if it obeys "certain" identity? A somewhat close answer to this question is the unpublished
fact by M. K. Kinyon that "An Osborn loop Q with nucleus N is a Buchsteiner loop if and only
if Q/N is a Boolean group" where Q/N being a Boolean group somewhat plays the role of the
missing identity. It is proved that an Osborn loop is a Buchsteiner loop if and only if it satis�es
the identity (x · xy)(xλ · xz) = x(x · yz). The importance of its emergence which was traced from
the facts that Buchsteiner loops generalize extra loops while Osborn loops generalize Moufang
loops is the fact that not every Osborn-Buchsteiner loop is an extra loop. An LC-loop obeys
this identity. An Osborn-Buchsteiner loop (OBL) is shown to be nuclear square and to obey the
identity xρ · xx = xx · xλ = x. Necessary and su�cient condition for a OBL to be central square
is established. It is shown that in an OBL, the cross inverse property and commutativity are
equivalent, and the properties: 3-power associativity (xx · x = x · xx), self right inverse property
(xx · xρ = x), self left inverse property (xλ · xx = x) and xρ = xλ are equivalent.

1. Introduction

Let L be a nonempty set with a binary operation denoted by juxtaposition. If the
system of equations: ax = b, ya = b has unique solutions x and y respectively,
then (L, ·) is called a quasigroup. Furthermore, if there exists a unique element
e ∈ L called the identity such that for all x ∈ L, xe = ex = x, (L, ·) is called a
loop. For each x ∈ L, the elements xρ = xJρ, xλ = xJλ such that xxρ = e = xλx
are called the right, left inverses of x respectively. For any x, y ∈ L, we shall take
(xy)(x, y) = yx, where (x, y) ∈ L is called the commutator of x and y.

The triple α = (A,B,C) of bijections on a loop (L, ·) is called an autotopism

if and only if

xA · yB = (xy)C for all x, y ∈ L.
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Such triples form a group AUT (L, ·) called the autotopism group of (L, ·). For an
overview of the theory of loops, readers may check [10, 19].

Further to reduce of number of brackets we will use dots instead of some brack-
ets. For example, the formula x((yz)x) will be written as x(yz · x).

A loop that satis�es any of the following equivalent identities is called anOsborn

loop.

OS0 : x(yz · x) = x(yxλ · x) · zx, (1)

OS1 : x(yz · x) = [x(yx · xρ)] · zx, (2)

OS2 : x[(xλy)z · x] = y · zx, (3)

OS3 : (x · yz)x = xy · [(xλ · xz) · x], (4)

OS4 : [x · y(zxρ)]x = xy · z. (5)

Kinyon [17] revived the study of Osborn loops in 2005. The most popularly
known varieties of Osborn loops are: VD-loops (Basarab [1]), Moufang loops, CC-
loops, universal weak inverse property loops and extra loops. Some recent works
on Osborn loops are Jaiyéo. lá [11, 12], Jaiyéo. lá and Adéníran [13, 14, 15], and
Jaiyéo. lá, Adéníran and Sòlárìn [16].

The Buchsteiner law

BL : x\(xy · z) = (y · zx)/x

was �rst introduced by Buchsteiner [2]. Its study in loops is on revival by Csörg®
et. al. [3, 4, 5] and Drápal et. al. [6, 7, 8]. Buchsteiner loops are G-loops and
extra loops belongs to their class.

Buchsteiner loops generalize extra loops while Osborn loops generalize Moufang
loops. A question that quickly comes to mind is this: since a loop is an extra loop
if and only if it is a Moufang loop and a CC-loop (or C-loop), then can one
generalize this statement by identifying a new identity that describes a new class
of loop which generalizes a C-loop such that we can say "An Osborn loop is a
Buchsteiner loop if and only if it is a "certain" loop?" A some what close answer
to this question is the unpublished fact by M. K. Kinyon that "An Osborn loop
Q with nucleus N is a Buchsteiner loop if and only if Q/N is a Boolean group"
where Q/N being a Boolean group some what plays the role of the missing loop
variety. It will be shown in this study that this new class of loop is described by
the identity

(x · xy)(xλ · xz) = x(x · yz). (6)

LC-loops fall into this class. It must be noted that when Drápal and Jedli£ka
[6] used nuclear identi�cation to obtain some loop identities, the Osborn and our
new loop identities did not feature among such identities. We shall refer to an
Osborn loop which obeys the Buchsteiner law as an Osborn-Buchsteiner loop.

Theorem 1.1. (Proposition 2.5 in [5]) Let Q be a CC-loop with nucleus N(Q).
Then Q is a Buchsteiner loop if and only if x2 ∈ N(Q) for every x ∈ Q.
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We got the following unpublished result from Kinyon through personal contact.

Theorem 1.2. (Kinyon, 2009) Let Q be a loop with nucleus N = N(Q). Any two

of the following implies the third.

1. Q is an Osborn loop.

2. Q is a Buchsteiner loop.

3. N is a normal in Q and Q/N is a Boolean group.

We can also say that:

Theorem 1.3. Let Q be an Osborn loop with nucleus N = N(Q). Then Q is a

Buchsteiner loop if and only if Q/N is a Boolean group. Hence, Q is an Osborn

loop that is nuclear square.

Theorem 1.4. (Theorem 11.3 in [5]) Let Q be a Buchsteiner loop with nucleus

N = N(Q). If |Q| < 32, then Q is a CC-loop. If |Q| < 64, then Q/N has exponent

2.

Theorem 1.5. (Theorem 7.14 in [5]) Let Q be a Buchsteiner loop with nucleus

N = N(Q). Then Q/N is an abelian group of exponent 4.

Theorem 1.2 is a generalization of Theorem 1.1.

2. Main Results

Theorem 2.1. An Osborn loop is a Buchsteiner loop if and only if it obeys identity

(6). Hence, it is a nuclear square loop and the loop modulo its nucleus is an abelian

group of exponent 2.

Proof. Using the identities OS1, OS2 and OS3 of an Osborn loop (L, ·) and the
identity BL of a Buchsteiner loop L, it can be shown that

(RxRxρL2
x, I, RxT−1

(x)Lx) ∈ AUT (L). (7)

This is done as follows. Take T(x) = RxL−1
x . From equation (2),

RzRxLx = RxRxρLxRzx ⇔ Rzx = L−1
x R−1

xρ R−1
x RzRxLx.

From the Buchsteiner law, Rzx = LxRzL
−1
x Rx. So,

LxRzL
−1
x Rx = L−1

x R−1
xρ R−1

x RzRxLx ⇔ RxRxρL2
xRzL

−1
x Rx = RzRxLx ⇔

yRxRxρL2
xRzL

−1
x Rx = yRzRxLx ⇔ yRxRxρL2

xRzL
−1
x Rx = (yz)RxLx ⇔

yRxRxρL2
x · z = (yz)RxT−1

(x)Lx ⇔ (RxRxρL2
x, I, RxT−1

(x)Lx) ∈ AUT (L).

Thus, if an Osborn loop L is a Buchsteiner loop, then (7) holds. Doing the reverse
of the procedure above, it is also true that if in an Osborn loop L holds (7), then
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L is a Buchsteiner loop. So, we have shown that an Osborn loop is a Buchsteiner
loop if and only if (7) holds.

From equation (3), (Lxλ , R−1
x , L−1

x R−1
x ) ∈ AUT (L) while from equation (4),

(Lx, LxLxλRx, LxRx) ∈ AUT (L). Thus,

(LxLxλ , LxLxλ , LxRxL−1
x R−1

x ) = (LxLxλ , LxLxλ , LxT(x)R
−1
x ) ∈ AUT (L).

Therefore, in an Osborn loop L, keeping in mind that LxLxλRxRxρ = I,

(LxLxλ , LxLxλ , LxT(x)R
−1
x )(RxRxρL2

x, I, RxT−1
(x)Lx) =

(LxLxλRxRxρL2
x, LxLxλ , L2

x) = (L2
x, LxLxλ , L2

x) ∈ AUT (L)

⇔ (x · xy)(xλ · xz) = x(x · yz).

Thus, we have shown that an Osborn loop which is also a Buchsteiner loop obeys
the identity (6). Assuming the identity (6) is true in the Osborn loop L and
doing the reverse of the process above, it will be observed that (7) holds, hence by
the earlier fact, L is a Buchsteiner loop. Recall that (7) implies yRxRxρL2

x · z =
(yz)RxT−1

(x)Lx for all y, z ∈ L. Substituting z = e, we have

RxRxρL2
x = RxT−1

(x)Lx for all x ∈ L. (8)

So, (7) implies yRxRxρL2
x · z = (yz)RxRxρL2

x for all y, z ∈ L. Substituting y = e,
we see that x2z = zRxRxρL2

x implies Lx2 = RxRxρL2
x for all x ∈ L. Thus,

(Lx2 , I, Lx2) ∈ AUT (L) which means that x2 ∈ N for all x ∈ L. That is, L is
nuclear square. Thus, by Theorem 1.5, L/N is a Boolean group.

From Theorem 2.1 we can deduce that in Theorem 1.2 conditions 1. and 2.
imply 3. The proof of Theorem 2.1 was carried out without the knowledge of
Theorem 1.2.

Corollary 2.2. Let Q be an Osborn loop with nucleus N = N(Q). The following

are equivalent:

1. Q is a Buchsteiner loop,

2. Q/N is a Boolean group,

3. Q obeys (6).
Hence, Q is an Osborn loop that is nuclear square.

Proof. The proof follows from Theorem 1.3 and Theorem 2.1.

Lemma 2.3. Let (Q, ·) be an Osborn loop that is nuclear square. Then

1. xρ · xx = xx · xλ = x.
2. The following are equivalent: xx · xρ = x, xλ · xx = x, xρ = xλ and

xx · x = x · xx. Hence, (x2, xρ) = (x2, xλ) = e.
3. L is central square if and only if x · (xλy · x)x = x(x · yxρ) · x.
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Proof. 1. By OS1, x(yz · x) = [x(yx · xρ)] · zx. Substituting z = x, we have
x(yx · x) = [x(yx · xρ)] · xx ⇒ (yx · x) = (yx · xρ)(xx) ⇒ xρ · xx = x. Doing a
similar thing with OS3, we get xx · xλ = x.
2. Using OS0 the way OS1 was used above, we get yx · x = (yxλ · x)(xx). Taking
y = x, it is easy to see that xx · x = x · xx if and only if xρ = xλ. In Lemma 3.20
of [16], the equivalence of the �rst three identities was proved in an Osborn loop.
Hence, the equivalence of the four identities follows.
3. In OS2, x[(xλy)z · x] = y · zx, making z = x, we get Rx2 = LxλR2

xLx. Doing a
similar thing with OS4, we have Lx2 = RxρL2

xRx. So, L is central square if and only
if Rx2 = Lx2 ⇔ Lx2 = RxρL2

xRx = RxρL2
xRx ⇔ x · (xλy · x)x = x(x · yxρ) · x.

Lemma 2.4. Let (Q, ·) be an Osborn-Buchsteiner loop. Then

1. the following are equivalent: xx ·xρ = x, xλ ·xx = x, xρ = xλ, xx ·x = x ·xx
and (x · xy)x = x(x · yx). Hence, (x, y) = e if and only if (x, x · xy) = e or

(x, x · yx) = e.
2. (x · yxρ)x = xy.
3. L is a cross inverse property loop if and only if L is commutative.

Proof. 1. The equivalence of the �rst four identities follows from 1. of Lemma 2.3.
From identity (6), (x · xy)(xλ · xz) = x(x · yz), so taking z = x, (x · xy)(xλ · xx) =
x(x · yx), so xλ · xx = x ⇔ (x · xy)x = x(x · yx).
2. Recall that from (8), RxRxρL2

x = RxT−1
(x)Lx, for all x ∈ L. Putting T(x) =

RxL−1
x , we get RxρLxRx = Lx ⇔ (x · yxρ)x = xy.

3. This follows from 2. above.

Not all Osborn-Buchsteiner loops are extra loops. A loop is said to be nuclear

square if the square of each element is nuclear (i.e. in the nucleus). It is well known
from Fenyves [9] that extra loops are nuclear square loops. In Table 2 of the last section
of [18], the authors established the fact that there exists a non-extra CC-loop that is
nuclear square by constructing a power associative CC-loop of order 16 that is nuclear
square. Thus, by Theorem 1.1, such a loop is a Buchsteiner loop, hence an Osborn-
Buchsteiner loop. This fact can also be corroborated with Theorem 1.4 following the fact
that |Q| < 32.

Furthermore, in [Page 7, [4]], it was observed that not every Buchsteiner loop Q with
nucleus N such that Q/N is a Boolean group has to be a CC-loop. Hence, since Q/N is
a Boolean group implies Q is nuclear square, then there exist nuclear square Buchsteiner
loops that are not CC-loops.

As shown in Corollary 2.1, Theorem 2.1 is another characterization of Osborn-
Buchsterner loops in identity form relative to the group-structural characterization form
of Q modulo N being a Boolean group. The importance of this characterization can be
linked to the fact that Buchsteiner [2] originally claimed that in a Buchsteiner loop Q,
Q/N is a Boolean group, while [5] clari�ed this statement by showing in Theorem 1.5
that Q/N is actually an abelian group of exponent 4.

Kinyon in personal correspondence went further to show that a Buchsteiner loop Q
for which Q/N is a Boolean group must be an Osborn loop. So, a single identity to
describe a Osborn-Buchsterner loop Q for which Q/N is a Boolean group is (6).
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