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Polyadic groups and automorphisms

of cyclic extensions

Mohammad Shahryari

Abstract. We show that for any n-ary group (G, f), the group Aut(G, f) can be embedded in
Aut(Zy—1 X G) and so we can obtain a class of interesting automorphisms of cyclic extensions.

1. Introduction

Our notations in this article are standard and can be find in [2], for example.

Let (G, f) be an n-ary group. We know that, there is a binary operation "-"
on G, such that (G,-) is an ordinary group, and further, there is a 6 € Aut(G, )
with an element b € G, such that

(i) 6(b) =b, and 6" 1(z) =bxb~! forall x € G,
(i1) f(27) = 210(x2) - 0" (zp)b.

So, some times, we denote (G, f) by the notation derg (G, ). If b = e, the identity
element of (G, ), then we use the notation derg(G, ).

We associate another binary group to (G, f) which is called the universal cov-
ering group or Post’s cover of (G, f). Let a be an arbitrary element of G and
suppose G} = Z,_1 x G. Define a binary operation on this set by

(2)* () = i+ + 1, fulw, @9, .3, @),
Here of course, i + j + 1 is computed modulo n — 1, and (i,j) =n—i—j — 3
modulo n — 1. The symbol f, indicates that f applies one or two times depending
on the values of ¢ and j and @ denotes the skew element of a. It is proved that
(see [4]), G is a binary group and the subset

R={(n—2,2):2 € G}

is a normal subgroup such that G%/R = Z,_;. Further, if we identify G by the
subset,

{(0,2) : z € G},
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then G is a coset of R and it generates G;. We also have
f@P) =z * T2 % % T

It is not hard to see that for all a,b € G, we have G} = Gy, so for simplicity, we
always, assume that a = e, the identity element of (G, -).

Through this article, we assume that (G, f) = derg(G, ). So, we have 0"~ ! = id
and

f@h) = 210(z2) - 0" %(2p_1)xp.
We also assume that e is the identity element of (G,-). We will prove first the
following theorem on the structure of the Post’s cover.

Theorem 1.1. (dery(G,-)): = Z,,—1 X G, where Z,_1 acts on (G,-) byi.x = 0*(x).

€

Note that, we used a special case of this theorem in [6], to investigate represen-
tations of polyadic groups. The main idea of this article is almost the same as in
[6]. Our second goal is to obtain an embedding from Aut(G, f) to Aut(Gf). The
method we employ is the same as in [6]. For any i € Z,,_1 and u € G, suppose
§(i,u) = 0(u)0?(u) ... 0% (u). We prove

Theorem 1.2. Let A € Aut(G, f) and define A* : G* — G* by
A (i, z) = (i, A(x)d(i,u)),
where u = A(e). Then the map A — A* is an embedding.

In [3], the structure of automorphisms of (G, f) is determined. If A € Aut(G, f),

then we have A = R, p, where u is an idempotent element, i.e. f((Z)) =u, R, is
the right translation by w and ¢ is an ordinary automorphism of (G,-) with the
property [¢,0] = I, (the bracket denotes the commutator pfp~10~! and I, is
the inner automorphism corresponding to u). The converse is also true; if v and ¢
satisfy above conditions, the A = R, is an automorphism of the polyadic group
(G, f). We will use this fact frequently through this article. The interested reader
should see [3] for a full description of homomorphisms between polyadic groups.

Combining Theorems 1.1 and 1.2, we obtain an embedding of Aut(G, f) into
Aut(Z,,—1 X G). More precisely, we prove the following.

Theorem 1.3. Let G = A x G, with A = (a) cyclic of order n — 1 and let
O(x) = axa=t. Then for any ¢ € Aut(G) and u € G, the hypotheses [¢,0] = I,
and (au)"~! =1 imply that the map

(a’,z) — (a',u o(x)u(au)'a™)

is an automorphism of G and these automorphisms are mutually distinct.



Polyadic groups and automorphisms of cyclic extensions 277

2. Proofs

Proof of Theorem 1.1. Note that in G, we have

(1,2) ¢ Goy) = (45 +1, folw, €, 9,2 2, ")
— (i 4+ 1,20(c) - - 0 ()0 ()07 2(e)
GG (E) g2 )
= (i +j + Lz0™ () 7+ (@),

but, since € = e, so

(i,.’L‘) * (J7y) = (Z +J+ 1am6i+1(y)) = (i,x)(l,e)(%y),

where the right hand side product is done in Z,_; X G. Note that in general,
if (A,-) is a group and a € A, then we can define a new binary operation on A
by x o y = xay and together with this new operation, A is a group too, and so
we denote it by A, = (A,0). We have A = A, and the isomorphism is given by
©(r) = a~tz. Now, by this notation, we have

(derg(G,))e = G = (Zn1 X Gy,
and hence (derg(G,-))s =2 Zn_—1 X G. O
Now, let A € Aut(G, f) and v = A(e). Define A} : GE — G by Al(i,z) =
(i, A(x)).
Lemma 2.1. A} is an isomorphism.

Proof. Note that
AL )+ (G,9) = AL (i + 7+ 1,20 (y) = (i + 5+ 1L, A0 ().
On the other hand,

Ay 2) * AL, y) = (6, A@)) * (7, A))
= (i L f(A), W Aw), W Y).

n— n—1
But f(ﬂ,( ul)) = u, SO A(f(v,( e )

n—1
f(v,( e )) = e and so v = e and hence @ = A(e) = u. Now, we have

)) = A(e), where A(v) = w. Therefore

AZGa) % AZGoy) = G+ 5+ LA (e €y, D e, ")) = (4§ + 1, At (1))

= AL((i,2) % (5,y))-

This shows that A% is an isomorphism. O
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An element u € G is said to be idempotent if f((a)) = wu. For an arbitrary
element v € G, we remember that the right translation map R, is defined by
R, (z) = zu. In [3], it is proved that every element of Aut(G, f) can be uniquely
represented as R, with u an idempotent and ¢ € Aut(G, ) satisfies [, 0] = I,
where I, is the inner automorphism of G, corresponding to u. The converse is
also true and so we have a complete description of automorphisms of Aut(G, f)
in terms of automorphisms of (G, -) and idempotents. Now, for any idempotent u

and i € Z,,_1, define _
§(i,u) = 0(w)0*(u) - - - 0% (u).

Note that for the case i = 0, we have 6(0,u) = d(n — 1,u) =e. If A € Aut(G, f)

and u = A(e), then we define a map ¢, : Gi, — G% by ¢, (i,z) = (4,25(3, u)).
Lemma 2.2. The map q, is an isomorphism.
Proof. We first assume that 7,5 # 0. Note that in G}, we have

(i) * (G,y) = (i + 4+ 1, fule, 0y, W7, )
1

— (i + L AL A (@), €, A (y), @
= (4] + LA (@) (AL (y)))).

Now, as we said before, A = R, such that ¢ € Aut(G) and [p, 8] = I,,. Therefore

(i,0) + (jry) = (04 + 1, Rup(e™ Ry ()0 (07 Ry (1))
=(i+j+ 1, Ru((zu")e0  p(yu™))).

Since [p, 0] = I,,, so we have pdt1p~! = (I,0)""!. But
(L.0)(2) = ub(u) -+ 0" (w)" (2)0(u) ™t - - O(u) " tu™
= ud(i,u)0" T (2)6 (i, u) " tut
Hence, we have
(i,2) % (joy) = (i +j + 1, Ry(zu™ ud (i,u)0 (yu™H)(i,u) " tur)
— (i + 1,200, w0 ()i, u) ).
Now, we are ready to show that ¢, is a homomorphism. First, note that
QU((i’x) * (]7 y)) = Qu(i +J7+ 1’$6(i7 u)9i+1<yu_1)(5(i,u)_l)
=(i+7+1,200i,u)0 " (yu™1)o(i,u) 16 + 5 + 1,u)).

On the other hand

qu(t,2) * qu(j,y) = (4, 20(i,u)) * (j, yo(j, u))
(i + 5 + 1,286, u)8™ (yo(j, u)))
(i +j + Lad(i,u)0" ()0 (3 (5, u)))-
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Hence, ¢, is a homomorphism, if and only if we have
0 (8(j,u) = 0" (w0, u) 63 + 5+ 1,u).
But, we have,
O+ (w16 (5, u) 180 + § 4+ 1,u) = 02 (w) - - 07 (0) = 07T (8(5, ).

The case i = 0 can be verified similarly, so ¢, is a homomorphism. It is easy to
see that also ¢, is a bijection and so we proved the lemma. O

Combining two isomorphisms ¢, and A}, we obtain an automorphism A* =
qu © A% € Aut(G}). Note that, we have

A (i, @) = (i, A(z)6(i,u)) = (0, A(x)) * (0, u)".
Lemma 2.3. The map A — A* is an embedding from Aut(G, f) into Aut(G%).

Proof. Let A1,Ay € Aut(G, f) and uv = A;(e) and v = Ay(e). Suppose also
w = A1(v) = (A1 0o Ay)(e). We have

(A1 o A2)* (i, x) = (4, A1 (A2(2))0 (i, w)).
On the other hand
AT(A3(1, @) = AT(3, A2(2)6(i,v)) = (4, A1 (A2 (2)0(4,v))6 (i, u)).
But we have

A1 (Ao (2)0(i,v)) = A (A (2)0(v) --- 0% (v)0" T (e) - -- 0" 2(e)e)
i

Note that we have
9i+1 . 971—2A1(e)5(i7 ’LL) _ 9i+1(u) - 9"—2(u)u9(u) C ei(u) =e,
because,

(n)

O(u) -0 ()0 (w) - 0" 2(u)Ar(e) = u A (f(e)) =utAL(e) =e.

Therefore we obtain

AT (A3 (i, ) = (2, A1 (Az(2))6 (i, w)),
and this shows that the map A — A* is a homomorphism. Now suppose A* = id.
Then A(2)d(i,u) = x for all x and i, so if we put x = e, then §(i,u) = u~" for all 4.
Assuming i = 1, we get 6(u) = u~! and so assuming i = 2, we obtain u~'u = u~1!,
hence u = e and consequently A = id. This completes the proof of the lemma. O
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Remember that we proved

Gy = (Zn-1xG)1,e) 2 L1 %G,
and this isomorphism is given by (i, z) = (1,e)~1(4,2). So,
o(i,r) = (n—2,e)(i,z) = (n+i—2,0"2(x)) = (i — 1,0 %(2)).
Now, for any A € Aut(G, f), define
a(A)=p oA 0.

Therefore a(A) is an automorphism of Z,_; x G and the map A — «(A) is an
embedding. We have

a(N)(i,z) =@ (i —1,A07(2)6(i — 1,u))
(Le)(i = L A(0™ (2))0(i — 1,u))
(

i, (0A0~1) (2)0(u=1)3 (i, ).

Since A = Ry, ¢, so (A0~ 1)(z) = (0p0~1)(2)0(u). Hence
a(A)(i,z) = (i, (090~ ") ()8 (i, u)).
On the other hand #pf~! = I 1y and hence
a(N)(i,z) = (i, u  o(2)ud(i, u)).
Summarizing, we obtain the following corollary:

Corollary 2.4. There is an embedding o : Aut(G, f) — Aut(Z,—1 x G), such that
a(N)(i,z) = (i, u  o(2)ud(i, u)).

Now, we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Suppose G = Ax G where A = (a) is a cyclic of order n—1.
Define an automorphism of G by 6(z) = aza™!, so 677! =id. Let

(G, [) = dery(G, ).

So, there is an embedding « : Aut(G, f) — Aut(G) such that

a(AN)(a',z) = (a',u p(z)ud(i,u)).

Since u is an idempotent, so f ((Z)) = u, and therefore

ub(u) - 0" (u) = u,
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which implies that

aua taPua=? - a" 2ua" "y = e.

Hence (au)"~! = 1. Similarly, 6(i,u) = (au)’a™", so for any ¢ € Aut(G) and for
any u € G, the hypotheses

(au)" ' =1, [p,0] =1,

imply that the map 4 ‘ o
(a’,z) — (a',u o(x)u(au)'a™)

is an automorphism of G. Clearly this is an embedding and hence the theorem is
proved. O

Example 2.5. Let £ = GF(q) be the Galois field of order ¢ and m > 1. Let
G = (E™,+) and suppose a : E™ — E™ is a linear map of order n — 1. Then
A = (a) acts naturally on G, so G = Ax G = Z,_; x E™. In this case § = o~
and for any u € ker(1 4+ a + -+ + a"~2) and any

v e Car, ()

we have [0,¢p] = 1 = I,. Note that we have u € ker(1 + a + --- + a"~2), iff
u = a(v) — v for some v € E™. This shows that for any such v and ¢, the map

(o', 2) = (o', p(z) + (@ —a71)(v))

is an automorphism of Z,_; x E™.
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