
Quasigroups and Related Systems 20 (2012), 275− 281

Polyadic groups and automorphisms

of cyclic extensions

Mohammad Shahryari

Abstract. We show that for any n-ary group (G, f), the group Aut(G, f) can be embedded in
Aut(Zn−1 n G) and so we can obtain a class of interesting automorphisms of cyclic extensions.

1. Introduction

Our notations in this article are standard and can be �nd in [2], for example.
Let (G, f) be an n-ary group. We know that, there is a binary operation "·"

on G, such that (G, ·) is an ordinary group, and further, there is a θ ∈ Aut(G, ·)
with an element b ∈ G, such that

(i) θ(b) = b, and θn−1(x) = bxb−1 for all x ∈ G,

(ii) f(xn
1 ) = x1θ(x2) · · · θn−1(xn)b.

So, some times, we denote (G, f) by the notation derθ,b(G, ·). If b = e, the identity
element of (G, ·), then we use the notation derθ(G, ·).

We associate another binary group to (G, f) which is called the universal cov-

ering group or Post's cover of (G, f). Let a be an arbitrary element of G and
suppose G∗

a = Zn−1 ×G. De�ne a binary operation on this set by

(i, x) ∗ (j, y) = (i + j + 1, f∗(x,
(i)
a , y,

(j)
a , a,

(i,j)
a )).

Here of course, i + j + 1 is computed modulo n − 1, and (i, j) = n − i − j − 3
modulo n− 1. The symbol f∗ indicates that f applies one or two times depending
on the values of i and j and a denotes the skew element of a. It is proved that
(see [4]), G∗

a is a binary group and the subset

R = {(n− 2, x) : x ∈ G}

is a normal subgroup such that G∗
a/R ∼= Zn−1. Further, if we identify G by the

subset
{(0, x) : x ∈ G},
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then G is a coset of R and it generates G∗
a. We also have

f(xn
1 ) = x1 ∗ x2 ∗ · · · ∗ xn.

It is not hard to see that for all a, b ∈ G, we have G∗
a
∼= G∗

b , so for simplicity, we
always, assume that a = e, the identity element of (G, ·).

Through this article, we assume that (G, f) = derθ(G, ·). So, we have θn−1 = id
and

f(xn
1 ) = x1θ(x2) · · · θn−2(xn−1)xn.

We also assume that e is the identity element of (G, ·). We will prove �rst the
following theorem on the structure of the Post's cover.

Theorem 1.1. (derθ(G, ·))∗e ∼= Zn−1nG, where Zn−1 acts on (G, ·) by i.x = θi(x).

Note that, we used a special case of this theorem in [6], to investigate represen-
tations of polyadic groups. The main idea of this article is almost the same as in
[6]. Our second goal is to obtain an embedding from Aut(G, f) to Aut(G∗

e). The
method we employ is the same as in [6]. For any i ∈ Zn−1 and u ∈ G, suppose
δ(i, u) = θ(u)θ2(u) . . . θi(u). We prove

Theorem 1.2. Let Λ ∈ Aut(G, f) and de�ne Λ∗ : G∗
e → G∗

e by

Λ∗(i, x) = (i,Λ(x)δ(i, u)),

where u = Λ(e). Then the map Λ 7→ Λ∗ is an embedding.

In [3], the structure of automorphisms of (G, f) is determined. If Λ ∈ Aut(G, f),

then we have Λ = Ruϕ, where u is an idempotent element, i.e. f(
(n)
u ) = u, Ru is

the right translation by u and ϕ is an ordinary automorphism of (G, ·) with the
property [ϕ, θ] = Iu, (the bracket denotes the commutator ϕθϕ−1θ−1 and Iu is
the inner automorphism corresponding to u). The converse is also true; if u and ϕ
satisfy above conditions, the Λ = Ruϕ is an automorphism of the polyadic group
(G, f). We will use this fact frequently through this article. The interested reader
should see [3] for a full description of homomorphisms between polyadic groups.

Combining Theorems 1.1 and 1.2, we obtain an embedding of Aut(G, f) into
Aut(Zn−1 n G). More precisely, we prove the following.

Theorem 1.3. Let Ĝ = A n G, with A = 〈a〉 cyclic of order n − 1 and let

θ(x) = axa−1. Then for any ϕ ∈ Aut(G) and u ∈ G, the hypotheses [ϕ, θ] = Iu

and (au)n−1 = 1 imply that the map

(ai, x) 7→ (ai, u−1ϕ(x)u(au)ia−i)

is an automorphism of Ĝ and these automorphisms are mutually distinct.
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2. Proofs

Proof of Theorem 1.1. Note that in G∗
e, we have

(i, x) ∗ (j, y) = (i + j + 1, f∗(x,
(i)
e , y,

(j)
e , e,

(i,j)
e ))

= (i + j + 1, xθ(e) · · · θi(e)θi+1(y)θi+2(e)
· · · θi+j+2(e)θi+j+3(e) · · · θn−2(e))

= (i + j + 1, xθi+1(y)θi+j+3(e)),

but, since e = e, so

(i, x) ∗ (j, y) = (i + j + 1, xθi+1(y)) = (i, x)(1, e)(j, y),

where the right hand side product is done in Zn−1 n G. Note that in general,
if (A, ·) is a group and a ∈ A, then we can de�ne a new binary operation on A
by x ◦ y = xay and together with this new operation, A is a group too, and so
we denote it by Aa = (A, ◦). We have A ∼= Aa and the isomorphism is given by
ϕ(x) = a−1x. Now, by this notation, we have

(derθ(G, ·))∗e = G∗
e = (Zn−1 n G)(1,e),

and hence (derθ(G, ·))∗e ∼= Zn−1 n G.

Now, let Λ ∈ Aut(G, f) and u = Λ(e). De�ne Λ∗e : G∗
e → G∗

u by Λ∗e(i, x) =
(i,Λ(x)).

Lemma 2.1. Λ∗e is an isomorphism.

Proof. Note that

Λ∗e((i, x) ∗ (j, y)) = Λ∗e(i + j + 1, xθi+1(y)) = (i + j + 1,Λ(xθi+1(y))).

On the other hand,

Λ∗e(i, x) ∗ Λ∗e(j, y) = (i,Λ(x)) ∗ (j, Λ(y))

= (i + j + 1, f∗(Λ(x),
(i)
u ,Λ(y),

(j)
u , u,

(i,j)
u )).

But f(u,
(n−1)

u ) = u, so Λ(f(v,
(n−1)

e )) = Λ(e), where Λ(v) = u. Therefore

f(v,
(n−1)

e ) = e and so v = e and hence u = Λ(e) = u. Now, we have

Λ∗e(i, x) ∗ Λ∗e(j, y) = (i + j + 1,Λ(f∗(x,
(i)
e , y,

(j)
e , e,

(i,j)
e ))) = (i + j + 1,Λ(xθi+1(y)))

= Λ∗e((i, x) ∗ (j, y)).

This shows that Λ∗e is an isomorphism.
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An element u ∈ G is said to be idempotent if f(
(n)
u ) = u. For an arbitrary

element u ∈ G, we remember that the right translation map Ru is de�ned by
Ru(x) = xu. In [3], it is proved that every element of Aut(G, f) can be uniquely
represented as Ruϕ with u an idempotent and ϕ ∈ Aut(G, ·) satis�es [ϕ, θ] = Iu,
where Iu is the inner automorphism of G, corresponding to u. The converse is
also true and so we have a complete description of automorphisms of Aut(G, f)
in terms of automorphisms of (G, ·) and idempotents. Now, for any idempotent u
and i ∈ Zn−1, de�ne

δ(i, u) = θ(u)θ2(u) · · · θi(u).

Note that for the case i = 0, we have δ(0, u) = δ(n − 1, u) = e. If Λ ∈ Aut(G, f)
and u = Λ(e), then we de�ne a map qu : G∗

u → G∗
e by qu(i, x) = (i, xδ(i, u)).

Lemma 2.2. The map qu is an isomorphism.

Proof. We �rst assume that i, j 6= 0. Note that in G∗
u, we have

(i, x) ∗ (j, y) = (i + j + 1, f∗(x,
(i)
u , y,

(j)
u , u,

(i,j)
u ))

= (i + j + 1,Λ(f∗(Λ−1(x),
(i)
e ,Λ−1(y),

(j)
e , e,

(i,j)
e )))

= (i + j + 1,Λ(Λ−1(x)θi+1(Λ−1(y)))).

Now, as we said before, Λ = Ruϕ such that ϕ ∈ Aut(G) and [ϕ, θ] = Iu. Therefore

(i, x) ∗ (j, y) = (i + j + 1, Ruϕ(ϕ−1R−1
u (x)θi+1(ϕ−1R−1

u (y))))
= (i + j + 1, Ru((xu−1)ϕθi+1ϕ(yu−1))).

Since [ϕ, θ] = Iu, so we have ϕθi+1ϕ−1 = (Iuθ)i+1. But

(Iuθ)i+1(z) = uθ(u) · · · θi(u)θi+1(z)θ(u)−1 · · · θ(u)−1u−1

= uδ(i, u)θi+1(z)δ(i, u)−1u−1.

Hence, we have

(i, x) ∗ (j, y) = (i + j + 1, Ru(xu−1uδ(i, u)θi+1(yu−1)δ(i, u)−1u−1))
= (i + j + 1, xδ(i, u)θi+1(yu−1)δ(i, u)−1).

Now, we are ready to show that qu is a homomorphism. First, note that

qu((i, x) ∗ (j, y)) = qu(i + j + 1, xδ(i, u)θi+1(yu−1)δ(i, u)−1)
= (i + j + 1, xδ(i, u)θi+1(yu−1)δ(i, u)−1δ(i + j + 1, u)).

On the other hand

qu(i, x) ∗ qu(j, y) = (i, xδ(i, u)) ∗ (j, yδ(j, u))
= (i + j + 1, xδ(i, u)θi+1(yδ(j, u)))
= (i + j + 1, xδ(i, u)θi+1(y)θi+1(δ(j, u))).
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Hence, qu is a homomorphism, if and only if we have

θi+1(δ(j, u)) = θi+1(u−1)δ(i, u)−1δ(i + j + 1, u).

But, we have,

θi+1(u−1)δ(i, u)−1δ(i + j + 1, u) = θi+2(u) · · · θi+j+1(u) = θi+1(δ(j, u)).

The case i = 0 can be veri�ed similarly, so qu is a homomorphism. It is easy to
see that also qu is a bijection and so we proved the lemma.

Combining two isomorphisms qu and Λ∗e, we obtain an automorphism Λ∗ =
qu ◦ Λ∗e ∈ Aut(G∗

e). Note that, we have

Λ∗(i, x) = (i, Λ(x)δ(i, u)) = (0,Λ(x)) ∗ (0, u)i.

Lemma 2.3. The map Λ 7→ Λ∗ is an embedding from Aut(G, f) into Aut(G∗
e).

Proof. Let Λ1,Λ2 ∈ Aut(G, f) and u = Λ1(e) and v = Λ2(e). Suppose also
w = Λ1(v) = (Λ1 ◦ Λ2)(e). We have

(Λ1 ◦ Λ2)∗(i, x) = (i, Λ1(Λ2(x))δ(i, w)).

On the other hand

Λ∗1(Λ
∗
2(i, x)) = Λ∗1(i,Λ2(x)δ(i, v)) = (i,Λ1(Λ2(x)δ(i, v))δ(i, u)).

But we have

Λ1(Λ2(x)δ(i, v)) = Λ1(Λ2(x)θ(v) · · · θi(v)θi+1(e) · · · θn−2(e)e)

= Λ1(f(Λ2(x),
(i)
v ,

(n−i−2)
e , e))

= f(Λ1(Λ2(x)),
(i)
w,

(n−i−2)
u ,Λ1(e))

= Λ1(Λ2(x))δ(i, w)θi+1(u) · · · θn−2(u)Λ1(e).

Note that we have

θi+1 · · · θn−2Λ1(e)δ(i, u) = θi+1(u) · · · θn−2(u)uθ(u) · · · θi(u) = e,

because,

θ(u) · · · θi(u)θi+1(u) · · · θn−2(u)Λ1(e) = u−1Λ1(f(
(n)
e )) = u−1Λ1(e) = e.

Therefore we obtain

Λ∗1(Λ
∗
2(i, x)) = (i, Λ1(Λ2(x))δ(i, w)),

and this shows that the map Λ 7→ Λ∗ is a homomorphism. Now suppose Λ∗ = id.
Then Λ(x)δ(i, u) = x for all x and i, so if we put x = e, then δ(i, u) = u−1 for all i.
Assuming i = 1, we get θ(u) = u−1 and so assuming i = 2, we obtain u−1u = u−1,
hence u = e and consequently Λ = id. This completes the proof of the lemma.
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Remember that we proved

G∗
e = (Zn−1 n G)(1,e)

∼= Zn−1 n G,

and this isomorphism is given by ϕ(i, x) = (1, e)−1(i, x). So,

ϕ(i, x) = (n− 2, e)(i, x) = (n + i− 2, θn−2(x)) = (i− 1, θn−2(x)).

Now, for any Λ ∈ Aut(G, f), de�ne

α(Λ) = ϕ−1 ◦ Λ∗ ◦ ϕ.

Therefore α(Λ) is an automorphism of Zn−1 n G and the map Λ 7→ α(Λ) is an
embedding. We have

α(Λ)(i, x) = ϕ−1(i− 1,Λ(θ−1(x))δ(i− 1, u))
= (1, e)(i− 1,Λ(θ−1(x))δ(i− 1, u))
= (i, (θΛθ−1)(x)θ(u−1)δ(i, u)).

Since Λ = Ruϕ, so (θΛθ−1)(x) = (θϕθ−1)(x)θ(u). Hence

α(Λ)(i, x) = (i, (θϕθ−1)(x)δ(i, u)).

On the other hand θϕθ−1 = I−1
u ϕ and hence

α(Λ)(i, x) = (i, u−1ϕ(x)uδ(i, u)).

Summarizing, we obtain the following corollary:

Corollary 2.4. There is an embedding α : Aut(G, f) → Aut(Zn−1 nG), such that

α(Λ)(i, x) = (i, u−1ϕ(x)uδ(i, u)).

Now, we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Suppose Ĝ = AnG where A = 〈a〉 is a cyclic of order n−1.
De�ne an automorphism of G by θ(x) = axa−1, so θn−1 = id. Let

(G, f) = derθ(G, ·).

So, there is an embedding α : Aut(G, f) → Aut(Ĝ) such that

α(Λ)(ai, x) = (ai, u−1ϕ(x)uδ(i, u)).

Since u is an idempotent, so f(
(n)
u ) = u, and therefore

uθ(u) · · · θn−1(u) = u,
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which implies that

aua−1a2ua−2 · · · an−2ua−(n−2)u = e.

Hence (au)n−1 = 1. Similarly, δ(i, u) = (au)ia−i, so for any ϕ ∈ Aut(G) and for
any u ∈ G, the hypotheses

(au)n−1 = 1, [ϕ, θ] = Iu

imply that the map
(ai, x) 7→ (ai, u−1ϕ(x)u(au)ia−i)

is an automorphism of Ĝ. Clearly this is an embedding and hence the theorem is
proved.

Example 2.5. Let E = GF (q) be the Galois �eld of order q and m > 1. Let
G = (Em,+) and suppose α : Em → Em is a linear map of order n − 1. Then
A = 〈α〉 acts naturally on G, so Ĝ = A n G ∼= Zn−1 n Em. In this case θ = α−1

and for any u ∈ ker(1 + α + · · ·+ αn−2) and any

ϕ ∈ CGLm(q)(α)

we have [θ, ϕ] = 1 = Iu. Note that we have u ∈ ker(1 + α + · · · + αn−2), i�
u = α(v)− v for some v ∈ Em. This shows that for any such v and ϕ, the map

(αi, x) 7→ (αi, ϕ(x) + (αi−1 − α−1)(v))

is an automorphism of Zn−1 n Em.

References

[1] W.A. Dudek and K. Glazek, Around the Hosszú-Gluskin Theorem for n-ary
groups, Discrete Math. 308 (2008), 4861− 4876.

[2] W.A. Dudek and M. Shahryari, Representation theory of polyadic groups, Al-
gebras and Representation Theory 15 (2012), 29− 51.

[3] H. Khodabandeh and M. Shahryari, On the Automorphisms and representa-

tions of polyadic groups, Commun. Algebra 40 (2012), 2199− 2212.
[4] J. Michalski, Covering k-groups of n-groups, Archivum Math. (Brno) 17 (1981),

207− 226.

[5] E.L. Post, Polyadic groups, Trans. Amer. Math. Soc. 48 (1940), 208− 350.

[6] M. Shahryari, Representations of �nite polyadic groups, Commun. Algebra 40
(2012), 1625− 1631.

Received June 7, 2012

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Tabriz,
Tabriz, Iran
E-mail: mshahryari@tabrizu.ac.ir


