
Quasigroups and Related Systems 21 (2013), 19− 28

A study of n-subracks

Guy R. Biyogmam

Abstract. In this paper, we introduce the notion of n-subracks (n > 2) and provide a char-
acterization that enables us to obtain several results on n-racks. We also de�ne a cohomology
theory on n-racks.

1. Introduction

The category of n-racks [2] has been introduced as a generalization of the category
of left distributive left quasigroups [9], or simply racks [6], and was shown to be
associated to the category of Leibniz n-algebras [5]. In the pursue of studying the
structure of this new category, we study in this paper the notion of n-subracks and
explore several classical examples such as the normalizer, the center of a n-rack,
and the components of a decomposable n-rack. In section 4, we provide several
properties of decomposable n-racks.

In [8], Fenn, Rourke and Sanderson introduced a cohomology theory for racks
which was modi�ed in [4] by Carter, Jelsovsky, Kamada, Landford and Saito to
obtain quandle cohomology, and several results have been recently established.
In section 5, we use these cohomology theories to de�ne cohomology theories on
n-racks and n-quandles.

Let us recall a few de�nitions.

A pointed rack (R, ◦, 1) is a set R with a binary operation ◦ and a speci�c
element 1 ∈ R such that the following conditions are satis�ed:

(R1) x ◦ (y ◦ z) = (x ◦ y) ◦ (x ◦ z).

(R2) For each x, y ∈ R, there exits a unique a ∈ R such that x ◦ a = y.

(R3) 1 ◦ x = x and x ◦ 1 = 1 for all x ∈ R.

A rack R is decomposable [1] if there are disjoints subracks X and Y of R such
that R = X ∪ Y. R is indecomposable if otherwise.
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2. n-racks

For the remaining of this paper, we assume n > 2, integer.

De�nition 2.1. [2] A n-rack (R, [. . .]) is a set R endowed with an n-ary operation
[. . .] : Rn −→ R such that

(NR1)
[
x1, . . . , xn−1, [y1, . . . , yn−1]

]
=

[
[x1, . . . , xn−1, y1], . . . , [x1, . . . , xn−1, yn]

]
(This is the left distributive property of n-racks.)

(NR2) For a1, . . . , an−1, b ∈ R, there exists a unique x ∈ R such that
[a1, . . . , an−1, x] = b.

If in addition there is a distinguish element 1 ∈ R, such that

(NR3) [1, . . . , 1, y] = y and [x1, . . . , xn−1, 1] = 1 for all x1, . . . , xn−1 ∈ R,

then (R, [. . .], 1) is said to be a pointed n-rack.

An n-rack in which [x1, . . . , xn−1, y] = y if xi = y for some i ∈ {1, . . . , n− 1},
is an n-quandle.

De�nition 2.2. A n-rack R is involutive if[
x1, . . . , xn−1, [x1, . . . , xn−1, y]

]
= y for all x1, . . . , xn−1, y ∈ R.

Note that an involutive n-quandle is an n-kei [2].
A n-rack R is trivial if it satis�es [x1, x2, . . . , xn−1, y] = y for all xi, y ∈ R.

For n = 2, one recovers involutive racks [1] and trivial racks [3].

De�nition 2.3. Let K be a ring and M a K-module. Then M endowed with the
n-ary operation [. . .] de�ned by

[x1, . . . , xn] = q1x1 + q2x2 + . . . + qnxn with

n∑
i=1

qi = 1

is a n-rack called an a�ne n-rack associated to the K-module M.

Example 2.4. A Z4-module M endowed with the operation [. . .]M de�ned by

[x1, . . . , xn]M = 2x1 + 2x2 + . . . + 2xn−1 + xn

is an a�ne n-rack if n is odd.

Proposition 2.5. [2] Any pointed rack (R, ◦, 1) has a pointed n-rack structure

under the n-ary operation de�ned by

[x1, x2, . . . , xn] = x1 ◦ (x2 ◦ (. . . (xn−1 ◦ xn) . . .)).



A study of n-subracks 21

This process determines a functor G : prack −→ nprack, which has as left
adjoint, the functor G′ : nprack −→ prack de�ned as follows:

Given a pointed n-rack (R, [. . .], 1), then Rn−1 endowed with the binary ope-
ration
(x1, . . . , xn−1) ◦ (y1, . . . , yn−1) =

(
[x1, . . . , xn−1, y1], . . . , [x1, . . . , xn−1, yn−1]

)
(2.1)

is a rack pointed at (1, 1, . . . , 1).

Proposition 2.6. Let m,n be nonnegative integers with m = 2n − 1. Then any

pointed n-rack (R, [. . .], 1) has a pointed m-rack structure under the operation 〈. . .〉
de�ned by

〈x1, . . . , xm〉 =
[
x1, . . . , xn−1, [xn, . . . , xm]

]
.

Proof. To show (NR1), let {xi}i=1,...,m−1, {yi}i=1,...,m ⊆ R. We have by de�nition

〈x1, . . . , xm−1, 〈y1, . . . , ym〉〉 = 〈x1, . . . , xm−1, [y1, . . . , yn−1, [yn, . . . , ym]]〉

=
[
x1, . . . , xn−1, [xn, . . . , xm−1, [y1, . . . , yn−1, [yn, . . . , ym]]]

]
,

then use consecutively (NR1) on (R, [. . .], 1) from inside out to obtain

= 〈[x1, . . . , xn−1, [xn, . . . , xm−1, y1]], . . . , [x1, . . . , xn−1, [xn, . . . , xm−1, ym]]〉

= 〈〈x1, . . . , xm−1, y1〉 . . . , 〈x1, . . . , xm−1, ym〉〉.

To show (NR2), let {xi}i=1,...,m−1 ⊆ R and y ∈ R. Then by (NR2) on
(R, [. . .], 1), there are unique t, z ∈ R such that y = [x1, . . . , xn−1, t] and t =
[xn, . . . , xm−1, z], i.e.,

y =
[
x1, . . . , xn−1, [xn, . . . , xm−1, z]

]
= 〈x1, . . . , xm−1, z〉.

To show (NR3), we have by (NR3) on (R, [. . .], 1),

〈1, . . . , 1, y〉 =
[
1, . . . , 1, [1, . . . , 1, y]

]
= [1, . . . , 1, y] = y for all y ∈ R,

and for all {xi}i=1,...,xm−1 ⊆ R,

〈x1, . . . , xm−1, 1〉 =
[
x1, . . . , xn−1, [xn, . . . , xm−1, 1]

]
= [x1, . . . , xn−1, 1] = 1,

which completes the proof.

3. n-subracks

Let (R, [. . .]) be a n-rack (resp. pointed n-rack). A nonempty subset S ⊆ R is
called a n-semisubrack of R if S is closed under the n-rack operation. (S, [. . .]) is
called a n-subrack of R if it has a n-rack structure (resp. pointed n-rack structure).

In particular, {1} and R are n-subracks of R.
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Example 3.1. Let S be a Z4-submodule of M (the n-rack of Example 2.4) annihi-
lated by 2. Then S has a trivial n-rack structure when endowed with the operation
[. . .] of M. Therefore S is a n-subrack of M when n is odd.

The following theorem provides a characterization of n-subracks in a pointed
n-rack.

Theorem 3.2. A n-semisubrack S of a pointed n-rack (R, [. . .], 1) is a n-subrack
if and only if for all b ∈ R, [a1, a2, . . . , an−1, b] ∈ S and {ai}i=1,...,n−1 ⊆ S implies

b ∈ S.

Proof. Assume that S is a n-subrack and let {ai}i=1,...,n−1 ⊆ S and b ∈ R with
[a1, . . . , an−1, b] ∈ S. Then by (NR2), there is a unique u ∈ S with [a1, . . . , an−1, b]
= [a1, a2, . . . , an−1, u]. Thus b = u ∈ S by uniqueness. For the converse, it is
enough to establish (NR2) for the n-semisubrack S. Let a1, a2, . . . , an−1, x ∈ S ⊆
R. Then there is a unique b ∈ R with x = [a1, a2, . . . , an−1, b], and thus b ∈ S by
hypothesis.

Proposition 3.3. Let R, R′ be pointed n-racks and φ : R −→ R′ be a homomor-

phism. Let K = {x ∈ R : φ(x) = 1R′} be the kernel of φ. Then K and I = φ(R)
are n-subracks of R and R′ respectively.

Proof. φ(1R) = 1R′ . So 1R ∈ K and 1R′ ∈ I. Let {ai}i=1,...,n ⊆ K. Then
[a1, . . . , an]R ∈ K since φ([a1, . . . , an]R) = [φ(a1), . . . , φ(an)]R′ = [1R′ , . . . , 1R′ ]R′

= 1R′ . Now let b ∈ R and {ai}i=1,...,n−1 ⊆ K with [a1, . . . , an−1, b]R ∈ K. Then

φ(b) = [1R′ , . . . , 1R′ , φ(b)]R′ = [φ(a1), . . . , φ(an−1), φ(b)]R′

= φ([a1, . . . , an−1, b]R) = 1R′ .

Thus b ∈ K. Hence K is a n-subrack of R by Theorem 3.2. To show that I is an n-
subrack, notice that [φ(x1), . . . , φ(xn))]R′ = φ([x1, . . . , xn]R) for all {xi}i=1,...,n ⊆
R. Now let y ∈ R′ such that [φ(x1), . . . , φ(xn−1), y]R′ = φ(d) for some d ∈ R.
We have by (NR2) on R that [x1, . . . , xn−1, c]R = d for some unique c ∈ R. So
[φ(x1), . . . , φ(xn−1), φ(c)]R′ = φ(d), and thus y = φ(c) by uniqueness. Hence I is
a n-subrack of R′ by Theorem 3.2.

Proposition 3.4. Every pointed n-rack has a trivial n-subrack.

Proof. Let R be a pointed n-rack and consider the subset

Z(R) =
{
a ∈ R | [x1, . . . , xn−1, a] = a, ∀{xi}i=1,...,n−1 ⊆ R

}
.

Clearly, 1 ∈ Z(R) by (NR3). Let {xi}i=1,...,n−1 ⊆ R and {ai}i=1,...,n ⊆ Z(R).
Then by (NR1),

[x1, . . . , xn−1, [a1, . . . , an]]=[[x1, . . . , xn−1, a1], . . . , [x1, . . . , xn−1, an]]=[a1, . . . , an].
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Now, for y ∈ R such that [a1, . . . , an−1, y] ∈ Z(R), we have

[a1, . . . , an−1, y] =
[
x1, . . . , xn−1, [a1, . . . , an−1, y]

]
=

[
[x1, . . . , xn−1, a1], . . . , [x1, . . . , xn−1, an−1], [x1, . . . , xn−1, y]

]
=

[
a1, . . . , an−1, [x1, . . . , xn−1, y]

]
.

By uniqueness, [x1, . . . , xn−1, y] = y and thus y ∈ Z(R). The result follows by
Theorem 3.2.

De�nition 3.5. The n-subrack Z(R) is called the center of R.

Proposition 3.6. For every pointed n-rack, there is an involutive subrack of Rn−1.

Proof. Recall by Proposition 2.5 that Rn−1 has a pointed rack structure and denote
the operation ◦ by [−,−]. Now consider the subset

IR =
{
(a1, a2, . . . , an−1) ∈ Rn−1 | [a1, . . . , an−1, [a1, . . . , an−1, y]] = y, ∀y ∈ R

}
.

Clearly, (1, . . . , 1) ∈ IR by (NR3).
Now let a = (a1, . . . , an−1), b = (b1, . . . , bn−1) ∈ IR and x = (x1, . . . , xn−1) ∈

Rn−1. Then [
[a, b], [[a, b], x]

]
=

[
[a, b], [[a, b], [a, [a, x]]]

]
=

[
[a, b], [a, [b, [a, x]]]

]
=

[
a, [b, [b, [a, x]]]

]
=

[
a, [a, x]

]
= x.

So IR is closed under the rack operation. Moreover, this implies that for a =
(a1, . . . , an−1) ∈ IR and y = (y1, . . . , yn−1) ∈ Rn−1, we have[

a, [a, y]
]

=
[
(a1, . . . , an−1), [(a1, . . . , an−1), (y1, . . . , yn−1)]

]
=

[
(a1, . . . , an−1),

(
[a1, . . . , an−1, y1], . . . , [a1, . . . , an−1, yn−1]

)]
=

([
a1, . . . , an−1, [a1, . . . , an−1, y1]

]
, . . . ,

[
a1, . . . , an−1, [a1, . . . , an−1, yn−1]

])
= (y1, y2, . . . , yn−1) = y.

The result follows by Theorem 3.2.

Proposition 3.7. Let S be a n-semisubrack of a pointed n-rack R. Let

N(S) =
{
a ∈ R | [u1, . . . , un−1, a] ∈ S, ∀ {ui}i=1,...,n−1 ⊆ S

}
.

Then

(1) 1 ∈ S i� 1 ∈ N(S).

(2) N(S) ⊆ J for any n-subrack J of R containing S as a n-semisubrack.
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(3) S ⊆ N(S). The equality holds (thus N(R) is a n-subrack of R) if S is a

n-subrack of R.

Proof. (1). By (NR3), 1 = [u1, . . . , un−1, 1] for all {ui}i=1,...,n−1 ⊆ S. Thus 1 ∈ S
i� 1 ∈ N(S).

(2). Let J be a n-subrack of R containing S as a n-semisubrack, and let a ∈
N(S). Then [u1, . . . , un−1, a] ∈ S ⊆ J, for all {ui}i=1,...,n−1 ⊆ S ⊆ J. This implies
that a ∈ J as J is a n-subrack. Hence N(S) ⊆ J.

(3). It is clear that S ⊆ N(S) as S is closed under the n-rack operation. Now
let {ai}i=1,...,n ⊆ N(S). Then by (NR1) on S,[

u1, . . . , un−1, [a1, . . . , an]
]

=
[
[u1, . . . , un−1, a1], . . . , [u1, . . . , un−1, an]

]
∈ S

for all {ui}i=1,...,n−1 ⊆ S. So [a1, . . . , an] ∈ N(S) and thus N(S) is closed under
the n-rack operation. In addition, for y ∈ R such that [a1, . . . , an−1, y] ∈ N(S),
we have [u1, . . . , un−1, [a1, . . . , an−1, y]] ∈ S, i.e.,[

[u1, . . . , un−1, a1], . . . , [u1, . . . , un−1, an−1], [u1, . . . , un−1, y]
]
∈ S.

So [u1, . . . , un−1, y] ∈ S if S is a n-subrack, and thus y ∈ N(S). Hence N(S) is a
n-subrack of R.

N(S) is called normalizer of S. The right normalizer of the n-semisubrack S
is dually de�ned by

Nr(S) = {a ∈ R | [a, u1, . . . , un−1] ⊆ S, for all {ui}i=1...,n−1 ⊆ S}

and does not appear to be of interest for left n-racks. However Nr(S) satis�es the
same properties above for right n-racks.

4. Decomposition of n-racks

In this section we assume that the n-rack R is not pointed.

Let nAut(R) be the set of all automorphisms of the n-rack R, i.e., bijective
maps ξ : R −→ R such that ξ([x1, . . . , xn]) = [ξ(x1), . . . , ξ(xn)].

It is not di�cult to see that for all x1, . . . , xn−1 ∈ R the map

φ(x1, ..., xn−1)(y) = [x1, ..., xn−1, y]

is an automorphism of R. So, we can consider the map

φ : Rn−1 −→ nAut(R) such that φ : (x1, . . . , xn−1) 7→ φ(x1, . . . , xn−1).

If φ is injective, then R is called faithful.

De�nition 4.1. A n-rack R is decomposable if there are two disjoint n-subracks
of R such that R = X1 ∪X2.
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Proposition 4.2. If R is a decomposable n-rack, then the following statements

are true:

(1) [X1, . . . , X1, X2] ⊆ X2, (4.1)

(2) (X1)n−1 and (X2)n−1 are subracks of the rack Rn−1 satisfying

[(X1)n−1, (X2)n−1]Rn−1 ⊆ (X2)n−1 and [(X2)n−1, (X1)n−1]Rn−1 ⊆ (X1)n−1,

(3) φ((X1)n−1) ∈ nAut(X2) and φ((X2)n−1) ∈ nAut(X1).

Proof. (1). Let {xi}i=1,...,n−1 ⊆ X1 and y ∈ X2 with [x1 . . . , xn−1, y] /∈ X2, i.e.,
[x1, . . . , xn−1, y] ∈ X1. Then by Theorem 3.3, y ∈ X1 as X1 is a n-subrack, and
thus y ∈ X1 ∩X2. A contradiction.

(2). Recall that the rack operation on Rn−1 is given by the equality (2.1). So
(X1)n−1 is closed under this operation and satis�es (R2) as X1 is a n-subrack of
R. Moreover, it is clear by (4.1) that each coordinate of the right hand side of
the equality above is in X2 for {xi}i=1,...,n−1 ⊆ X1 and {yi}i=1,...,n−1 ⊆ X2. Thus
[(X1)n−1, (X2)n−1]Rn−1 ⊆ (X2)n−1. The other inclusion is obtained similarly.

(3). Let {xi}i=1,...,n−1 ⊆ X1. The restriction of the map φ(x1, . . . , xn−1) to X2

together with (4.1) completes the proof. The proof that φ((X2)n−1) ∈ nAut(X1)
is similar.

Proposition 4.3. If R is a decomposable rack, then R is decomposable as a n-rack
for all integer n > 2.

Proof. Let n > 2 (integer), and R = X1∪X2 be a decomposition of the rack (R, ◦).
It is enough to show that X1 and X2 are n-subracks. Indeed, for {xi}i=1,...,n from
X1, we have, by Proposition 2.5, [x1, x2, . . . , xn] = x1(x2(. . . (xn−1◦xn) . . .)) ∈ X1

as X1 is closed under ◦. Also for y ∈ X1, there is by (R2) a unique t1 ∈ X1 with
y = x1 ◦ t1. Repeating the process, there exists uniquely t2, t3, . . . , tn−1, z ∈ X1

with ti = xi+1 ◦ ti+1 and tn−2 = xn−1 ◦ z such that

y = x1 ◦ t1 = x1 ◦ (x2 ◦ t2) = . . . = x1 ◦ (x2(. . . (xn−1 ◦z) . . .)) = [x1, x2, . . . xn−1, z].

Hence X1 is a n-subrack. The proof that X2 is a n-subrack is similar.

Proposition 4.4. If R is a decomposable n-rack, then R is decomposable as a

(2n− 1)-rack.

Proof. The proof is similar to the proof of Proposition 4.3 and follows by Propo-
sition 2.6.

5. A homology theory on n-racks

Recall that for a rack (X, ◦), one de�nes (see [4] for the right rack version) the rack
homology HR

∗ (X) of X as the homology of the chain complex {CR
k (X), ∂k} where



26 G. R. Biyogmam

CR
k (X) is the free abelian group generated by k-uples (x1, x2, . . . , xk) of elements

of X and the boundary maps ∂k : CR
k (X) −→ CR

k−1(X) are de�ned by

∂k(x1, x2, . . . , xk) =∑k
i=2(−1)i[(x1, . . . , xi−1, x̂i, xi+1, . . . , xk)− (xi ◦x1, . . . , xi ◦xi−1, x̂i, xi+1, . . . , xk)]

for k > 2 and ∂k = 0 for k 6 1, where x̂i means that xi is deleted. If X is a
quandle, the subgroups CD

k (X) of CR
k (X) generated by k-tuples (x1, x2, . . . , xk)

with xi = xi+1 for some i, 1 6 i < k form a subcomplex CD
∗ (X) of CR

∗ (X) whose
homology HD

∗ (X) is called the degeneration homology of X. The homology HQ
∗ (X)

of the quotient complex {CQ
k (X) = CR

k (X)/CD
k (X), ∂k} is called the quandle

homology of X.

Lemma 5.1. Let X be a n-rack. Then Xn−1 has a rack structure. Xn−1 is a

quandle if X is a n-quandle.

Proof. Endow Xn−1 with the binary operation

(x1, . . . , xn−1)◦(y1, . . . yn−1) = ([x1, . . . , xn−1, y1], . . . , [x1, . . . , xn−1, yn−1]).

We de�ne the chain complexes nCR
∗ (X ) := CR

∗ (Xn−1) if X is an n-rack,

nCD
∗ (X ) := CD

∗ (Xn−1) and nCQ
∗ (X ) := CQ

∗ (Xn−1) if X is a n-quandle.

De�nition 5.2. Let X be an n-rack. The kth n-rack homology group of X with
trivial coe�cients is de�ned by

nHR
k (X ) = Hk(nCR

∗ (X )).

De�nition 5.3. Let X be a n-quandle.

1. The kth n-degeneration homology group of X with trivial coe�cients is de�ned
by

nHD
k (X ) = Hk(nCD

∗ (X )).

2. The kth n-quandle homology group of X with trivial coe�cients is de�ned by

nHQ
k (X ) = Hk(nCQ

∗ (X )).

De�nition 5.4. Let A be a abelian group, we de�ne the chain complexes

nCW
∗ (X ;A) = nCW

∗ (X )⊗A, ∂ = ∂ ⊗ id with W = D,R,Q.

1. The kth n-rack homology group of X with coe�cients in A is de�ned by

nHR
k (X ;A) = Hk(nCR

∗ (X ;A)).

2. The kth n-degenerate homology group of X with coe�cients in A is de�ned by

nHD
k (X ;A) = Hk(nCD

∗ (X ;A)).

3. The kth n-quandle homology group of X with coe�cients in A is de�ned by

nHQ
k (X ;A) = Hk(nCQ

∗ (X ;A)).
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One de�nes the cohomology theory of n-racks and n-quandles by duality. Note
that for n = 2, one recovers the homology and cohomology theories de�ned by
Carter, Jelsovsky, Kamada, Landford and Saito [4].

Proposition 5.5. Let X be a n-quandle and S ⊂ X a n-subquandle. The follow-

ing diagram of long exact sequences commutes:

nHD
k (S) −−−−→ nHR

k (S) −−−−→ nHQ
k (S) −−−−→ nHD

k+1(S)y y y y
nHD

k (X ) −−−−→ nHR
k (X ) −−−−→ nHQ

k (X ) −−−−→ nHD
k+1(X )y y y y

nHD
k (XS) −−−−→ nHR

k (XS) −−−−→ nHQ
k (XS) −−−−→ nHD

k+1(XS)

where nHW
k (XS) stands for the homology of the complex

{nCW
k (XS) =n CW

k (X )/nCW
k (S), ∂k}, W = R,D, Q.

Proof. The diagram above is induced by the following commutative diagram of
short exact sequences:

0 0 0y y y
0 −−−−→ nCD

∗ (S) −−−−→ nCR
∗ (S) −−−−→ nCQ

∗ (S) −−−−→ 0y y y
0 −−−−→ nCD

∗ (X ) −−−−→ nCR
∗ (X ) −−−−→ nCQ

∗ (X ) −−−−→ 0y y y
0 −−−−→ nCD

∗ (XS) −−−−→ nCR
∗ (XS) −−−−→ nCQ

∗ (XS) −−−−→ 0y y y
0 0 0

Remark. Since Xn−1 carries most of the properties of X , several results estab-
lished on racks are valid on n-racks. For instance; if X is �nite, then Xn−1 is also
�nite. Cohomology of �nite racks were studied by Etingof and Graña in [7].

Proposition 5.6. Let X be a trivial n-rack. Then we have the following isomor-

phisms:

nHR
∗ (X ) ∼=

(
ZXn−1

)∗
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Proof. It is easy to check with Lemma 2.1 that Xn−1 is a trivial rack. That all
chains are cycles follows by de�nition.
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