A study of *n*-subracks

Guy R. Biyogmam

Abstract. In this paper, we introduce the notion of *n*-subracks (n > 2) and provide a characterization that enables us to obtain several results on *n*-racks. We also define a cohomology theory on *n*-racks.

1. Introduction

The category of *n*-racks [2] has been introduced as a generalization of the category of left distributive left quasigroups [9], or simply racks [6], and was shown to be associated to the category of Leibniz *n*-algebras [5]. In the pursue of studying the structure of this new category, we study in this paper the notion of *n*-subracks and explore several classical examples such as the normalizer, the center of a *n*-rack, and the components of a decomposable *n*-rack. In section 4, we provide several properties of decomposable *n*-racks.

In [8], Fenn, Rourke and Sanderson introduced a cohomology theory for racks which was modified in [4] by Carter, Jelsovsky, Kamada, Landford and Saito to obtain quandle cohomology, and several results have been recently established. In section 5, we use these cohomology theories to define cohomology theories on n-racks and n-quandles.

Let us recall a few definitions.

A pointed rack $(R, \circ, 1)$ is a set R with a binary operation \circ and a specific element $1 \in R$ such that the following conditions are satisfied:

- (R1) $x \circ (y \circ z) = (x \circ y) \circ (x \circ z).$
- (R2) For each $x, y \in R$, there exits a unique $a \in R$ such that $x \circ a = y$.

(R3) $1 \circ x = x$ and $x \circ 1 = 1$ for all $x \in R$.

A rack R is decomposable [1] if there are disjoints subracks X and Y of R such that $R = X \cup Y$. R is indecomposable if otherwise.

²⁰¹⁰ Mathematics Subject Classification: 17AXX, 18E10, 18G60 Keywords: *n*-racks, racks, *n*-quandles, *n*-rack cohomology.

2. *n*-racks

For the remaining of this paper, we assume $n \ge 2$, integer.

Definition 2.1. [2] A *n*-rack (R, [...]) is a set R endowed with an *n*-ary operation $[\ldots]: R^n \longrightarrow R$ such that

- (NR1) $[x_1, \ldots, x_{n-1}, [y_1, \ldots, y_{n-1}]] = [[x_1, \ldots, x_{n-1}, y_1], \ldots, [x_1, \ldots, x_{n-1}, y_n]]$ (This is the *left distributive property* of *n*-racks.)
- (NR2) For $a_1, \ldots, a_{n-1}, b \in R$, there exists a unique $x \in R$ such that $[a_1, \ldots, a_{n-1}, x] = b$.

If in addition there is a distinguish element $1 \in R$, such that

(NR3)
$$[1, \ldots, 1, y] = y$$
 and $[x_1, \ldots, x_{n-1}, 1] = 1$ for all $x_1, \ldots, x_{n-1} \in R$,

then $(R, [\ldots], 1)$ is said to be a *pointed n-rack*.

An *n*-rack in which $[x_1, \ldots, x_{n-1}, y] = y$ if $x_i = y$ for some $i \in \{1, \ldots, n-1\}$, is an *n*-quandle.

Definition 2.2. A n-rack R is *involutive* if

 $[x_1, \ldots, x_{n-1}, [x_1, \ldots, x_{n-1}, y]] = y$ for all $x_1, \ldots, x_{n-1}, y \in R$.

Note that an involutive n-quandle is an n-kei [2].

A *n*-rack *R* is trivial if it satisfies $[x_1, x_2, \ldots, x_{n-1}, y] = y$ for all $x_i, y \in R$.

For n = 2, one recovers involutive racks [1] and trivial racks [3].

Definition 2.3. Let K be a ring and M a K-module. Then M endowed with the n-ary operation $[\ldots]$ defined by

$$[x_1, \dots, x_n] = q_1 x_1 + q_2 x_2 + \dots + q_n x_n$$
 with $\sum_{i=1}^n q_i = 1$

is a n-rack called an *affine* n-rack associated to the K-module M.

Example 2.4. A \mathbb{Z}_4 -module *M* endowed with the operation $[\ldots]_M$ defined by

$$[x_1, \dots, x_n]_M = 2x_1 + 2x_2 + \dots + 2x_{n-1} + x_n$$

is an affine n-rack if n is odd.

Proposition 2.5. [2] Any pointed rack $(R, \circ, 1)$ has a pointed n-rack structure under the n-ary operation defined by

$$[x_1, x_2, \dots, x_n] = x_1 \circ (x_2 \circ (\dots (x_{n-1} \circ x_n) \dots)).$$

This process determines a functor \mathfrak{G} : $prack \longrightarrow {}_n prack$, which has as left adjoint, the functor $\mathfrak{G}': {}_n prack \longrightarrow prack$ defined as follows:

Given a pointed *n*-rack (R, [...], 1), then R^{n-1} endowed with the binary operation

 $(x_1, \ldots, x_{n-1}) \circ (y_1, \ldots, y_{n-1}) = ([x_1, \ldots, x_{n-1}, y_1], \ldots, [x_1, \ldots, x_{n-1}, y_{n-1}])$ (2.1) is a rack pointed at $(1, 1, \ldots, 1)$.

Proposition 2.6. Let m, n be nonnegative integers with m = 2n - 1. Then any pointed n-rack $(R, [\ldots], 1)$ has a pointed m-rack structure under the operation $\langle \ldots \rangle$ defined by

$$\langle x_1,\ldots,x_m\rangle = [x_1,\ldots,x_{n-1},[x_n,\ldots,x_m]].$$

Proof. To show (NR1), let $\{x_i\}_{i=1,\dots,m-1}, \{y_i\}_{i=1,\dots,m} \subseteq R$. We have by definition

$$\langle x_1, \dots, x_{m-1}, \langle y_1, \dots, y_m \rangle \rangle = \langle x_1, \dots, x_{m-1}, [y_1, \dots, y_{n-1}, [y_n, \dots, y_m]] \rangle$$

$$= [x_1, \dots, x_{n-1}, [x_n, \dots, x_{m-1}, [y_1, \dots, y_{n-1}, [y_n, \dots, y_m]]]]],$$

then use consecutively (NR1) on (R, [...], 1) from inside out to obtain

$$= \langle [x_1, \dots, x_{n-1}, [x_n, \dots, x_{m-1}, y_1]], \dots, [x_1, \dots, x_{n-1}, [x_n, \dots, x_{m-1}, y_m]] \rangle$$
$$= \langle \langle x_1, \dots, x_{m-1}, y_1 \rangle \dots, \langle x_1, \dots, x_{m-1}, y_m \rangle \rangle.$$

To show (NR2), let $\{x_i\}_{i=1,\ldots,m-1} \subseteq R$ and $y \in R$. Then by (NR2) on $(R, [\ldots], 1)$, there are unique $t, z \in R$ such that $y = [x_1, \ldots, x_{n-1}, t]$ and $t = [x_n, \ldots, x_{m-1}, z]$, i.e.,

$$y = [x_1, \dots, x_{n-1}, [x_n, \dots, x_{m-1}, z]] = \langle x_1, \dots, x_{m-1}, z \rangle.$$

To show (NR3), we have by (NR3) on (R, [...], 1),

$$\langle 1, \dots, 1, y \rangle = [1, \dots, 1, [1, \dots, 1, y]] = [1, \dots, 1, y] = y$$
 for all $y \in R$,

and for all $\{x_i\}_{i=1,\ldots,x_{m-1}} \subseteq R$,

$$\langle x_1, \dots, x_{m-1}, 1 \rangle = [x_1, \dots, x_{n-1}, [x_n, \dots, x_{m-1}, 1]] = [x_1, \dots, x_{n-1}, 1] = 1,$$

which completes the proof.

3. *n*-subracks

Let $(R, [\ldots])$ be a *n*-rack (resp. pointed *n*-rack). A nonempty subset $S \subseteq R$ is called a *n*-semisubrack of R if S is closed under the *n*-rack operation. $(S, [\ldots])$ is called a *n*-subrack of R if it has a *n*-rack structure (resp. pointed *n*-rack structure).

In particular, $\{1\}$ and R are n-subracks of R.

Example 3.1. Let S be a \mathbb{Z}_4 -submodule of M (the *n*-rack of Example 2.4) annihilated by 2. Then S has a trivial *n*-rack structure when endowed with the operation $[\ldots]$ of M. Therefore S is a *n*-subrack of M when n is odd.

The following theorem provides a characterization of n-subracks in a pointed n-rack.

Theorem 3.2. A n-semisubrack S of a pointed n-rack (R, [...], 1) is a n-subrack if and only if for all $b \in R$, $[a_1, a_2, ..., a_{n-1}, b] \in S$ and $\{a_i\}_{i=1,...,n-1} \subseteq S$ implies $b \in S$.

Proof. Assume that S is a n-subrack and let $\{a_i\}_{i=1,\ldots,n-1} \subseteq S$ and $b \in R$ with $[a_1,\ldots,a_{n-1},b] \in S$. Then by (NR2), there is a unique $u \in S$ with $[a_1,\ldots,a_{n-1},b] = [a_1,a_2,\ldots,a_{n-1},u]$. Thus $b = u \in S$ by uniqueness. For the converse, it is enough to establish (NR2) for the n-semisubrack S. Let $a_1, a_2, \ldots, a_{n-1}, x \in S \subseteq R$. Then there is a unique $b \in R$ with $x = [a_1, a_2, \ldots, a_{n-1}, b]$, and thus $b \in S$ by hypothesis.

Proposition 3.3. Let R, R' be pointed n-racks and $\phi : R \longrightarrow R'$ be a homomorphism. Let $K = \{x \in R : \phi(x) = 1_{R'}\}$ be the kernel of ϕ . Then K and $I = \phi(R)$ are n-subracks of R and R' respectively.

Proof. $\phi(1_R) = 1_{R'}$. So $1_R \in K$ and $1_{R'} \in I$. Let $\{a_i\}_{i=1,...,n} \subseteq K$. Then $[a_1, \ldots, a_n]_R \in K$ since $\phi([a_1, \ldots, a_n]_R) = [\phi(a_1), \ldots, \phi(a_n)]_{R'} = [1_{R'}, \ldots, 1_{R'}]_{R'} = 1_{R'}$. Now let $b \in R$ and $\{a_i\}_{i=1,...,n-1} \subseteq K$ with $[a_1, \ldots, a_{n-1}, b]_R \in K$. Then

$$\phi(b) = [1_{R'}, \dots, 1_{R'}, \phi(b)]_{R'} = [\phi(a_1), \dots, \phi(a_{n-1}), \phi(b)]_R$$
$$= \phi([a_1, \dots, a_{n-1}, b]_R) = 1_{R'}.$$

Thus $b \in K$. Hence K is a *n*-subrack of R by Theorem 3.2. To show that I is an *n*-subrack, notice that $[\phi(x_1), \ldots, \phi(x_n))]_{R'} = \phi([x_1, \ldots, x_n]_R)$ for all $\{x_i\}_{i=1,\ldots,n} \subseteq R$. Now let $y \in R'$ such that $[\phi(x_1), \ldots, \phi(x_{n-1}), y]_{R'} = \phi(d)$ for some $d \in R$. We have by (NR2) on R that $[x_1, \ldots, x_{n-1}, c]_R = d$ for some unique $c \in R$. So $[\phi(x_1), \ldots, \phi(x_{n-1}), \phi(c)]_{R'} = \phi(d)$, and thus $y = \phi(c)$ by uniqueness. Hence I is a *n*-subrack of R' by Theorem 3.2.

Proposition 3.4. Every pointed n-rack has a trivial n-subrack.

Proof. Let R be a pointed n-rack and consider the subset

 $Z(R) = \{ a \in R \mid [x_1, \dots, x_{n-1}, a] = a, \forall \{x_i\}_{i=1,\dots,n-1} \subseteq R \}.$

Clearly, $1 \in Z(R)$ by (NR3). Let $\{x_i\}_{i=1,\dots,n-1} \subseteq R$ and $\{a_i\}_{i=1,\dots,n} \subseteq Z(R)$. Then by (NR1),

 $[x_1, \ldots, x_{n-1}, [a_1, \ldots, a_n]] = [[x_1, \ldots, x_{n-1}, a_1], \ldots, [x_1, \ldots, x_{n-1}, a_n]] = [a_1, \ldots, a_n].$

Now, for $y \in R$ such that $[a_1, \ldots, a_{n-1}, y] \in Z(R)$, we have

$$[a_1, \dots, a_{n-1}, y] = [x_1, \dots, x_{n-1}, [a_1, \dots, a_{n-1}, y]]$$

= $[[x_1, \dots, x_{n-1}, a_1], \dots, [x_1, \dots, x_{n-1}, a_{n-1}], [x_1, \dots, x_{n-1}, y]]$
= $[a_1, \dots, a_{n-1}, [x_1, \dots, x_{n-1}, y]].$

By uniqueness, $[x_1, \ldots, x_{n-1}, y] = y$ and thus $y \in Z(R)$. The result follows by Theorem 3.2.

Definition 3.5. The *n*-subtack Z(R) is called the *center* of *R*.

Proposition 3.6. For every pointed n-rack, there is an involutive subrack of \mathbb{R}^{n-1} .

Proof. Recall by Proposition 2.5 that \mathbb{R}^{n-1} has a pointed rack structure and denote the operation \circ by [-, -]. Now consider the subset

$$\mathfrak{I}_R = \{(a_1, a_2, \dots, a_{n-1}) \in R^{n-1} \mid [a_1, \dots, a_{n-1}, [a_1, \dots, a_{n-1}, y]] = y, \quad \forall y \in R\}.$$

Clearly, $(1, ..., 1) \in \mathfrak{I}_R$ by (NR3). Now let $a = (a_1, ..., a_{n-1}), b = (b_1, ..., b_{n-1}) \in \mathfrak{I}_R$ and $x = (x_1, ..., x_{n-1}) \in \mathbb{R}^{n-1}$. Then $\begin{bmatrix} [a, b], [[a, b], x] \end{bmatrix} = \begin{bmatrix} [a, b], [[a, b], [a, [a, x]]] \end{bmatrix}$ $= \begin{bmatrix} [a, b], [a, [b, [a, x]]] \end{bmatrix}$ $= \begin{bmatrix} a, [b, [b, [a, x]]] \end{bmatrix}$ $= \begin{bmatrix} a, [a, x] \end{bmatrix} = x.$

So \mathfrak{I}_R is closed under the rack operation. Moreover, this implies that for $a = (a_1, \ldots, a_{n-1}) \in \mathfrak{I}_R$ and $y = (y_1, \ldots, y_{n-1}) \in \mathbb{R}^{n-1}$, we have

$$\begin{bmatrix} a, [a, y] \end{bmatrix} = \begin{bmatrix} (a_1, \dots, a_{n-1}), [(a_1, \dots, a_{n-1}), (y_1, \dots, y_{n-1})] \end{bmatrix}$$

= $\begin{bmatrix} (a_1, \dots, a_{n-1}), ([a_1, \dots, a_{n-1}, y_1], \dots, [a_1, \dots, a_{n-1}, y_{n-1}]) \end{bmatrix}$
= $(\begin{bmatrix} a_1, \dots, a_{n-1}, [a_1, \dots, a_{n-1}, y_1] \end{bmatrix}, \dots, \begin{bmatrix} a_1, \dots, a_{n-1}, [a_1, \dots, a_{n-1}, y_{n-1}] \end{bmatrix})$
= $(y_1, y_2, \dots, y_{n-1}) = y.$

The result follows by Theorem 3.2.

Proposition 3.7. Let S be a n-semisubrack of a pointed n-rack R. Let

$$\mathfrak{N}(S) = \left\{ a \in R \mid [u_1, \dots, u_{n-1}, a] \in S, \ \forall \ \{u_i\}_{i=1,\dots,n-1} \subseteq S \right\}$$

Then

(1) $1 \in S$ iff $1 \in \mathfrak{N}(S)$.

(2) $\mathfrak{N}(S) \subseteq J$ for any n-subtrack J of R containing S as a n-semisubtrack.

(3) $S \subseteq \mathfrak{N}(S)$. The equality holds (thus $\mathfrak{N}(R)$ is a n-subrack of R) if S is a n-subrack of R.

Proof. (1). By (NR3), $1 = [u_1, \ldots, u_{n-1}, 1]$ for all $\{u_i\}_{i=1,\ldots,n-1} \subseteq S$. Thus $1 \in S$ iff $1 \in \mathfrak{N}(S)$.

(2). Let J be a n-subrack of R containing S as a n-semisubrack, and let $a \in \mathfrak{N}(S)$. Then $[u_1, \ldots, u_{n-1}, a] \in S \subseteq J$, for all $\{u_i\}_{i=1,\ldots,n-1} \subseteq S \subseteq J$. This implies that $a \in J$ as J is a n-subrack. Hence $\mathfrak{N}(S) \subseteq J$.

(3). It is clear that $S \subseteq \mathfrak{N}(S)$ as S is closed under the *n*-rack operation. Now let $\{a_i\}_{i=1,\dots,n} \subseteq \mathfrak{N}(S)$. Then by (NR1) on S,

$$[u_1, \dots, u_{n-1}, [a_1, \dots, a_n]] = [[u_1, \dots, u_{n-1}, a_1], \dots, [u_1, \dots, u_{n-1}, a_n]] \in S$$

for all $\{u_i\}_{i=1,\ldots,n-1} \subseteq S$. So $[a_1,\ldots,a_n] \in \mathfrak{N}(S)$ and thus $\mathfrak{N}(S)$ is closed under the *n*-rack operation. In addition, for $y \in R$ such that $[a_1,\ldots,a_{n-1},y] \in \mathfrak{N}(S)$, we have $[u_1,\ldots,u_{n-1},[a_1,\ldots,a_{n-1},y]] \in S$, i.e.,

$$[[u_1, \ldots, u_{n-1}, a_1], \ldots, [u_1, \ldots, u_{n-1}, a_{n-1}], [u_1, \ldots, u_{n-1}, y]] \in S.$$

So $[u_1, \ldots, u_{n-1}, y] \in S$ if S is a n-subrack, and thus $y \in \mathfrak{N}(S)$. Hence $\mathfrak{N}(S)$ is a n-subrack of R.

 $\mathfrak{N}(S)$ is called *normalizer* of S. The right normalizer of the n-semisubrack S is dually defined by

$$\mathfrak{N}_{r}(S) = \{ a \in R \mid [a, u_{1}, \dots, u_{n-1}] \subseteq S, \text{ for all } \{u_{i}\}_{i=1\dots,n-1} \subseteq S \}$$

and does not appear to be of interest for left *n*-racks. However $\mathfrak{N}_r(S)$ satisfies the same properties above for right *n*-racks.

4. Decomposition of *n*-racks

In this section we assume that the n-rack R is not pointed.

Let $_nAut(R)$ be the set of all automorphisms of the *n*-rack *R*, i.e., bijective maps $\xi : R \longrightarrow R$ such that $\xi([x_1, \ldots, x_n]) = [\xi(x_1), \ldots, \xi(x_n)].$

It is not difficult to see that for all $x_1, \ldots, x_{n-1} \in R$ the map

$$\phi(x_1, ..., x_{n-1})(y) = [x_1, ..., x_{n-1}, y]$$

is an automorphism of R. So, we can consider the map

 $\phi: \mathbb{R}^{n-1} \longrightarrow \mathbb{R}^{n-1}$ such that $\phi: (x_1, \dots, x_{n-1}) \mapsto \phi(x_1, \dots, x_{n-1}).$

If ϕ is injective, then R is called *faithful*.

Definition 4.1. A *n*-rack *R* is *decomposable* if there are two disjoint *n*-subracks of *R* such that $R = X_1 \cup X_2$.

Proposition 4.2. If R is a decomposable n-rack, then the following statements are true:

- (1) $[X_1, \dots, X_1, X_2] \subseteq X_2,$ (4.1)
- (2) $(X_1)^{n-1}$ and $(X_2)^{n-1}$ are subracks of the rack \mathbb{R}^{n-1} satisfying $[(X_1)^{n-1}, (X_2)^{n-1}]_{\mathbb{R}^{n-1}} \subseteq (X_2)^{n-1}$ and $[(X_2)^{n-1}, (X_1)^{n-1}]_{\mathbb{R}^{n-1}} \subseteq (X_1)^{n-1}$,
- (3) $\phi((X_1)^{n-1}) \in {}_nAut(X_2)$ and $\phi((X_2)^{n-1}) \in {}_nAut(X_1).$

Proof. (1). Let $\{x_i\}_{i=1,\ldots,n-1} \subseteq X_1$ and $y \in X_2$ with $[x_1 \ldots, x_{n-1}, y] \notin X_2$, i.e., $[x_1, \ldots, x_{n-1}, y] \in X_1$. Then by Theorem 3.3, $y \in X_1$ as X_1 is a *n*-subrack, and thus $y \in X_1 \cap X_2$. A contradiction.

(2). Recall that the rack operation on \mathbb{R}^{n-1} is given by the equality (2.1). So $(X_1)^{n-1}$ is closed under this operation and satisfies (R2) as X_1 is a *n*-subrack of \mathbb{R} . Moreover, it is clear by (4.1) that each coordinate of the right hand side of the equality above is in X_2 for $\{x_i\}_{i=1,\ldots,n-1} \subseteq X_1$ and $\{y_i\}_{i=1,\ldots,n-1} \subseteq X_2$. Thus $[(X_1)^{n-1}, (X_2)^{n-1}]_{\mathbb{R}^{n-1}} \subseteq (X_2)^{n-1}$. The other inclusion is obtained similarly.

(3). Let $\{x_i\}_{i=1,\dots,n-1} \subseteq X_1$. The restriction of the map $\phi(x_1,\dots,x_{n-1})$ to X_2 together with (4.1) completes the proof. The proof that $\phi((X_2)^{n-1}) \in {}_nAut(X_1)$ is similar.

Proposition 4.3. If R is a decomposable rack, then R is decomposable as a n-rack for all integer n > 2.

Proof. Let n > 2 (integer), and $R = X_1 \cup X_2$ be a decomposition of the rack (R, \circ) . It is enough to show that X_1 and X_2 are *n*-subracks. Indeed, for $\{x_i\}_{i=1,...,n}$ from X_1 , we have, by Proposition 2.5, $[x_1, x_2, \ldots, x_n] = x_1(x_2(\ldots(x_{n-1} \circ x_n) \ldots)) \in X_1$ as X_1 is closed under \circ . Also for $y \in X_1$, there is by (R2) a unique $t_1 \in X_1$ with $y = x_1 \circ t_1$. Repeating the process, there exists uniquely $t_2, t_3, \ldots, t_{n-1}, z \in X_1$ with $t_i = x_{i+1} \circ t_{i+1}$ and $t_{n-2} = x_{n-1} \circ z$ such that

$$y = x_1 \circ t_1 = x_1 \circ (x_2 \circ t_2) = \ldots = x_1 \circ (x_2(\ldots(x_{n-1} \circ z)\ldots)) = [x_1, x_2, \ldots, x_{n-1}, z].$$

Hence X_1 is a *n*-subtrack. The proof that X_2 is a *n*-subtrack is similar. \Box

Proposition 4.4. If R is a decomposable n-rack, then R is decomposable as a (2n-1)-rack.

Proof. The proof is similar to the proof of Proposition 4.3 and follows by Proposition 2.6. $\hfill \Box$

5. A homology theory on *n*-racks

Recall that for a rack (X, \circ) , one defines (see [4] for the right rack version) the rack homology $H^R_*(X)$ of X as the homology of the chain complex $\{C^R_k(X), \partial_k\}$ where $C_k^R(X)$ is the free abelian group generated by k-uples (x_1, x_2, \ldots, x_k) of elements of X and the boundary maps $\partial_k : C_k^R(X) \longrightarrow C_{k-1}^R(X)$ are defined by

 $\partial_k(x_1, x_2, \dots, x_k) =$

 $\sum_{i=2}^{k} (-1)^{i} [(x_{1}, \dots, x_{i-1}, \hat{x}_{i}, x_{i+1}, \dots, x_{k}) - (x_{i} \circ x_{1}, \dots, x_{i} \circ x_{i-1}, \hat{x}_{i}, x_{i+1}, \dots, x_{k})]$

for $k \ge 2$ and $\partial_k = 0$ for $k \le 1$, where \hat{x}_i means that x_i is deleted. If X is a quandle, the subgroups $C_k^D(X)$ of $C_k^R(X)$ generated by k-tuples (x_1, x_2, \ldots, x_k) with $x_i = x_{i+1}$ for some $i, 1 \le i < k$ form a subcomplex $C_*^D(X)$ of $C_*^R(X)$ whose homology $H_*^D(X)$ is called the *degeneration homology* of X. The homology $H_*^Q(X)$ of the quotient complex $\{C_k^Q(X) = C_k^R(X)/C_k^D(X), \partial_k\}$ is called the *quandle homology* of X.

Lemma 5.1. Let \mathcal{X} be a *n*-rack. Then \mathcal{X}^{n-1} has a rack structure. \mathcal{X}^{n-1} is a quandle if \mathcal{X} is a *n*-quandle.

Proof. Endow \mathcal{X}^{n-1} with the binary operation

$$(x_1,\ldots,x_{n-1})\circ(y_1,\ldots,y_{n-1}) = ([x_1,\ldots,x_{n-1},y_1],\ldots,[x_1,\ldots,x_{n-1},y_{n-1}]).$$

We define the chain complexes ${}_{n}C^{R}_{*}(\mathcal{X}) := C^{R}_{*}(\mathcal{X}^{n-1})$ if \mathcal{X} is an *n*-rack, ${}_{n}C^{D}_{*}(\mathcal{X}) := C^{D}_{*}(\mathcal{X}^{n-1})$ and ${}_{n}C^{Q}_{*}(\mathcal{X}) := C^{Q}_{*}(\mathcal{X}^{n-1})$ if \mathcal{X} is a *n*-quandle.

Definition 5.2. Let \mathcal{X} be an *n*-rack. The *kth n*-rack homology group of \mathcal{X} with trivial coefficients is defined by

$${}_{n}H_{k}^{R}(\mathcal{X}) = H_{k}({}_{n}C_{*}^{R}(\mathcal{X})).$$

Definition 5.3. Let \mathcal{X} be a *n*-quandle.

n

1. The kth n-degeneration homology group of \mathcal{X} with trivial coefficients is defined by

$$H_k^D(\mathcal{X}) = H_k({}_nC_*^D(\mathcal{X})).$$

2. The kth n-quandle homology group of \mathcal{X} with trivial coefficients is defined by

$$_{n}H_{k}^{Q}(\mathcal{X}) = H_{k}(_{n}C_{*}^{Q}(\mathcal{X}))$$

Definition 5.4. Let A be a abelian group, we define the chain complexes

$${}_{n}C^{W}_{*}(\mathcal{X};A) = {}_{n}C^{W}_{*}(\mathcal{X})\otimes A, \ \ \partial = \partial \otimes id \ \ \text{with} \ \ W = D, R, Q.$$

1. The kth n-rack homology group of \mathcal{X} with coefficients in A is defined by

$$_{n}H_{k}^{R}(\mathcal{X};A) = H_{k}(_{n}C_{*}^{R}(\mathcal{X};A)).$$

2. The kth n-degenerate homology group of \mathcal{X} with coefficients in A is defined by

$${}_{n}H_{k}^{D}(\mathcal{X};A) = H_{k}({}_{n}C_{*}^{D}(\mathcal{X};A))$$

3. The kth n-quandle homology group of \mathcal{X} with coefficients in A is defined by

$${}_{n}H_{k}^{Q}(\mathcal{X};A) = H_{k}({}_{n}C_{*}^{Q}(\mathcal{X};A)).$$

One defines the cohomology theory of *n*-racks and *n*-quandles by duality. Note that for n = 2, one recovers the homology and cohomology theories defined by Carter, Jelsovsky, Kamada, Landford and Saito [4].

Proposition 5.5. Let \mathcal{X} be a n-quandle and $S \subset \mathcal{X}$ a n-subquandle. The following diagram of long exact sequences commutes:

where ${}_{n}H_{k}^{W}(\mathcal{X}_{S})$ stands for the homology of the complex

$$\{{}_{n}C_{k}^{W}(X_{S}) = {}_{n}C_{k}^{W}(\mathcal{X})/{}_{n}C_{k}^{W}(S), \partial_{k}\}, \quad W = R, D, Q.$$

Proof. The diagram above is induced by the following commutative diagram of short exact sequences:

Remark. Since \mathcal{X}^{n-1} carries most of the properties of \mathcal{X} , several results established on racks are valid on *n*-racks. For instance; if \mathcal{X} is finite, then \mathcal{X}^{n-1} is also finite. Cohomology of finite racks were studied by Etingof and Graña in [7].

Proposition 5.6. Let \mathcal{X} be a trivial n-rack. Then we have the following isomorphisms:

$$_{n}H^{R}_{*}(\mathcal{X})\cong \left(\mathbb{Z}\mathcal{X}^{n-1}\right)^{*}$$

Proof. It is easy to check with Lemma 2.1 that \mathcal{X}^{n-1} is a trivial rack. That all chains are cycles follows by definition.

References

- N. Andruskiewitsch and M. Graña, From racks to pointed Hopf algebras, Adv. Math., 178 (2003), 177 - 243.
- [2] G. R. Biyogmam, Lie n-rack, C. R. Acad. Sci. Paris, Ser. I, 349 (2011), 957-960.
- [3] M. E. Bozhüyük, Topics in knot theory, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993.
- [4] J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford and M. Saito, Quandle cohomology and state-sum invariants of knotted curves and surfaces, Trans. Amer. Math. Soc. 355 (2003), 3947 - 3989.
- [5] J. M. Casas, J. L. Loday and T. Pirashvili, Leibniz n-algebras, Forum Math. 14 (2002), 189 – 207.
- [6] J. Conway and G. Wraith, Unpublished correspondence (1958).
- [7] P. Etingof and M. Graña, On rack cohomology, J. Pure Appl. Algebra 177 (2003), 49-59.
- [8] R. Fenn, C. Rourke and B. Sanderson, James bundles and applications, Proc. London Math. Soc. 89 (2004), 217 - 240.
- [9] D. Larue, Left-distributive idempotent algebras, Commun. Alg., 27 (1999), 2003 2009.

Received October 09, 2012

Department of Mathematical Sciences Southwestern Oklahoma State University 100 Campus Dr. Weatherford OK 73096-3001

E-mail: guy.biyogmam@swosu.edu