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A study of n-subracks

Guy R. Biyogmam

Abstract. In this paper, we introduce the notion of n-subracks (n > 2) and provide a char-
acterization that enables us to obtain several results on n-racks. We also define a cohomology

theory on n-racks.

1. Introduction

The category of n-racks [2] has been introduced as a generalization of the category
of left distributive left quasigroups [9], or simply racks [6], and was shown to be
associated to the category of Leibniz n-algebras [5]. In the pursue of studying the
structure of this new category, we study in this paper the notion of n-subracks and
explore several classical examples such as the normalizer, the center of a n-rack,
and the components of a decomposable n-rack. In section 4, we provide several
properties of decomposable n-racks.

In [8], Fenn, Rourke and Sanderson introduced a cohomology theory for racks
which was modified in [4] by Carter, Jelsovsky, Kamada, Landford and Saito to
obtain quandle cohomology, and several results have been recently established.
In section 5, we use these cohomology theories to define cohomology theories on
n-racks and n-quandles.

Let us recall a few definitions.

A pointed rack (R,o0,1) is a set R with a binary operation o and a specific
element 1 € R such that the following conditions are satisfied:

(R1) zo(yoz)=(zoy)o(xoz).
(R2) For each x,y € R, there exits a unique a € R such that zoa =y.
(R3) lox=xand x o1 =1 for all x € R.

A rack R is decomposable [1] if there are disjoints subracks X and Y of R such
that R = X UY. R is indecomposable if otherwise.
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2. n-racks

For the remaining of this paper, we assume n > 2, integer.

Definition 2.1. [2] A n-rack (R, [...]) is a set R endowed with an n-ary operation
[...] : R* — R such that

(NR1) [331, ey Ty YLy e yn,l]] = [[ml, ey T, Y1y e [T, ,:vn,hyn}]
(This is the left distributive property of n-racks.)

(NR2) For ay,...,a,—1,b € R, there exists a unique z € R such that
[a1,...,an_1,2] = b.

If in addition there is a distinguish element 1 € R, such that
(NR3) [1,...,1,y]=v and [z1,...,2p-1,1] =1 forall zq,...,2,-1 € R,

then (R,[...],1) is said to be a pointed n-rack.

An n-rack in which [z1,...,2,-1,y] = y if ; = y for some ¢ € {1,...,n — 1},
is an n-quandle.

Definition 2.2. A n-rack R is involutive if
[acl, ey X, [T, ,mn,l,y]] =y forall z1,...,2,_1,y € R.

Note that an involutive n-quandle is an n-kei [2].
A n-rack R is trivial if it satisfies [z1,x2,...,2n—1,y] = y for all x;,y € R.

For n = 2, one recovers involutive racks [1] and trivial racks [3].

Definition 2.3. Let K be a ring and M a K-module. Then M endowed with the
n-ary operation [...] defined by

n
[T1,.. ., %n] = 1 + @222 + ... + @ur,  With Z(h =1
i=1
is a n-rack called an affine n-rack associated to the K-module M.

Example 2.4. A Z,-module M endowed with the operation [...]5; defined by
[Z1,. ., Xl =221+ 220+ ...+ 2051 + 2y
is an affine n-rack if n is odd.

Proposition 2.5. [2] Any pointed rack (R,o,1) has a pointed n-rack structure
under the n-ary operation defined by

[x1,Z2,...,xn]) =210 (20 (... (Tp_102y)...)).
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This process determines a functor & : prack — ,prack, which has as left
adjoint, the functor &' : ,,prack — prack defined as follows:

Given a pointed n-rack (R,[...],1), then R"~! endowed with the binary ope-
ration

(xla cee 7xn71) © (ylv' c ,ynfl) = ([xlv' c axnflvyl]v' ) [xlv s 7xn717yn71]) (21)
is a rack pointed at (1,1,...,1).

Proposition 2.6. Let m,n be nonnegative integers with m = 2n — 1. Then any
pointed n-rack (R,[...],1) has a pointed m-rack structure under the operation (...)
defined by

(X1, ooy Tm) = [xl,...,acn_l,[mn,...,xm]].
Proof. To show (NR1), let {z;}i=1, m—1,{¥i}i=1,..,m € R. We have by definition
<301, ey Tm—1, <y1; e aym>> = <ZI,’1, sy Tm—1, [yl, sy Yn—1, [yna s 7ym]]>

= I:xlw-'awnfh [mn,...,xm,l, [yla"wynfh [yn>7ym]]]]7

then use consecutively (NR1) on (R,][...],1) from inside out to obtain

= <[1'17'~~;xnfla[xnv"'vwmflvyl]]a"'a[1'17“'axnfla[‘rnv"‘vwmflvym}b
= (&1, 1, Y1) - (T T 1, Um))-
To show (NR2), let {z;}i=1,..m-1 € R and y € R. Then by (NR2) on
(R,[...],1), there are unique ¢,z € R such that y = [z1,...,2,-1,t] and t =
[Tny -y Tme1, 2], L€,
y= [ml,...7xn,1,[xn,...,xm,1,z]] = (T1,.  y Tim—1,2).

To show (NR3), we have by (NR3) on (R,][...],1),
(L., Ly =[1,....,1[1,....y]] =[1,...,1,y] =y forally € R,
and for all {xi}i:17,,_,xm71 - R,

<‘r1a"'7xm—la1> = [xla"'axn—la [xnw")l‘m—hl” = ['1:17"'7xn—151] = 17

which completes the proof. O

3. n-subracks

Let (R,]...]) be a n-rack (resp. pointed n-rack). A nonempty subset S C R is

called a n-semisubrack of R if S is closed under the n-rack operation. (S,[...]) is

called a n-subrack of R if it has a n-rack structure (resp. pointed n-rack structure).
In particular, {1} and R are n-subracks of R.
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Example 3.1. Let S be a Z4-submodule of M (the n-rack of Example 2.4) annihi-
lated by 2. Then S has a trivial n-rack structure when endowed with the operation
[...] of M. Therefore S is a n-subrack of M when n is odd.

The following theorem provides a characterization of n-subracks in a pointed
n-rack.

Theorem 3.2. A n-semisubrack S of a pointed n-rack (R,[...],1) is a n-subrack
if and only if for allb € R, [a1,a2,...,an—1,b] € S and {a;};=1,.. n—1 C S implies
beS.

.....

Proof. Assume that S is a n-subrack and let {a;}i=1, . n—1 € S and b € R with
[a1,...,an—1,b] € S. Then by (NR2), there is a unique u € S with [a1,...,an—1,8]
= [a1,a2,...,an-1,u]. Thus b = u € S by uniqueness. For the converse, it is
enough to establish (NR2) for the n-semisubrack S. Let a1,as9,...,a,_1,2 € S C
R. Then there is a unique b € R with = [ay,as,...,a,-1,b], and thus b € S by
hypothesis. O

Proposition 3.3. Let R, R’ be pointed n-racks and ¢ : R — R’ be a homomor-
phism. Let K = {x € R: ¢(x) = 1/} be the kernel of ¢. Then K and I = ¢(R)
are n-subracks of R and R’ respectively.

Proof. $(1g) = 1g. So 1g € K and 1p € I. Let {a;}i=1,..., € K. Then

[al,...,an]R € K since ¢([a1,...,an]3) = [¢(a1),...,¢(an)]R/ = [1R’7~-~>1R’]R’
= 1. Now let b € R and {ai}izl,_”,n_l C K with [al, . ,an_l,b]R € K. Then

¢(b) - [IR’a ceey 1R/7 ¢(b)]R' = [d)(al)a ey d)(a'n—l): Qs(b)]R’

= ¢([a17 B 7an—17b]R) = lR/-

Thus b € K. Hence K is a n-subrack of R by Theorem 3.2. To show that [ is an n-
subrack, notice that [¢(z1),...,¢(xn))|r = ¢([z1,...,2n]R) for all {z;}i=1, . C
R. Now let y € R’ such that [¢(x1),...,0(xn-1),y|rr = ¢(d) for some d € R.
We have by (NR2) on R that [z1,...,2,_1,c|g = d for some unique ¢ € R. So
[p(z1),...,0(xn-1),d(c)]r = ¢#(d), and thus y = ¢(c) by uniqueness. Hence T is
a n-subrack of R’ by Theorem 3.2. O

Proposition 3.4. Every pointed n-rack has a trivial n-subrack.

Proof. Let R be a pointed n-rack and consider the subset
Z(R)={a € R|[x1,...,2n-1,a] = a, V{z;}i=1,...n—1 C R}.

Clearly, 1e Z(R) by (NR3) Let {xi}i:L...,n—l Q R and {ai}i:L___,n Q Z(R)
Then by (NR1),

[®1,. oy Tno1, a1, an]] =21, s a1, a1], o @1, e T, an]] =an, - an].
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Now, for y € R such that [ai,...,an,_1,y] € Z(R), we have

[ala'-- ;an—17y} = I:xlv"'axn—lv [a/h-'-aan—l)y]]
= [[a:l, ey 1,01y [Ty T, Q1] [, ,xn_1,y]]
= I:alv"'7an—1a[xla"'amn—hy]]'

By uniqueness, [z1,...,2,-1,y] = y and thus y € Z(R). The result follows by
Theorem 3.2. O

Definition 3.5. The n-subrack Z(R) is called the center of R.
Proposition 3.6. For every pointed n-rack, there is an involutive subrack of R" 1.

Proof. Recall by Proposition 2.5 that R"~! has a pointed rack structure and denote
the operation o by [—, —]. Now consider the subset

Jr={(a1,a2,...,an-1) € " |[ar,...,an_1,la1,...,an-1,y]l =y, Vy € R}.

Clearly, (1,...,1) € 3z by (NR3).

Now let a = (a1,...,an,-1),0 = (b1,...,bp_1) € Jgp and & = (x1,...,Tp_1) €
R~ 1. Then
Ha’ b]’ [[av b}, 1']] = [[av b} Hav b]v [av [av f]]”
= [[a7 b}, [av [b, [a, 37]]]]
= [a’ [b7 [b [avxm]

la, [a, z]] = =.

So Jg is closed under the rack operation. Moreover, this implies that for a =

(al)- . .7a/n—1) €Jr and Y = (ylv' .. 7yn—1) c Rn—l’ we have
I:a/a [auy]] = [(047...70/”71),[(a17...,anfl),(y17...,yn71)]j|
= [(a1,... an-1), ([a1,-- - an—1,91), .-, a1, - an—1,Yyn—1])]
- ([al,”.,an_h[al""’an_hyl}]?"'?I:a’la"-70'1'7,—1’[a17...7an—1ayn—1]])
:(y17y27"'ayn71):y.

The result follows by Theorem 3.2. O
Proposition 3.7. Let S be a n-semisubrack of a pointed n-rack R. Let

‘)’I(S) = {a S R| [Ul,. .. ,un_l,a} € S, A {Ui}izl n-1 C S}

Then
(1) 1€ S iff 1 e R(S).

(2) N(S) C J for any n-subrack J of R containing S as a n-semisubrack.
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(3) S C MN(S). The equality holds (thus M(R) is a n-subrack of R) if S is a
n-subrack of R.

Proof. (1). By (NR3), 1 = [u1,...,up—1,1] for all {v;}i=1, . n—1 CS. Thusle S
iff 1 € M(S).

(2). Let J be a n-subrack of R containing S as a n-semisubrack, and let a €
N(S). Then [uq,...,up—1,a] € S C J, for all {u;};=1,.. n—1 €S C J. This implies
that a € J as J is a n-subrack. Hence D(S) C J.

(3). It is clear that S C 91(S) as S is closed under the n-rack operation. Now
let {a;}i=1,...n CN(S). Then by (NR1) on S,

[ul, ceyUpo1, a1, ... ,an]] = [[ul, ey U1, 1]y (U, - ,un_l,an]] €S

for all {u;}i=1,..n—1 € S. S0 [a1,...,a,] € N(S) and thus N(S) is closed under
the n-rack operation. In addition, for y € R such that [a1,...,a,—1,y] € N(S),
we have [uy,...,Up_1,[a1,...,0n_1,y]] €S, ie.,

[[Ul,. "7un—l7al]a"'7[u17"'aun—1aan—1]a [ulv"wun—hy}] € s.

So [u1,...,un—1,y] € S if S is a n-subrack, and thus y € 91(S). Hence 91(S) is a
n-subrack of R. O

M(S) is called normalizer of S. The right normalizer of the n-semisubrack S
is dually defined by

N (S)={a € R|[a,u1,...,up—1] €S, for all {u;}i=1..n-1 €S}

and does not appear to be of interest for left n-racks. However M,.(S) satisfies the
same properties above for right n-racks.

4. Decomposition of n-racks

In this section we assume that the n-rack R is not pointed.

Let ,Aut(R) be the set of all automorphisms of the n-rack R, i.e., bijective
maps & : R — R such that {([z1,...,z,]) = [E(z1),...,&(zn)]-
It is not difficult to see that for all z4,...,z,_1 € R the map

P10 @n1)(y) = [21, 0, Tn1, Y]
is an automorphism of R. So, we can consider the map
¢:R"' — LAut(R) suchthat ¢: (z1,...,2n 1) &(T1,...,Tn_1).
If ¢ is injective, then R is called faithful.

Definition 4.1. A n-rack R is decomposable if there are two disjoint n-subracks
of R such that R = X; U Xs.
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Proposition 4.2. If R is a decomposable n-rack, then the following statements
are true:

(1) [X1,..., X1, Xo] C X, (4.1)

(2) (X1)" ! and (X2)"~! are subracks of the rack R"™! satisfying
(X)), (X)"He—s © (X2)" 71 and [(X2)" 7 (X1)"Hpa—a © (X)),

(3) o((X1)" 1) € pAut(Xz) and ¢((X2)" 1) € ,, Aut(Xy).

Proof. (1). Let {z;}i=1,..n—1 € X7 and y € Xy with [x1...,2,-1,y] ¢ X, ie.,
[€1,...,&n_1,y] € X;. Then by Theorem 3.3, y € X; as X; is a n-subrack, and
thus y € X7 N X5. A contradiction.

(2). Recall that the rack operation on R"~! is given by the equality (2.1). So
(X1)"~! is closed under this operation and satisfies (R2) as X7 is a n-subrack of
R. Moreover, it is clear by (4.1) that each coordinate of the right hand side of
the equality above is in X5 for {x;}i=1, . n—1 € X7 and {y; }i=1,...n—1 € Xo. Thus
[(X1)" 1, (Xo)" Y za1 C (X2)" L. The other inclusion is obtained similarly.

(3). Let {z;}i=1,...n—1 € X;. The restriction of the map ¢(z1,...,2,—1) to Xo
together with (4.1) completes the proof. The proof that ¢((X2)" 1) € ,, Aut(X;)
is similar. O

Proposition 4.3. If R is a decomposable rack, then R is decomposable as a n-rack
for all integer n > 2.

Proof. Let n > 2 (integer), and R = X;UX3 be a decomposition of the rack (R, o).
It is enough to show that X; and X5 are n-subracks. Indeed, for {z;};=1 .., from

X1, we have, by Proposition 2.5, [z1,%2,...,2,] = 1(z2(... (Tp_102s)...)) € X3
as X is closed under o. Also for y € X, there is by (R2) a unique t; € X; with
y = x1 o t;. Repeating the process, there exists uniquely to,ts3,...,t,-1,2 € X3

with ¢;, = ;41 ot;41 and ¢,,_2 = x,,_1 0 z such that
y=ax10t; =x10(x30ts) =...=z10(x2(... (Tp_102)...)) = [T1,Z2, ... Tn_1, 2]
Hence X is a n-subrack. The proof that X5 is a n-subrack is similar. O

Proposition 4.4. If R is a decomposable n-rack, then R is decomposable as a
(2n — 1)-rack.

Proof. The proof is similar to the proof of Proposition 4.3 and follows by Propo-
sition 2.6. O
5. A homology theory on n-racks

Recall that for a rack (X, o), one defines (see [4] for the right rack version) the rack
homology H(X) of X as the homology of the chain complex {C}*(X), d;} where
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CE(X) is the free abelian group generated by k-uples (z1, T2, ...,x)) of elements
of X and the boundary maps J : C*(X) — CJ | (X) are defined by

8k(.1'17$2, ey mk) =

Z?ZQ(_l)i[(xlv e 7$i71,@,$i+1, e 7$k) - (1'i0$1, cee 7xioxi717@7xi+l7 cee ,il'k)]

for K > 2 and 9y = 0 for k < 1, where Z; means that x; is deleted. If X is a
quandle, the subgroups CP(X) of CF(X) generated by k-tuples (x1,2a,...,%)
with x; = 2,41 for some i, 1 < i < k form a subcomplex CP(X) of CF(X) whose
homology HP (X) is called the degeneration homology of X. The homology H?(X)
of the quotient complex {C’]?(X) = CH(X)/CP(X),0,} is called the quandle
homology of X.

Lemma 5.1. Let X be a n-rack. Then X" ' has a rack structure. X" 1 is a
quandle if X is a n-quandle.

Proof. Endow X"~! with the binary operation
(1, Tpn—1)o(W1y- - Yn—-1) = ([T1,- - s Tn—1,01]s - s [T1, - s Bt Yn—1]). O

We define the chain complexes ,,CF(X) := CEA™1) if X is an n-rack,
2CP(X):=CP(x" 1) and ,C2(X) := CL (X" 1) if X is a n-quandle.

Definition 5.2. Let X be an n-rack. The kth n-rack homology group of X with
trivial coefficients is defined by

ZHE(X) = Hy(,CE(X)).

Definition 5.3. Let X’ be a n-quandle.

1. The kth n-degeneration homology group of X with trivial coefficients is defined
by
nHP (X) = Hi(uCF (X))

2. The kth n-quandle homology group of X with trivial coefficients is defined by
nHZ (X) = Hy(,C2(X)).
Definition 5.4. Let A be a abelian group, we define the chain complexes
OV (X A) = 0V (X)® A, 9=0®id with W =D,R,Q.

1. The kth n-rack homology group of X with coefficients in A is defined by
nHE (X5 A) = Hy(wCF (X3 A)).

2. The kth n-degenerate homology group of X with coefficients in A is defined by
WHP (X5 A) = Hi(o.CP (X A)).

3. The kth n-quandle homology group of X with coefficients in A is defined by
nH (X5 A) = Hi(oC2(X; A)).
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One defines the cohomology theory of n-racks and n-quandles by duality. Note
that for n = 2, one recovers the homology and cohomology theories defined by
Carter, Jelsovsky, Kamada, Landford and Saito [4].

Proposition 5.5. Let X be a n-quandle and S C X a n-subquandle. The follow-
ing diagram of long exact sequences commutes:

nHkD(S) - nHlf(S) - nH}?(S) - Hk+1(5)

| | | |

nHkD(X) - nHl?(X) - nHI?(X) - Hk+1(X)

| | | l

WHP (Xs) —— WH (Xs) —— JHJ(Xs) —— oHP,,(Xs)
where , H}V (Xs) stands for the homology of the complex

Proof. The diagram above is induced by the following commutative diagram of
short exact sequences:

0 0 0

| | |

0 —— ,CP(S) —— LCE(S) —— ,C%568) —— 0

O

Remark. Since X"~! carries most of the properties of X, several results estab-
lished on racks are valid on n-racks. For instance; if X is finite, then X™~! is also
finite. Cohomology of finite racks were studied by Etingof and Grana in [7].

Proposition 5.6. Let X be a trivial n-rack. Then we have the following isomor-
phisms:
LX) = (22



28 G. R. Biyogmam

Proof. 1t is easy to check with Lemma 2.1 that X"~ ! is a trivial rack. That all
chains are cycles follows by definition. O
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