OD-Characterization of almost simple groups related to $U_3(17)$

Mohammad R. Darafsheh, Gholamreza Rezaeezadeh, Masoumeh Sajjadi and Masoumeh Bibak

Abstract. We characterize groups with the same order and degree pattern as an almost simple groups related to $U_3(17)$.

1. Introduction

Let G be a finite group. For any group G, we denote by $\pi_e(G)$ the set of orders of its elements and by $\pi(G)$ the set of prime divisors of |G|. Let $\pi(G) = \{p_1, p_2, \ldots, p_k\}$. The prime graph $\Gamma(G)$ of a group G is the graph whose vertex set is $\pi(G)$ and two distinct primes p and q are joined by an edge (we write $p \sim q$) if and only if G contains an element of order pq $(pq \in \pi_e(G))$. For $p \in \pi(G)$, we put deg(p) := $|\{q \in \pi(G) | p \sim q\}|$, which is called the *degree* of p. If $|G| = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ we define $D(G) := (deg(p_1), deg(p_2), \dots, deg(p_k)),$ where $p_1 < p_2 < \dots < p_k$, to be called the degree pattern of G. A group G is called k-fold OD-characterizable if there exist exactly k non-isomorphic finite groups having the same order and degree pattern as G. In particular, a 1-fold OD-characterizable group is simply called OD-characterizable. A group G is said to be an almost simple group related to S if and only if $S \leq G \leq \operatorname{Aut}(S)$ for some non-abelian simple group S. In a series of articles, it has been proved, up to now, that many finite almost simple groups are OD-characterizable or k-fold OD-characterizable for $k \ge 2$, for instance see [2, 3, 5, 7, 8, 9]. In this paper $U := U_3(17)$ and $Aut(U) \cong U : S_3$ and we show that U and U : 2 are OD-characterizable, also U : 3 and U : S_3 are 3-fold and 5fold OD-characterizable respectively (H.K means an extension of a group H by a group K and H: K denotes split extension). We denote the socle of G by Soc(G), which is the subgroup generated by the set of all minimal normal subgroups of G. For $p \in \pi(G)$, we denote by G_p and $\operatorname{Syl}_p(G)$ a Sylow p-subgroup of G and the set of all Sylow p-subgroups of G respectively, all further unexplained notation are standard and can be found in [4].

Throughout this article, all groups under consideration are finite.

²⁰¹⁰ Mathematics Subject Classification: 20D05, 20D60, 20D08

Keywords: OD-characterization, finite group; degree pattern, prime graph, unitary group.

2. Lemmas

It is well-known that $\operatorname{Aut}(U_3(17)) \cong U_3(17) : \mathbb{S}_3$, hence the following lemma follows from definition.

Lemma 2.1. If G is an almost simple group related to $U := U_3(17)$, then G is isomorphic to one of the following groups: U, U : 2, U : 3 or $U : \mathbb{S}_3$.

G is said to be completely reducible group if and only if either G = 1 or G is the direct product of a finite number of simple groups. A completely reducible group will be called a CR-group. A CR-group has trivial center if and only if it is a direct product of non-abelian simple groups and in this case, it has been named a centerless CR-group. The following lemma determines the structure of the automorphism group of a centerless CR-group.

Lemma 2.2. ([4], Theorem 3.3.20) Let R be a finite centerless CR-group and write $R = R_1 \times R_2 \times \ldots \times R_k$, where R_i is a direct product of n_i isomorphic copies of a simple group H_i , and H_i and H_j are not isomorphic if $i \neq j$. Then $\operatorname{Aut}(R) = \operatorname{Aut}(R_1) \times \operatorname{Aut}(R_2) \times \ldots \times \operatorname{Aut}(R_k)$ and $\operatorname{Aut}(R_i) \cong \operatorname{Aut}(H_i) \wr \mathbb{S}_{n_i}$, where in this wreath product $\operatorname{Aut}(H_i)$ appears in its right regular representation and the symmetric group \mathbb{S}_{n_i} in its natural permutation representation. Moreover, these isomorphisms induce isomorphisms $\operatorname{Out}(R) \cong \operatorname{Out}(R_1) \times \operatorname{Out}(R_2) \times \ldots \times \operatorname{Out}(R_k)$ and $\operatorname{Out}(R_i) \cong \operatorname{Out}(H_i) \wr \mathbb{S}_{n_i}$.

Let $p \ge 5$ be a prime. We denote by \mathfrak{S}_p the set of all simple groups with prime divisors at most p. Clearly, if $q \le p$ then $\mathfrak{S}_q \subseteq \mathfrak{S}_p$. We list all the simple groups in class \mathfrak{S}_{17} in Table 1 below, taken from [6].

S	S	$ \operatorname{Out}(S) $	S	S	$ \operatorname{Out}(S) $
A_5	$2^2 \cdot 3 \cdot 5$	2	A ₁₀	$2^7 \cdot 3^4 \cdot 5^2 \cdot 7$	2
A_6	$2^3 \cdot 3^2 \cdot 5$	4	$U_4(3)$	$2^7 \cdot 3^6 \cdot 5 \cdot 7$	8
$S_{4}(3)$	$2^6 \cdot 3^4 \cdot 5$	2	$S_4(7)$	$2^8 \cdot 3^2 \cdot 5^2 \cdot 7^4$	2
$L_{2}(7)$	$2^3 \cdot 3 \cdot 7$	2	$S_{6}(2)$	$2^9 \cdot 3^4 \cdot 5 \cdot 7$	1
$L_{2}(8)$	$2^3 \cdot 3^2 \cdot 7$	3	$O_8^+(2)$	$2^{12} \cdot 3^5 \cdot 5^2 \cdot 7$	6
$U_{3}(3)$	$2^5 \cdot 3^3 \cdot 7$	2	$L_2(11)$	$2^2 \cdot 3 \cdot 5 \cdot 11$	2
A_7	$2^3 \cdot 3^2 \cdot 5 \cdot 7$	2	M ₁₁	$2^4 \cdot 3^2 \cdot 5 \cdot 11$	1
$L_2(49)$	$2^4 \cdot 3 \cdot 5^2 \cdot 7^2$	4	M ₁₂	$2^6 \cdot 3^3 \cdot 5 \cdot 11$	2
$U_{3}(5)$	$2^4 \cdot 3^2 \cdot 5^3 \cdot 7$	6	$U_5(2)$	$2^{10} \cdot 3^5 \cdot 5 \cdot 11$	2
$L_{3}(4)$	$2^6 \cdot 3^2 \cdot 5 \cdot 7$	12	M ₂₂	$2^7 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11$	2
A_8	$2^6 \cdot 3^2 \cdot 5 \cdot 7$	2	A ₁₁	$2^7 \cdot 3^4 \cdot 5^2 \cdot 7 \cdot 11$	2
A_9	$2^6 \cdot 3^4 \cdot 5 \cdot 7$	2	$M^{c}L$	$2^7 \cdot 3^6 \cdot 5^3 \cdot 7 \cdot 11$	2
J_2	$2^7 \cdot 3^3 \cdot 5^2 \cdot 7$	2	HS	$2^9\cdot 3^2\cdot 5^3\cdot 7\cdot 11$	2
A_{12}	$2^9 \cdot 3^5 \cdot 5^2 \cdot 7 \cdot 11$	2	A_{15}	$2^{10} \cdot 3^6 \cdot 5^3 \cdot 7^2 \cdot 11 \cdot 13$	2
$U_{6}(2)$	$2^{15}\cdot 3^6\cdot 5\cdot 7\cdot 11$	6	$L_6(3)$	$2^{11} \cdot 3^{15} \cdot 5 \cdot 7 \cdot 11^2 \cdot 13^2$	4

Table 1: Simple groups in \mathfrak{S}_p , $p \leq 17$.

S	S	$ \operatorname{Out}(S) $	S	S	$ \operatorname{Out}(S) $
$L_{3}(3)$	$2^4 \cdot 3^3 \cdot 13$	2	Suz	$2^{13} \cdot 3^7 \cdot 5^2 \cdot 7 \cdot 11 \cdot 13$	2
$L_2(25)$	$2^3 \cdot 3 \cdot 5^2 \cdot 13$	4	A_{16}	$2^{14} \cdot 3^6 \cdot 5^3 \cdot 7^2 \cdot 11 \cdot 13$	2
$U_{3}(4)$	$2^6 \cdot 3 \cdot 5^2 \cdot 13$	4	Fi_{22}	$2^{17} \cdot 3^9 \cdot 5^2 \cdot 7 \cdot 11 \cdot 13$	2
$S_{4}(5)$	$2^6 \cdot 3^2 \cdot 5^4 \cdot 13$	2	$L_2(17)$	$2^4 \cdot 3^2 \cdot 17$	2
$L_{4}(3)$	$2^7 \cdot 3^6 \cdot 5 \cdot 13$	4	$L_2(16)$	$2^4 \cdot 3 \cdot 5 \cdot 17$	4
${}^{2}F_{4}(2)'$	$2^{11} \cdot 3^3 \cdot 5^2 \cdot 13$	2	$S_4(4)$	$2^8 \cdot 3^2 \cdot 5^2 \cdot 17$	4
$L_2(13)$	$2^2 \cdot 3 \cdot 7 \cdot 13$	2	He	$2^{10} \cdot 3^3 \cdot 5^2 \cdot 7^3 \cdot 17$	2
$L_2(27)$	$2^2 \cdot 3^3 \cdot 7 \cdot 13$	6	$O_8^-(2)$	$2^{12}\cdot 3^4\cdot 5\cdot 7\cdot 17$	2
$G_{2}(3)$	$2^6 \cdot 3^6 \cdot 7 \cdot 13$	2	$L_4(4)$	$2^{12} \cdot 3^4 \cdot 5^2 \cdot 7 \cdot 17$	4
${}^{3}D_{4}(2)$	$2^{12}\cdot 3^4\cdot 7^2\cdot 13$	3	$S_{8}(2)$	$2^{16} \cdot 3^5 \cdot 5^2 \cdot 7 \cdot 17$	1
Sz(8)	$2^6 \cdot 5 \cdot 7 \cdot 13$	3	$O_{10}^{-}(2)$	$2^{20} \cdot 3^6 \cdot 5^2 \cdot 7 \cdot 11 \cdot 17$	2
$L_2(64)$	$2^6 \cdot 3^2 \cdot 5 \cdot 7 \cdot 13$	6	$F_{4}(2)$	$2^{24} \cdot 3^6 \cdot 5^2 \cdot 7^2 \cdot 13 \cdot 17$	2
$U_{4}(5)$	$2^7 \cdot 3^4 \cdot 5^6 \cdot 7 \cdot 13$	4	$U_4(4)$	$2^{12} \cdot 3^2 \cdot 5^3 \cdot 13 \cdot 17$	4
$L_{3}(9)$	$2^7 \cdot 3^6 \cdot 5 \cdot 7 \cdot 13$	4	$S_{6}(4)$	$2^{18} \cdot 3^4 \cdot 5^3 \cdot 7 \cdot 13 \cdot 17$	2
$S_{6}(3)$	$2^9\cdot 3^9\cdot 5\cdot 7\cdot 13$	2	$O_8^+(4)$	$2^{24} \cdot 3^5 \cdot 5^4 \cdot 7 \cdot 13 \cdot 17^2$	12
$O_{7}(3)$	$2^9 \cdot 3^9 \cdot 5 \cdot 7 \cdot 13$	2	$L_3(16)$	$2^{12} \cdot 3^2 \cdot 5^2 \cdot 7 \cdot 13 \cdot 17$	24
$G_{2}(4)$	$2^{12}\cdot 3^3\cdot 5^2\cdot 7\cdot 13$	2	$S_4(13)$	$2^6 \cdot 3^2 \cdot 5 \cdot 7^2 \cdot 13^4 \cdot 17$	2
$S_{4}(8)$	$2^{12}\cdot 3^4\cdot 5\cdot 7^2\cdot 13$	6	$L_2(13^2)$	$2^3 \cdot 3 \cdot 5 \cdot 7 \cdot 13^2 \cdot 17$	4
$O_{8}^{+}(3)$	$2^{12} \cdot 3^{12} \cdot 5^2 \cdot 7 \cdot 13$	24	$U_3(17)$	$2^6\cdot 3^4\cdot 7\cdot 13\cdot 17^3$	6
$L_{5}(3)$	$2^9 \cdot 3^{10} \cdot 5 \cdot 11^2 \cdot 13$	2	A ₁₇	$2^{14} \cdot 3^6 \cdot 5^3 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17$	2
A_{13}	$2^9 \cdot 3^5 \cdot 5^2 \cdot 7 \cdot 11 \cdot 13$	2	A ₁₈	$2^{15} \cdot 3^8 \cdot 5^3 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17$	2
A_{14}	$2^{10} \cdot 3^5 \cdot 5^2 \cdot 7^2 \cdot 11 \cdot 13$	2			

(continued)

Lemma 2.3. ([1], Theorem 10.3.1) Let G be a Frobenius group with kernel K and complement H. Then

(a) K is a nilpotent group,

(b) $|K| \equiv 1 \pmod{|H|}$.

3. Almost simple groups related to $U_3(17)$

Theorem 3.1. Let M be an almost simple group related to $U := U_3(17)$. If G is a finite group such that D(G) = D(M) and |G| = |M|, then the following assertions hold:

- (a) If M = U, then $G \cong U$.
- (b) If M = U : 2, then $G \cong U : 2$.
- (c) If M = U : 3, then $G \cong U : 3$, $\mathbb{Z}_3 \times U$ or $\mathbb{Z}_3.U$.
- (d) If $M = U : \mathbb{S}_3$, then $G \cong U : \mathbb{S}_3$, $\mathbb{Z}_3 \times (U : 2)$, $\mathbb{Z}_3 . (U : 2)$, $(\mathbb{Z}_3 \times U) . \mathbb{Z}_2$ or $(\mathbb{Z}_3 . U) . \mathbb{Z}_2$.

In particular, U and U : 2 are OD-characterizable, U : 3 is 3-fold OD-characterizable and U : S_3 is 5-fold OD-characterizable.

Proof. We break the proof into a number of separate cases. Note that the set of order elements in each of the following cases is calculated using GAP. **Case 1.** If M = U, then $G \cong U$.

By Table 1, $|G| = |U| = 2^6 \cdot 3^4 \cdot 7 \cdot 13 \cdot 17^3$ and we have $\pi_e(U) = \{1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 16, 17, 18, 24, 32, 34, 48, 51, 91, 96, 102\}$, so by assumption, D(G) = D(U) = (2, 2, 1, 1, 2). Therefore, there exist two possibilities for $\Gamma(G)$ are as follows:

where a, b, r are distinct prime numbers that belong to $\{2, 3, 17\}$. We have to show that G is isomorphic to $U := U_3(17)$ and we break the proof into a sequence of steps.

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is a $\{2, 3\}$ -group. In particular, G is non-solvable.

We consider these two parts separately:

Part A. Consider Figure 1-1, and Figure 1-2 where $r \neq 17$.

First, we show that K is a 17'-group. Assume the contrary and let $17 \in \pi(K)$. Then 13 does not divide the order of K (otherwise, we may suppose that T is a Hall $\{17, 13\}$ -subgroup of K. It is seen that T is a nilpotent subgroup of order 13.17^i for i = 1, 2 or 3. Thus, $13.17 \in \pi_e(K) \subseteq \pi_e(G)$, a contradiction). Thus, $\{17\} \subseteq \pi(K) \subseteq \{2, 3, 7, 17\}$. Let $K_{17} \in \text{Syl}_{17}(K)$ and $N := N_G(K_{17})$. By the Frattini argument, G = KN. Therefore, N contains an element of order 13, say σ . Since G has no element of order 13.17, $\langle \sigma \rangle$ should act fixed point freely on K_{17} , implying $\langle \sigma \rangle K_{17}$ is a Frobenius group. By Lemma 2.3(b), $|\langle \sigma \rangle ||(|K_{17}| - 1)$. It follows that $13|17^i - 1$, for i = 1, 2 or 3, which is a contradiction.

Next, we show that K is a p'-group for $p \in \{13, 7\}$. Let x be an element of K of order p and set

$$C := C_G(x), \quad N := N_G(\langle x \rangle).$$

Let p = 13. According to Figure 1-1, C is a $\{7, 13\}$ -group. Now, using (N/C)-Theorem, the factor group N/C is embedded in Aut $(< x >) \cong \mathbb{Z}_{12}$. Hence N is a $\{2, 3, 7, 13\}$ -group and by the Frattini argument, G = KN then 17 must divide the order of K, which is a contradiction. According to Figure 1-2, C is a $\{r, 13\}$ group, where r = 2 or 3. Therefore, by the same argument, we conclude that Nis a $\{2, 3, 13\}$ -group and by the Frattini argument, 17 must divide the order of K, which is a contradiction, so K is a $\{2, 3, 7\}$ -group.

Let p = 7. According to Figure 1-1, C is a $\{7, 13\}$ -group. Now, using (N/C)-Theorem, the factor group N/C is embedded in Aut $(< x >) \cong \mathbb{Z}_6$. Hence N is a $\{2, 3, 7, 13\}$ -group and by the Frattini argument, G = KN then 17 must divide the order of K, which is a contradiction. According to Figure 1-2, C is a $\{7, a\}$ -

group, where a = 2, 3 or 17. Then by the same argument, we conclude that N is a $\{2, 3, 7\}$ -group for a = 2, 3, and $\{2, 3, 7, 17\}$ -group for a = 17. Now by the Frattini argument, G = KN then 13 must divide the order of K, which is a contradiction. Therefore, K is a $\{2, 3\}$ -group.

Part B. Consider Figure 1-2 where r = 17.

First, we show that K is a 17'-group. Assume the contrary and let $17 \in \pi(K)$. Then 7 does not divide the order of K (otherwise, we may suppose that T is a Hall $\{7, 17\}$ -subgroup of K. It is seen that T is a nilpotent subgroup of order 7.17^i for i = 1, 2 or 3. Thus, $7.17 \in \pi_e(K) \subseteq \pi_e(G)$, a contradiction). Thus, $\{17\} \subseteq \pi(K) \subseteq \{2, 3, 13, 17\}$. Let $K_{17} \in \text{Syl}_{17}(K)$ and $N := N_G(K_{17})$. By the Frattini argument, G = KN. Therefore, N contains an element of order 7, say σ . Since G has no element of order 7.17, $\langle \sigma \rangle$ should act fixed point freely on K_{17} , implying $\langle \sigma \rangle K_{17}$ is a Frobenius group. By Lemma 2.3(b), $|\langle \sigma \rangle || (|K_{17}| - 1)$. It follows that $7|17^i - 1$, for i = 1, 2 or 3, which is a contradiction.

Next, we show that K is a p'-group for $p \in \{13, 7\}$. Let x be an element of K of order p and set

$$C := C_G(x), \qquad N := N_G(\langle x \rangle).$$

Let p = 7. By the prime graph of G, C is a $\{7, a\}$ -group, where a = 2 or 3. Now, using (N/C)-Theorem, the factor group N/C is embedded in Aut $(< x >) \cong \mathbb{Z}_6$. Hence N is a $\{2, 3, 7\}$ -group and by the Frattini argument, G = KN, so 17 must divide the order of K, which is a contradiction. Therefore, K is a $\{2, 3, 13\}$ -group.

Let p = 13. By the prime graph of G, C is a $\{13, 17\}$ -group. Now, using (N/C)-Theorem, the factor group N/C is embedded in $\operatorname{Aut}(\langle x \rangle) \cong \mathbb{Z}_{12}$. Hence N is a $\{2, 3, 13, 17\}$ -group and by the Frattini argument, 7 must divide the order of K, which is a contradiction, so K is a $\{2, 3\}$ -group. In addition since $G \neq K$, G is non-solvable, and this completes the proof of Step 1.

Step 2. The quotient G/K is an almost simple group. In fact, $S \leq G/K \lesssim \operatorname{Aut}(S)$, where S is a finite non-abelian simple group.

Let $\overline{G} = G/K$. Then $S := \operatorname{Soc}(\overline{G}) = P_1 \times P_2 \times \ldots \times P_m$, where P_i 's are finite non-abelian simple groups and $S \leq G/K \leq \operatorname{Aut}(S)$, see [3, Proposition 3.1, Step 2]. In what follows, we will show that m = 1. Suppose that $m \geq 2$. We claim 13 does not divide |S|. Assume the contrary and let 13 |S|, on the other hand, $\{2,3\} \subset \pi(P_i)$ (by Table 1), hence $2 \sim 13$ and $3 \sim 13$, which is a contradiction. Now, by Step 1, we observe that $13 \in \pi(\overline{G}) \subseteq \pi(\operatorname{Aut}(S))$. But $\operatorname{Aut}(S) = \operatorname{Aut}(S_1) \times \operatorname{Aut}(S_2) \times \ldots \times \operatorname{Aut}(S_k)$, where the groups S_j are direct products of isomorphic P_i 's such that $S = S_1 \times S_2 \times \ldots \times S_k$. Therefore, for some j, 13 divides the order of an automorphism group of a direct product S_j of t isomorphic simple groups P_i . Since $P_i \in \mathfrak{S}_{17}$, it follows that $|\operatorname{Out}(P_i)|$ is not divisible by 13 (see Table 1), so 13 does not divide the order of $\operatorname{Aut}(P_i)$. Now, by Lemma 2.2, we obtain $|\operatorname{Aut}(S_j)| = |\operatorname{Aut}(P_i)|^t \cdot t!$. Therefore, $t \geq 13$ and so 2^{26} must divide the order of G, which is a contradiction. Therefore, m = 1 and $S = P_1$, so the proof is completed. **Step 3.** G is isomorphic to $U_3(17)$.

By Table 1 and Step 1, it is evident that $|S| = 2^{\alpha}.3^{\beta}.7.13.17^3$, where $2 \leq \alpha \leq 6$ and $1 \leq \beta \leq 4$. Now, using the collected results contained in Table 1, we deduce that $S \cong U_3(17)$ and by Step 2, we conclude that $U \trianglelefteq G/K \leq \operatorname{Aut}(U)$. As |G| = |U|, we deduce K = 1, so $G \cong U$, and the proof is completed.

Case 2. If M = U : 2, then $G \cong U : 2$.

 $|G| = 2|U| = 2^7 \cdot 3^4 \cdot 7 \cdot 13 \cdot 17^3$ and $\pi_e(U:2) = \{1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 16, 17, 18, 24, 32, 34, 36, 48, 51, 68, 91, 96, 102\}$, so D(G) = D(U:2) = (2, 2, 1, 1, 2), and therefore we conclude that the possibilities for $\Gamma(G)$ are as in Figure 1-1 and Figure 1-2, where a, b, r are distinct prime numbers that belong to $\{2, 3, 17\}$.

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is a $\{2, 3\}$ -group. In particular, G is non-solvable.

By an argument similar to that used in Case 1, we can obtain this assertion.

Step 2. The quotient G/K is an almost simple group. In fact, $S \leq G/K \lesssim Aut(S)$, where S is a finite non-abelian simple group.

The proof is similar to Step 2, in Case 1.

By Table 1 and Step 1, it is evident that $|S| = 2^{\alpha} \cdot 3^{\beta} \cdot 7 \cdot 13 \cdot 17^{3}$, where $2 \leq \alpha \leq 7$ and $1 \leq \beta \leq 4$. Now, using the collected results contained in Table 1, we deduce that $S \cong U_{3}(17)$. Therefore by Step 2, $U \leq G/K \leq \operatorname{Aut}(U)$, which implies that |K| = 1 or 2.

If |K| = 1, then $G \cong U : 2$.

If |K| = 2, then $K \leq Z(G)$ and so deg(2) = 4, which is a contradiction.

Case 3. If M = U : 3, then $G \cong U : 3$, $\mathbb{Z}_3 \times U$ or $\mathbb{Z}_3.U$.

 $|G| = 3|U| = 2^{6}.3^{5}.7.13.17^{3}$ and $\pi_{e}(U:3) = \{1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 16, 17, 18, 21, 24, 32, 34, 36, 39, 48, 51, 72, 91, 96, 102, 144, 153, 273, 288, 306\}$. Thus, we get D(G) = D(U:3) = (2, 4, 2, 2, 2). Therefore we have two possibilities for $\Gamma(G)$:

Figure 2-1

Figure 2-2

where a, b are distinct prime numbers which belong to $\{7, 17\}$.

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is a $\{2, 3\}$ -group. In particular, G is non-solvable.

We consider these two parts separately:

Part A. Consider Figure 2-1, and Figure 2-2 where a = 17 and b = 7.

First, we claim K is a 17'-group. Assume the contrary and let $17 \in \pi(K)$. Then 13 does not divide the order of K (otherwise, we may suppose that T is a Hall $\{17, 13\}$ -subgroup of K. It is seen that T is a nilpotent subgroup of order 13.17^{*i*} for i = 1, 2 or 3. Thus, $13.17 \in \pi_e(K) \subseteq \pi_e(G)$, a contradiction). Thus, $\{17\} \subseteq \pi(K) \subseteq \{2, 3, 7, 17\}$. Let $K_{17} \in \text{Syl}_{17}(K)$ and $N := N_G(K_{17})$. By the Frattini argument, G = KN. Therefore, N contains an element of order 13, say σ . Since G has no element of order 13.17, $\langle \sigma \rangle$ should act fixed point freely on K_{17} , implying $\langle \sigma \rangle K_{17}$ is a Frobenius group. By Lemma 2.3(b), $|\langle \sigma \rangle||(|K_{17}|-1)$. It follows that $13|17^i - 1$, for i = 1, 2 or 3, which is a contradiction.

Next, we show that K is a p'-group for $p \in \{13, 7\}$. Let x be an element of K of order p and set

$$C := C_G(x), \quad N := N_G(\langle x \rangle).$$

Let p = 13. So C is a $\{2, 3, 13\}$ and $\{3, 7, 13\}$ -group, in Figure 2-1 and Figure 2-2 respectively. Now, using (N/C)-Theorem, the factor group N/C is embedded in Aut $(< x >) \cong \mathbb{Z}_{12}$. Hence N is a $\{2, 3, 13\}$ -group in Figure 2-1, and $\{2, 3, 7, 13\}$ -group in Figure 2-2. On the other hand, by the Frattini argument, G = KN. Then 17 must divide the order of K, which is a contradiction.

Let p = 7. According to Figure 2-1, C is a $\{3, 7, 17\}$ -group. Now, using (N/C)-Theorem, the factor group N/C is embedded in Aut $(< x >) \cong \mathbb{Z}_6$. Hence N is a $\{2, 3, 7, 17\}$ -group and by the Frattini argument, G = KN then 13 must divide the order of K, which is a contradiction. According to Figure 2-2, C is a $\{3, 7, 13\}$ -group. Then by a same argument, we conclude that N is a $\{2, 3, 7, 13\}$ -group. Now by the Frattini argument, G = KN then 17 must divide the order of K, which is a contradiction. Therefore, K is a $\{2, 3\}$ -group.

Part B. Consider Figure 2-2, where a = 7 and b = 17.

First, we claim K is a 17'-group. Assume the contrary and let $17 \in \pi(K)$. Then 7 does not divide the order of K (otherwise, we may suppose that T is a Hall {7,17}-subgroup of K. It is seen that T is a nilpotent subgroup of order 7.17ⁱ for i = 1, 2 or 3. Thus, 7.17 $\in \pi_e(K) \subseteq \pi_e(G)$, a contradiction). Thus, $\{17\} \subseteq \pi(K) \subseteq \{2,3,13,17\}$. Let $K_{17} \in \text{Syl}_{17}(K)$ and $N := N_G(K_{17})$. By the Frattini argument, G = KN. Therefore, N contains an element of order 7, say σ . Since G has no element of order 7.17, $\langle \sigma \rangle$ should act fixed point freely on K_{17} , implying $\langle \sigma \rangle K_{17}$ is a Frobenius group. By Lemma 2.3(b), $|\langle \sigma \rangle || (|K_{17}| - 1)$. It follows that $7|17^i - 1$, for i = 1, 2 or 3, which is a contradiction. Therefore, K is a 17'-group.

Next, we show that K is a p'-group for $p \in \{7, 13\}$. Let x be an element of K of order p and set

$$C := C_G(x), \quad N := N_G(\langle x \rangle).$$

Let p = 7. So C is a $\{2, 3, 7\}$ -group. Now, using (N/C)-Theorem, the factor group N/C is embedded in Aut $(< x >) \cong \mathbb{Z}_6$. Hence N is a $\{2, 3, 7\}$ -group and by the Frattini argument, G = KN then 17 must divide the order of K, which is a contradiction.

Let p = 13. Therefore, C is a $\{3, 13, 17\}$ -group. Now, using (N/C)-Theorem, the factor group N/C is embedded in Aut $(< x >) \cong \mathbb{Z}_{12}$. Hence N is a $\{2, 3, 13, 17\}$ -group and by the Frattini argument, G = KN then 7 must divide the order of K,

which is a contradiction. So K is a $\{2,3\}$ -group. In addition since $G \neq K$, G is non-solvable, and this completes the proof of Step 1.

Step 2. The quotient G/K is an almost simple group. In fact, $S \leq G/K \lesssim Aut(S)$, where S is a finite non-abelian simple group.

Similar to Step 1, we consider two parts:

Part A. Consider Figure 2-1, and Figure 2-2 when a = 17 and b = 7. Let $\overline{G} = G/K$. Then $S := \operatorname{Soc}(\overline{G}) = P_1 \times P_2 \times \ldots \times P_m$, where P_i 's are finite non-abelian simple groups and $S \leq G/K \leq \operatorname{Aut}(S)$. In what follows, we will show that m = 1. Suppose that $m \geq 2$. We claim 7 does not divide |S|. Assume the contrary and let $7 \mid |S|$, on the other hand, $\{2,3\} \subset \pi(P_i)$ (by Table 1), hence $2 \sim 7$ and $3 \sim 7$, which is a contradiction. Now, by Step 1, we observe that $7 \in \pi(\overline{G}) \subseteq \pi(\operatorname{Aut}(S))$. But $\operatorname{Aut}(S) = \operatorname{Aut}(S_1) \times \operatorname{Aut}(S_2) \times \ldots \times \operatorname{Aut}(S_k)$, where the groups S_j are direct products of isomorphic P_i 's such that $S = S_1 \times S_2 \times \ldots \times S_k$. Therefore, for some j, 7 divides the order of an automorphism group of a direct product S_j of t isomorphic simple groups P_i . Since $P_i \in \mathfrak{S}_{17}$, it follows that $|\operatorname{Out}(P_i)|$ is not divisible by 7 (see Table 1), so 7 does not divide the order of $\operatorname{Aut}(P_i)$. Now, by Lemma 2.2, we obtain $|\operatorname{Aut}(S_j)| = |\operatorname{Aut}(P_i)|^t$. Therefore, m = 1 and $S = P_1$, so the proof of this part is completed.

Part B. Consider Figure 2-2, when a = 7 and b = 17.

Let G = G/K. Then $S := \operatorname{Soc}(\overline{G}) = P_1 \times P_2 \times \ldots \times P_m$, where P_i 's are finite non-abelian simple groups and $S \leq G/K \leq \operatorname{Aut}(S)$. In what follows, we will show that m = 1. Suppose that $m \geq 2$. We claim 13 does not divide |S|. Assume the contrary and let 13 ||S|, on the other hand, $\{2,3\} \subset \pi(P_i)$ (by Table 1), hence $2 \sim 13$ and $3 \sim 13$, which is a contradiction. Now, by Step 1, we observe that $13 \in \pi(\overline{G}) \subseteq \pi(\operatorname{Aut}(S))$. But $\operatorname{Aut}(S) = \operatorname{Aut}(S_1) \times \operatorname{Aut}(S_2) \times \ldots \times \operatorname{Aut}(S_k)$, where the groups S_j are direct products of isomorphic P_i 's such that $S = S_1 \times S_2 \times \ldots \times S_k$. Therefore, for some j, 13 divides the order of an automorphism group of a direct product S_j of t isomorphic simple groups P_i . Since $P_i \in \mathfrak{S}_{17}$, it follows that $|\operatorname{Out}(P_i)|$ is not divisible by 13 (see Table 1), so 13 does not divide the order of $\operatorname{Aut}(P_i)$. Now, by Lemma 2.2, we obtain $|\operatorname{Aut}(S_j)| = |\operatorname{Aut}(P_i)|^t \cdot t!$. Therefore, $t \geq 13$ and so 2^{26} must divide the order of G, which is a contradiction. Therefore, m = 1 and $S = P_1$, so the proof is completed.

Now by Table 1 and Step 1, it is evident that $|S| = 2^{\alpha}.3^{\beta}.7.13.17^3$, where $2 \leq \alpha \leq 6$ and $1 \leq \beta \leq 5$. By using the collected results contained in Table 1, we deduce that $S \cong U_3(17)$ and by Step 2, we conclude that $U \trianglelefteq G/K \leq \operatorname{Aut}(U)$. Hence, |K| = 1 or 3.

If |K| = 1, then $G \cong U : 3$.

If |K| = 3, then $G/K \cong U$. In this case we have $G/C_G(K) \lesssim \operatorname{Aut}(K) \cong \mathbb{Z}_2$. Thus, $|G/C_G(K)| = 1$ or 2. If $|G/C_G(K)| = 1$, then $K \leq Z(G)$, that is, G is a central extension of \mathbb{Z}_3 by U. If G splits over K, we obtain $G \cong \mathbb{Z}_3 \times U$, otherwise, we have $G \cong \mathbb{Z}_3.U$. If $|G/C_G(K)| = 2$, then $K \subset C_G(K)$ and $1 \neq 1$ $C_G(K)/K \leq G/K \cong U$. Thus, we obtain $G = C_G(K)$ because U is simple, which is a contradiction.

Case 4. If $M = U : \mathbb{S}_3$, then $G \cong U : \mathbb{S}_3$, $\mathbb{Z}_3 \times (U : 2)$, $\mathbb{Z}_3.(U : 2)$, $(\mathbb{Z}_3 \times U).\mathbb{Z}_2$ or $(\mathbb{Z}_3.U).\mathbb{Z}_2$.

 $|G| = 6|U| = 2^7 \cdot 3^5 \cdot 7 \cdot 13 \cdot 17^3$ and $\pi_e(U : \mathbb{S}_3) = \{1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 16, 17, 18, 21, 24, 32, 34, 36, 39, 48, 51, 68, 72, 91, 96, 102, 144, 153, 273, 288, 306\}$, so $D(G) = D(U : \mathbb{S}_3) = (2, 4, 2, 2, 2)$, and therefore we conclude that there exist two possibilities for the prime graph of G presented by Figure 2-1 and Figure 2-2, where a, b are distinct prime numbers which belong to $\{7, 17\}$.

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is a $\{2, 3\}$ -group. In particular, G is non-solvable.

We can prove this by the similar way to that in Case 3.

Step 2. The quotient G/K is an almost simple group. In fact, $S \leq G/K \lesssim Aut(S)$, where S is a finite non-abelian simple group.

The proof is similar to Step 2, in Case 3.

Now by Table 1 and Step 1, it is evident that $|S| = 2^{\alpha}.3^{\beta}.7.13.17^3$, where $2 \leq \alpha \leq 7$ and $1 \leq \beta \leq 5$. By using the collected results contained in Table 1, we deduce that $S \cong U_3(17)$ and by Step 2, we conclude that $U \trianglelefteq G/K \leq \operatorname{Aut}(U)$. Hence, |K| = 1, 2, 3 or 6.

If |K| = 1, then $G \cong U : \mathbb{S}_3$.

If |K| = 2, then $K \leq Z(G)$. It follows that deg(2) = 4, which is a contradiction.

If |K| = 3, then $G/K \cong U : 2$. In this case, we have $G/C_G(K) \lesssim \operatorname{Aut}(K) \cong \mathbb{Z}_2$. Thus, $|G/C_G(K)| = 1$ or 2. If $|G/C_G(K)| = 1$, then $K \leq Z(G)$, that is, G is a central extension of \mathbb{Z}_3 by U : 2. If G splits over K, we obtain $G \cong \mathbb{Z}_3 \times (U : 2)$, otherwise, we have $G \cong \mathbb{Z}_3.(U : 2)$. If $|G/C_G(K)| = 2$, then $K \subset C_G(K)$ and $1 \neq C_G(K)/K \leq G/K \cong U : 2$ and we obtain $C_G(K)/K \cong U$. Because $K \leq Z(C_G(K)), C_G(K)$ is a central extension of K by U. Thus, $C_G(K) \cong \mathbb{Z}_3 \times U$ or $\mathbb{Z}_3.U$. Therefore, $G \cong (\mathbb{Z}_3 \times U).\mathbb{Z}_2$ or $(\mathbb{Z}_3.U).\mathbb{Z}_2$.

If |K| = 6, then $G/K \cong U$ and $K \cong \mathbb{Z}_6$ or \mathbb{S}_3 .

If $K \cong \mathbb{Z}_6$, then $G/C_G(K) \lesssim \mathbb{Z}_2$ and so $|G/C_G(K)| = 1$ or 2. If $|G/C_G(K)| = 1$, then $K \leq Z(G)$. It follows that deg(2) = 4, a contradiction. If $|G/C_G(K)| = 2$, then $K \subset C_G(K)$ and $1 \neq C_G(K)/K \trianglelefteq G/K \cong U$, which is a contradiction because U is simple.

If $K \cong \mathbb{S}_3$, then $K \cap C_G(K) = 1$ and $G/C_G(K) \lesssim \mathbb{S}_3$. Thus, $C_G(K) \neq 1$. Hence, $1 \neq C_G(K) \cong C_G(K)K/K \trianglelefteq G/K \cong U$. It follows that $U \cong G/K \cong C_G(K)$ because U is simple. Therefore, $G \cong \mathbb{S}_3 \times U$, which implies that deg(2) = 4, a contradiction. The proof of Theorem 3.1 is completed. \Box

Acknowledgement. The authors would like to thank professor Alexander Hulpke for sending us the set of element orders of all possible extensions of $U_3(17)$ by outer automorphisms.

References

- [1] D. Gorenstein, Finite Groups, New York: Harper and Row, 1980.
- [2] A. R. Moghaddamfar, A. R. Zokayi and M. R. Darafsheh, A characterization of finite simple groups by the degrees of vertices of their prime graphs, Algebra Coll. 12 (2005), 431 442.
- [3] G. R. Rezaeezadeh, M. R. Darafsheh, M. Sajjadi and M. Bibak, *OD*-Characterization of almost simple groups related to $L_3(25)$, Bull. Iranian Math. Soc. (2013), inprint.
- [4] J. S. Robinson Derek, A Course in the Theory of Groups, Springer-Verlag, 2003.
- [5] Y. Yan, G. Chen and L. Wang, OD-Characterization of the automorphism groups of O[±]₁₀(2), Indian J. Pure Appl. Math. 43 (2012), 183 - 195.
- [6] A. Zavarnitsin, Finite simple groups with narrow prime spectru, Sibirskie Elektronnye Mat. Izv. 6 (2009), 1-12.
- [7] L. C. Zhang and W. J. Shi, OD-Characterization of almost simple groups related to L₂(49), Archivum Math. (Brno) 44 (2008), 191 - 199.
- [8] L. C. Zhang and W. J. Shi, OD-Characterization of almost simple groups related to U₃(5), Acta Math. Sinica, English Series 26 (2010), 161 – 168.
- [9] L. C. Zhang and W. J. Shi, OD-Characterization of almost simple groups related to U₆(2), Acta Math. Scientia **31B** (2011), 441-450.

Received August 13, 2012

M. R. Darafsheh

School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran

E-mail: darafsheh@ut.ac.ir

G. R. Rezaeezadeh, M. Sajjadi, M. Bibak

Faculty of Basic Science, Department of Mathematics, Shahrekord University, Shahrekord, Iran E-mails: rezaeezadeh@sci.sku.ac.ir, sajadi_mas@yahoo.com, m.bibak62@gmail.com