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OD-Characterization of almost simple groups

related to U3(17)

Mohammad R. Darafsheh, Gholamreza Rezaeezadeh,

Masoumeh Sajjadi and Masoumeh Bibak

Abstract. We characterize groups with the same order and degree pattern as an almost simple
groups related to U3(17).

1. Introduction

Let G be a �nite group. For any group G, we denote by πe(G) the set of orders of its
elements and by π(G) the set of prime divisors of |G|. Let π(G) = {p1, p2, . . . , pk}.
The prime graph Γ(G) of a group G is the graph whose vertex set is π(G) and
two distinct primes p and q are joined by an edge (we write p ∼ q) if and only if
G contains an element of order pq (pq ∈ πe(G)). For p ∈ π(G), we put deg(p) :=
|{q ∈ π(G)|p ∼ q}|, which is called the degree of p. If |G| = pα1

1 pα2
2 · · · pαk

k we de�ne
D(G) := (deg(p1), deg(p2), . . . , deg(pk)), where p1 < p2 < . . . < pk, to be called
the degree pattern of G. A group G is called k-fold OD-characterizable if there
exist exactly k non-isomorphic �nite groups having the same order and degree
pattern as G. In particular, a 1-fold OD-characterizable group is simply called
OD-characterizable. A group G is said to be an almost simple group related to S
if and only if S E G . Aut(S) for some non-abelian simple group S. In a series
of articles, it has been proved, up to now, that many �nite almost simple groups
are OD-characterizable or k-fold OD-characterizable for k > 2, for instance see
[2, 3, 5, 7, 8, 9]. In this paper U := U3(17) and Aut(U) ∼= U : S3 and we show
that U and U : 2 are OD-characterizable, also U : 3 and U : S3 are 3-fold and 5-
fold OD-characterizable respectively (H.K means an extension of a group H by a
group K and H : K denotes split extension). We denote the socle of G by Soc(G),
which is the subgroup generated by the set of all minimal normal subgroups of G.
For p ∈ π(G), we denote by Gp and Sylp(G) a Sylow p-subgroup of G and the set
of all Sylow p-subgroups of G respectively, all further unexplained notation are
standard and can be found in [4].

Throughout this article, all groups under consideration are �nite.
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2. Lemmas

It is well-known that Aut(U3(17)) ∼= U3(17) : S3, hence the following lemma follows
from de�nition.

Lemma 2.1. If G is an almost simple group related to U := U3(17), then G is
isomorphic to one of the following groups: U, U : 2, U : 3 or U : S3.

G is said to be completely reducible group if and only if either G = 1 or G is
the direct product of a �nite number of simple groups. A completely reducible
group will be called a CR-group. A CR-group has trivial center if and only if
it is a direct product of non-abelian simple groups and in this case, it has been
named a centerless CR-group. The following lemma determines the structure of
the automorphism group of a centerless CR-group.

Lemma 2.2. ([4], Theorem 3.3.20) Let R be a �nite centerless CR-group and
write R = R1 × R2 × . . . × Rk, where Ri is a direct product of ni isomorphic
copies of a simple group Hi, and Hi and Hj are not isomorphic if i 6= j. Then
Aut(R) = Aut(R1)×Aut(R2)× . . .×Aut(Rk) and Aut(Ri) ∼= Aut(Hi) oSni , where
in this wreath product Aut(Hi) appears in its right regular representation and the
symmetric group Sni

in its natural permutation representation. Moreover, these
isomorphisms induce isomorphisms Out(R) ∼= Out(R1)×Out(R2)× . . .× Out(Rk)
and Out(Ri) ∼= Out(Hi) o Sni .

Let p > 5 be a prime. We denote by Sp the set of all simple groups with prime
divisors at most p. Clearly, if q 6 p then Sq ⊆ Sp. We list all the simple groups
in class S17 in Table 1 below, taken from [6].

Table 1: Simple groups in Sp, p 6 17.

S |S| |Out(S)| S |S| |Out(S)|

A5 22 · 3 · 5 2 A10 27 · 34 · 52 · 7 2

A6 23 · 32 · 5 4 U4(3) 27 · 36 · 5 · 7 8

S4(3) 26 · 34 · 5 2 S4(7) 28 · 32 · 52 · 74 2

L2(7) 23 · 3 · 7 2 S6(2) 29 · 34 · 5 · 7 1

L2(8) 23 · 32 · 7 3 O+
8 (2) 212 · 35 · 52 · 7 6

U3(3) 25 · 33 · 7 2 L2(11) 22 · 3 · 5 · 11 2

A7 23 · 32 · 5 · 7 2 M11 24 · 32 · 5 · 11 1

L2(49) 24 · 3 · 52 · 72 4 M12 26 · 33 · 5 · 11 2

U3(5) 24 · 32 · 53 · 7 6 U5(2) 210 · 35 · 5 · 11 2

L3(4) 26 · 32 · 5 · 7 12 M22 27 · 32 · 5 · 7 · 11 2

A8 26 · 32 · 5 · 7 2 A11 27 · 34 · 52 · 7 · 11 2

A9 26 · 34 · 5 · 7 2 McL 27 · 36 · 53 · 7 · 11 2

J2 27 · 33 · 52 · 7 2 HS 29 · 32 · 53 · 7 · 11 2

A12 29 · 35 · 52 · 7 · 11 2 A15 210 · 36 · 53 · 72 · 11 · 13 2

U6(2) 215 · 36 · 5 · 7 · 11 6 L6(3) 211 · 315 · 5 · 7 · 112 · 132 4
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(continued)

S |S| |Out(S)| S |S| |Out(S)|

L3(3) 24 · 33 · 13 2 Suz 213 · 37 · 52 · 7 · 11 · 13 2

L2(25) 23 · 3 · 52 · 13 4 A16 214 · 36 · 53 · 72 · 11 · 13 2

U3(4) 26 · 3 · 52 · 13 4 Fi22 217 · 39 · 52 · 7 · 11 · 13 2

S4(5) 26 · 32 · 54 · 13 2 L2(17) 24 · 32 · 17 2

L4(3) 27 · 36 · 5 · 13 4 L2(16) 24 · 3 · 5 · 17 4

2F4(2)
′

211 · 33 · 52 · 13 2 S4(4) 28 · 32 · 52 · 17 4

L2(13) 22 · 3 · 7 · 13 2 He 210 · 33 · 52 · 73 · 17 2

L2(27) 22 · 33 · 7 · 13 6 O−
8 (2) 212 · 34 · 5 · 7 · 17 2

G2(3) 26 · 36 · 7 · 13 2 L4(4) 212 · 34 · 52 · 7 · 17 4

3D4(2) 212 · 34 · 72 · 13 3 S8(2) 216 · 35 · 52 · 7 · 17 1

Sz(8) 26 · 5 · 7 · 13 3 O−
10(2) 220 · 36 · 52 · 7 · 11 · 17 2

L2(64) 26 · 32 · 5 · 7 · 13 6 F4(2) 224 · 36 · 52 · 72 · 13 · 17 2

U4(5) 27 · 34 · 56 · 7 · 13 4 U4(4) 212 · 32 · 53 · 13 · 17 4

L3(9) 27 · 36 · 5 · 7 · 13 4 S6(4) 218 · 34 · 53 · 7 · 13 · 17 2

S6(3) 29 · 39 · 5 · 7 · 13 2 O+
8 (4) 224 · 35 · 54 · 7 · 13 · 172 12

O7(3) 29 · 39 · 5 · 7 · 13 2 L3(16) 212 · 32 · 52 · 7 · 13 · 17 24

G2(4) 212 · 33 · 52 · 7 · 13 2 S4(13) 26 · 32 · 5 · 72 · 134 · 17 2

S4(8) 212 · 34 · 5 · 72 · 13 6 L2(13
2) 23 · 3 · 5 · 7 · 132 · 17 4

O+
8 (3) 212 · 312 · 52 · 7 · 13 24 U3(17) 26 · 34 · 7 · 13 · 173 6

L5(3) 29 · 310 · 5 · 112 · 13 2 A17 214 · 36 · 53 · 72 · 11 · 13 · 17 2

A13 29 · 35 · 52 · 7 · 11 · 13 2 A18 215 · 38 · 53 · 72 · 11 · 13 · 17 2

A14 210 · 35 · 52 · 72 · 11 · 13 2

Lemma 2.3. ([1], Theorem 10.3.1) Let G be a Frobenius group with kernel K and
complement H. Then

(a) K is a nilpotent group,
(b) |K| ≡ 1(mod|H|).

3. Almost simple groups related to U3(17)

Theorem 3.1. Let M be an almost simple group related to U := U3(17). If G is a
�nite group such that D(G) = D(M) and |G| = |M |, then the following assertions
hold:

(a) If M = U, then G ∼= U.
(b) If M = U : 2, then G ∼= U : 2.
(c) If M = U : 3, then G ∼= U : 3, Z3 × U or Z3.U .
(d) If M = U : S3, then G ∼= U : S3, Z3 × (U : 2), Z3.(U : 2), (Z3 × U).Z2

or (Z3.U).Z2.
In particular, U and U : 2 are OD-characterizable, U : 3 is 3-fold OD-charac-

terizable and U : S3 is 5-fold OD-characterizable.
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Proof. We break the proof into a number of separate cases. Note that the set of
order elements in each of the following cases is calculated using GAP.
Case 1. If M = U , then G ∼= U.

By Table 1, |G| = |U | = 26.34.7.13.173 and we have πe(U) = {1, 2, 3, 4, 6, 7, 8, 9,
12, 13, 16, 17, 18, 24, 32, 34, 48, 51, 91, 96, 102}, so by assumption, D(G) = D(U) =
(2, 2, 1, 1, 2). Therefore, there exist two possibilities for Γ(G) are as follows:

• •• • ••• ••

•

7 ba r 13132 73

17

Figure 1-1 Figure 1-2

where a, b, r are distinct prime numbers that belong to {2, 3, 17}. We have to
show that G is isomorphic to U := U3(17) and we break the proof into a sequence
of steps.

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is a
{2, 3}-group. In particular, G is non-solvable.
We consider these two parts separately:

Part A. Consider Figure 1-1, and Figure 1-2 where r 6= 17.
First, we show that K is a 17

′
-group. Assume the contrary and let 17 ∈ π(K).

Then 13 does not divide the order of K (otherwise, we may suppose that T is a
Hall {17, 13}-subgroup of K. It is seen that T is a nilpotent subgroup of order
13.17i for i = 1, 2 or 3. Thus, 13.17 ∈ πe(K) ⊆ πe(G), a contradiction). Thus,
{17} ⊆ π(K) ⊆ {2, 3, 7, 17}. Let K17 ∈ Syl17(K) and N := NG(K17). By the
Frattini argument, G = KN . Therefore, N contains an element of order 13, say
σ. Since G has no element of order 13.17, 〈σ〉 should act �xed point freely on
K17, implying 〈σ〉K17 is a Frobenius group. By Lemma 2.3(b), |〈σ〉||(|K17| − 1).
It follows that 13|17i − 1, for i = 1, 2 or 3, which is a contradiction.
Next, we show that K is a p

′
-group for p ∈ {13, 7}. Let x be an element of K of

order p and set
C := CG(x), N := NG(< x >).

Let p = 13. According to Figure 1-1, C is a {7, 13}-group. Now, using (N/C)-
Theorem, the factor group N/C is embedded in Aut(< x >) ∼= Z12. Hence N is
a {2, 3, 7, 13}-group and by the Frattini argument, G = KN then 17 must divide
the order of K, which is a contradiction. According to Figure 1-2, C is a {r, 13}-
group, where r = 2 or 3. Therefore, by the same argument, we conclude that N
is a {2, 3, 13}-group and by the Frattini argument, 17 must divide the order of K,
which is a contradiction, so K is a {2, 3, 7}-group.

Let p = 7. According to Figure 1-1, C is a {7, 13}-group. Now, using (N/C)-
Theorem, the factor group N/C is embedded in Aut(< x >) ∼= Z6. Hence N is
a {2, 3, 7, 13}-group and by the Frattini argument, G = KN then 17 must divide
the order of K, which is a contradiction. According to Figure 1-2, C is a {7, a}-



OD-Characterization of almost simple groups related to U3(17) 53

group, where a = 2, 3 or 17. Then by the same argument, we conclude that N is a
{2, 3, 7}-group for a = 2, 3, and {2, 3, 7, 17}-group for a = 17. Now by the Frattini
argument, G = KN then 13 must divide the order of K, which is a contradiction.
Therefore, K is a {2, 3}-group.

Part B. Consider Figure 1-2 where r = 17.
First, we show that K is a 17

′
-group. Assume the contrary and let 17 ∈ π(K).

Then 7 does not divide the order of K (otherwise, we may suppose that T is a
Hall {7, 17}-subgroup of K. It is seen that T is a nilpotent subgroup of order
7.17i for i = 1, 2 or 3. Thus, 7.17 ∈ πe(K) ⊆ πe(G), a contradiction). Thus,
{17} ⊆ π(K) ⊆ {2, 3, 13, 17}. Let K17 ∈ Syl17(K) and N := NG(K17). By the
Frattini argument, G = KN . Therefore, N contains an element of order 7, say
σ. Since G has no element of order 7.17, 〈σ〉 should act �xed point freely on K17,
implying 〈σ〉K17 is a Frobenius group. By Lemma 2.3(b), |〈σ〉||(|K17| − 1). It
follows that 7|17i − 1, for i = 1, 2 or 3, which is a contradiction.
Next, we show that K is a p

′
-group for p ∈ {13, 7}. Let x be an element of K of

order p and set
C := CG(x), N := NG(< x >).

Let p = 7. By the prime graph of G, C is a {7, a}-group, where a = 2 or 3. Now,
using (N/C)-Theorem, the factor group N/C is embedded in Aut(< x >) ∼= Z6.
Hence N is a {2, 3, 7}-group and by the Frattini argument, G = KN , so 17 must
divide the order of K, which is a contradiction. Therefore, K is a {2, 3, 13}-group.

Let p = 13. By the prime graph of G, C is a {13, 17}-group. Now, using
(N/C)-Theorem, the factor group N/C is embedded in Aut(< x >) ∼= Z12. Hence
N is a {2, 3, 13, 17}-group and by the Frattini argument, 7 must divide the order
of K, which is a contradiction, so K is a {2, 3}-group. In addition since G 6= K,
G is non-solvable, and this completes the proof of Step 1.

Step 2. The quotient G/K is an almost simple group. In fact, S ≤ G/K .
Aut(S), where S is a �nite non-abelian simple group.

Let G = G/K. Then S := Soc(G) = P1 × P2 × . . . × Pm, where Pi's are
�nite non-abelian simple groups and S ≤ G/K . Aut(S), see [3, Proposition
3.1, Step 2]. In what follows, we will show that m = 1. Suppose that m > 2.
We claim 13 does not divide |S|. Assume the contrary and let 13 | |S|, on the
other hand, {2, 3} ⊂ π(Pi) (by Table 1), hence 2 ∼ 13 and 3 ∼ 13, which is a
contradiction. Now, by Step 1, we observe that 13 ∈ π(G) ⊆ π(Aut(S)). But
Aut(S) = Aut(S1) × Aut(S2) × . . . × Aut(Sk), where the groups Sj are direct
products of isomorphic Pi's such that S = S1 × S2 × . . . × Sk. Therefore, for
some j, 13 divides the order of an automorphism group of a direct product Sj of
t isomorphic simple groups Pi. Since Pi ∈ S17, it follows that |Out(Pi)| is not
divisible by 13 (see Table 1), so 13 does not divide the order of Aut(Pi). Now,
by Lemma 2.2, we obtain |Aut(Sj)| = |Aut(Pi)|t.t! . Therefore, t > 13 and so
226 must divide the order of G, which is a contradiction. Therefore, m = 1 and
S = P1, so the proof is completed.
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Step 3. G is isomorphic to U3(17).
By Table 1 and Step 1, it is evident that |S| = 2α.3β .7.13.173, where 2 6 α 6 6

and 1 6 β 6 4. Now, using the collected results contained in Table 1, we deduce
that S ∼= U3(17) and by Step 2, we conclude that U E G/K . Aut(U). As
|G| = |U |, we deduce K = 1, so G ∼= U , and the proof is completed.

Case 2. If M = U : 2, then G ∼= U : 2.
|G| = 2|U | = 27.34.7.13.173 and πe(U : 2) = {1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 16, 17, 18,

24, 32, 34, 36, 48, 51, 68, 91, 96, 102}, so D(G) = D(U : 2) = (2, 2, 1, 1, 2), and there-
fore we conclude that the possibilities for Γ(G) are as in Figure 1-1 and Figure
1-2, where a, b, r are distinct prime numbers that belong to {2, 3, 17}.

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is a
{2, 3}-group. In particular, G is non-solvable.

By an argument similar to that used in Case 1, we can obtain this assertion.

Step 2. The quotient G/K is an almost simple group. In fact, S ≤ G/K .
Aut(S), where S is a �nite non-abelian simple group.

The proof is similar to Step 2, in Case 1.
By Table 1 and Step 1, it is evident that |S| = 2α.3β .7.13.173, where 2 6 α 6 7
and 1 6 β 6 4. Now, using the collected results contained in Table 1, we deduce
that S ∼= U3(17). Therefore by Step 2, U E G/K . Aut(U), which implies that
|K| = 1 or 2.

If |K| = 1, then G ∼= U : 2.
If |K| = 2, then K ≤ Z(G) and so deg(2) = 4, which is a contradiction.

Case 3. If M = U : 3, then G ∼= U : 3, Z3 × U or Z3.U .
|G| = 3|U | = 26.35.7.13.173 and πe(U : 3) = {1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 16, 17,

18, 21, 24, 32, 34, 36, 39, 48, 51, 72, 91, 96, 102, 144, 153, 273, 288, 306}. Thus, we get
D(G) = D(U : 3) = (2, 4, 2, 2, 2). Therefore we have two possibilities for Γ(G):

•• •• ••

• • • •

1317 33 a13

2 7 b 2

Figure 2-1 Figure 2-2

where a, b are distinct prime numbers which belong to {7, 17}.

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is a
{2, 3}-group. In particular, G is non-solvable.
We consider these two parts separately:

Part A. Consider Figure 2-1, and Figure 2-2 where a = 17 and b = 7.
First, we claim K is a 17

′
-group. Assume the contrary and let 17 ∈ π(K).

Then 13 does not divide the order of K (otherwise, we may suppose that T is a
Hall {17, 13}-subgroup of K. It is seen that T is a nilpotent subgroup of order
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13.17i for i = 1, 2 or 3. Thus, 13.17 ∈ πe(K) ⊆ πe(G), a contradiction). Thus,
{17} ⊆ π(K) ⊆ {2, 3, 7, 17}. Let K17 ∈ Syl17(K) and N := NG(K17). By the
Frattini argument, G = KN . Therefore, N contains an element of order 13, say
σ. Since G has no element of order 13.17, 〈σ〉 should act �xed point freely on
K17, implying 〈σ〉K17 is a Frobenius group. By Lemma 2.3(b), |〈σ〉||(|K17| − 1).
It follows that 13|17i − 1, for i = 1, 2 or 3, which is a contradiction.

Next, we show that K is a p
′
-group for p ∈ {13, 7}. Let x be an element of K

of order p and set
C := CG(x), N := NG(< x >).

Let p = 13. So C is a {2, 3, 13} and {3, 7, 13}-group, in Figure 2-1 and Figure
2-2 respectively. Now, using (N/C)-Theorem, the factor group N/C is embedded
in Aut(< x >) ∼= Z12. Hence N is a {2, 3, 13}-group in Figure 2-1, and {2, 3, 7, 13}-
group in Figure 2-2. On the other hand, by the Frattini argument, G = KN . Then
17 must divide the order of K, which is a contradiction.

Let p = 7. According to Figure 2-1, C is a {3, 7, 17}-group. Now, using (N/C)-
Theorem, the factor group N/C is embedded in Aut(< x >) ∼= Z6. Hence N is
a {2, 3, 7, 17}-group and by the Frattini argument, G = KN then 13 must divide
the order of K, which is a contradiction. According to Figure 2-2, C is a {3, 7, 13}-
group. Then by a same argument, we conclude that N is a {2, 3, 7, 13}-group. Now
by the Frattini argument, G = KN then 17 must divide the order of K, which is
a contradiction. Therefore, K is a {2, 3}-group.

Part B. Consider Figure 2-2, where a = 7 and b = 17.
First, we claim K is a 17

′
-group. Assume the contrary and let 17 ∈ π(K).

Then 7 does not divide the order of K (otherwise, we may suppose that T is a
Hall {7, 17}-subgroup of K. It is seen that T is a nilpotent subgroup of order
7.17i for i = 1, 2 or 3. Thus, 7.17 ∈ πe(K) ⊆ πe(G), a contradiction). Thus,
{17} ⊆ π(K) ⊆ {2, 3, 13, 17}. Let K17 ∈ Syl17(K) and N := NG(K17). By the
Frattini argument, G = KN . Therefore, N contains an element of order 7, say
σ. Since G has no element of order 7.17, 〈σ〉 should act �xed point freely on K17,
implying 〈σ〉K17 is a Frobenius group. By Lemma 2.3(b), |〈σ〉||(|K17| − 1). It
follows that 7|17i − 1, for i = 1, 2 or 3, which is a contradiction. Therefore, K is
a 17

′
-group.

Next, we show that K is a p
′
-group for p ∈ {7, 13}. Let x be an element of K

of order p and set
C := CG(x), N := NG(< x >).

Let p = 7. So C is a {2, 3, 7}-group. Now, using (N/C)-Theorem, the factor
group N/C is embedded in Aut(< x >) ∼= Z6. Hence N is a {2, 3, 7}-group and
by the Frattini argument, G = KN then 17 must divide the order of K, which is
a contradiction.

Let p = 13. Therefore, C is a {3, 13, 17}-group. Now, using (N/C)-Theorem,
the factor group N/C is embedded in Aut(< x >) ∼= Z12. Hence N is a {2, 3, 13, 17}-
group and by the Frattini argument, G = KN then 7 must divide the order of K,
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which is a contradiction. So K is a {2, 3}-group. In addition since G 6= K, G is
non-solvable, and this completes the proof of Step 1.

Step 2. The quotient G/K is an almost simple group. In fact, S ≤ G/K .
Aut(S), where S is a �nite non-abelian simple group.

Similar to Step 1, we consider two parts:
Part A. Consider Figure 2-1, and Figure 2-2 when a = 17 and b = 7.

Let G = G/K. Then S := Soc(G) = P1 × P2 × . . . × Pm, where Pi's are �nite
non-abelian simple groups and S ≤ G/K . Aut(S). In what follows, we will show
that m = 1. Suppose that m > 2. We claim 7 does not divide |S|. Assume the
contrary and let 7 | |S|, on the other hand, {2, 3} ⊂ π(Pi) (by Table 1), hence
2 ∼ 7 and 3 ∼ 7, which is a contradiction. Now, by Step 1, we observe that
7 ∈ π(G) ⊆ π(Aut(S)). But Aut(S) = Aut(S1)×Aut(S2)× . . .×Aut(Sk), where
the groups Sj are direct products of isomorphic Pi's such that S = S1×S2×. . .×Sk.
Therefore, for some j, 7 divides the order of an automorphism group of a direct
product Sj of t isomorphic simple groups Pi. Since Pi ∈ S17, it follows that
|Out(Pi)| is not divisible by 7 (see Table 1), so 7 does not divide the order of
Aut(Pi). Now, by Lemma 2.2, we obtain |Aut(Sj)| = |Aut(Pi)|t.t!. Therefore,
t > 7 and so 214 must divide the order of G, which is a contradiction. Therefore,
m = 1 and S = P1, so the proof of this part is completed.

Part B. Consider Figure 2-2, when a = 7 and b = 17.
Let G = G/K. Then S := Soc(G) = P1 × P2 × . . . × Pm, where Pi's are �nite
non-abelian simple groups and S ≤ G/K . Aut(S). In what follows, we will show
that m = 1. Suppose that m > 2. We claim 13 does not divide |S|. Assume the
contrary and let 13 | |S|, on the other hand, {2, 3} ⊂ π(Pi) (by Table 1), hence
2 ∼ 13 and 3 ∼ 13, which is a contradiction. Now, by Step 1, we observe that
13 ∈ π(G) ⊆ π(Aut(S)). But Aut(S) = Aut(S1)×Aut(S2)× . . .×Aut(Sk), where
the groups Sj are direct products of isomorphic Pi's such that S = S1×S2×. . .×Sk.
Therefore, for some j, 13 divides the order of an automorphism group of a direct
product Sj of t isomorphic simple groups Pi. Since Pi ∈ S17, it follows that
|Out(Pi)| is not divisible by 13 (see Table 1), so 13 does not divide the order of
Aut(Pi). Now, by Lemma 2.2, we obtain |Aut(Sj)| = |Aut(Pi)|t.t! . Therefore,
t > 13 and so 226 must divide the order of G, which is a contradiction. Therefore,
m = 1 and S = P1, so the proof is completed.

Now by Table 1 and Step 1, it is evident that |S| = 2α.3β .7.13.173, where
2 6 α 6 6 and 1 6 β 6 5. By using the collected results contained in Table 1,
we deduce that S ∼= U3(17) and by Step 2, we conclude that U E G/K . Aut(U).
Hence, |K| = 1 or 3.

If |K| = 1, then G ∼= U : 3.
If |K| = 3, then G/K ∼= U . In this case we have G/CG(K) . Aut(K) ∼= Z2.

Thus, |G/CG(K)| = 1 or 2. If |G/CG(K)| = 1, then K ≤ Z(G), that is, G
is a central extension of Z3 by U . If G splits over K, we obtain G ∼= Z3 × U ,
otherwise, we have G ∼= Z3.U . If |G/CG(K)| = 2, then K ⊂ CG(K) and 1 6=
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CG(K)/K E G/K ∼= U . Thus, we obtain G = CG(K) because U is simple, which
is a contradiction.

Case 4. If M = U : S3, then G ∼= U : S3, Z3 × (U : 2), Z3.(U : 2), (Z3 ×U).Z2

or (Z3.U).Z2.
|G| = 6|U | = 27.35.7.13.173 and πe(U : S3) = {1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 16, 17,

18, 21, 24, 32, 34, 36, 39, 48, 51, 68, 72, 91, 96, 102, 144, 153, 273, 288, 306}, so D(G) =
D(U : S3) = (2, 4, 2, 2, 2), and therefore we conclude that there exist two possibil-
ities for the prime graph of G presented by Figure 2-1 and Figure 2-2, where a, b
are distinct prime numbers which belong to {7, 17}.

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is a
{2, 3}-group. In particular, G is non-solvable.

We can prove this by the similar way to that in Case 3.

Step 2. The quotient G/K is an almost simple group. In fact, S ≤ G/K .
Aut(S), where S is a �nite non-abelian simple group.

The proof is similar to Step 2, in Case 3.

Now by Table 1 and Step 1, it is evident that |S| = 2α.3β .7.13.173, where
2 6 α 6 7 and 1 6 β 6 5. By using the collected results contained in Table 1,
we deduce that S ∼= U3(17) and by Step 2, we conclude that U E G/K . Aut(U).
Hence, |K| = 1, 2, 3 or 6.

If |K| = 1, then G ∼= U : S3.
If |K| = 2, then K ≤ Z(G). It follows that deg(2) = 4, which is a contradiction.
If |K| = 3, then G/K ∼= U : 2. In this case, we have G/CG(K) . Aut(K) ∼= Z2.

Thus, |G/CG(K)| = 1 or 2. If |G/CG(K)| = 1, then K ≤ Z(G), that is, G is a
central extension of Z3 by U : 2. If G splits over K, we obtain G ∼= Z3 × (U : 2),
otherwise, we have G ∼= Z3.(U : 2). If |G/CG(K)| = 2, then K ⊂ CG(K) and
1 6= CG(K)/K E G/K ∼= U : 2 and we obtain CG(K)/K ∼= U . Because K ≤
Z(CG(K)), CG(K) is a central extension of K by U . Thus, CG(K) ∼= Z3 × U or
Z3.U . Therefore, G ∼= (Z3 × U).Z2 or (Z3.U).Z2.
If |K| = 6, then G/K ∼= U and K ∼= Z6 or S3.

If K ∼= Z6, then G/CG(K) . Z2 and so |G/CG(K)| = 1 or 2. If |G/CG(K)| =
1, then K ≤ Z(G). It follows that deg(2) = 4, a contradiction. If |G/CG(K)| = 2,
then K ⊂ CG(K) and 1 6= CG(K)/KEG/K ∼= U , which is a contradiction because
U is simple.

If K ∼= S3, then K ∩ CG(K) = 1 and G/CG(K) . S3. Thus, CG(K) 6= 1.
Hence, 1 6= CG(K) ∼= CG(K)K/KEG/K ∼= U . It follows that U ∼= G/K ∼= CG(K)
because U is simple. Therefore, G ∼= S3 × U , which implies that deg(2) = 4, a
contradiction. The proof of Theorem 3.1 is completed.

Acknowledgement. The authors would like to thank professor Alexander
Hulpke for sending us the set of element orders of all possible extensions of U3(17)
by outer automorphisms.



58 M. R. Darafsheh, G. Rezaeezadeh, M. Sajjadi and M. Bibak

References

[1] D. Gorenstein, Finite Groups, New York: Harper and Row, 1980.
[2] A. R. Moghaddamfar, A. R. Zokayi and M. R. Darafsheh, A characterization

of �nite simple groups by the degrees of vertices of their prime graphs, Algebra Coll.
12 (2005), 431− 442.

[3] G. R. Rezaeezadeh, M. R. Darafsheh, M. Sajjadi and M. Bibak, OD-

Characterization of almost simple groups related to L3(25), Bull. Iranian Math. Soc.
(2013), inprint.

[4] J. S. Robinson Derek, A Course in the Theory of Groups, Springer-Verlag, 2003.
[5] Y. Yan, G. Chen and L. Wang, OD-Characterization of the automorphism groups

of O±10(2), Indian J. Pure Appl. Math. 43 (2012), 183− 195.
[6] A. Zavarnitsin, Finite simple groups with narrow prime spectru, Sibirskie Elektron-

nye Mat. Izv. 6 (2009), 1− 12.
[7] L. C. Zhang and W. J. Shi, OD-Characterization of almost simple groups related

to L2(49), Archivum Math. (Brno) 44 (2008), 191− 199.
[8] L. C. Zhang and W. J. Shi, OD-Characterization of almost simple groups related

to U3(5), Acta Math. Sinica, English Series 26 (2010), 161− 168.
[9] L. C. Zhang and W. J. Shi, OD-Characterization of almost simple groups related

to U6(2), Acta Math. Scientia 31B (2011), 441− 450.
Received August 13, 2012

M. R. Darafsheh
School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran,
Tehran, Iran
E-mail: darafsheh@ut.ac.ir

G. R. Rezaeezadeh, M. Sajjadi, M. Bibak
Faculty of Basic Science, Department of Mathematics, Shahrekord University, Shahrekord, Iran
E-mails: rezaeezadeh@sci.sku.ac.ir, sajadi−mas@yahoo.com, m.bibak62@gmail.com


