
Quasigroups and Related Systems 21 (2013), 59− 68

Zariski-topology for co-ideals

of commutative semirings

Shahabaddin Ebrahimi Atani, Saboura Dolati Pishhesari

and Mehdi Khoramdel

Abstract. Let R be a semiring and co-spec(R) be the collection of all prime strong co-ideals of
R. In this paper, we introduce and study a generalization of the Zariski topology of ideals in rings
to co-ideals of semirings. We investigate the interplay between the algebraic-theoretic properties
and the topological properties of co-spec(R). Semirings whose Zariski topology is respectively
T1, Hausdor� or co�nite are studied, and several characterizations of such semirings are given.

1. Introduction

As a generalization of rings, semirings have been found useful for solving problems
in di�erent areas of applied mathematics and information sciences, since the struc-
ture of a semiring provides an algebraic framework for modelling and studying the
key factors in these applied areas. Let R be a commutative ring with identity.
The prime spectrum spec(R) and the topological space obtained by introducing
Zariski topology on the set of prime ideals of R play an important role in the ide-
als of commutative algebra, algebraic geometry and lattice theory. Also, recently
the notion of prime submodules and Zariski topology on spec(M), the set of all
prime submodules of a module M over R, are studied by many authors. In this
paper, we concentrate on Zariski topology for co-ideals of semirings and generalize
the some well known results of Zariski topology on the sets of prime ideals of a
commutative ring to the sets of prime strong co-ideals of a commutative semiring
and investigate the basic properties of this topology. For example, we prove that
if R is a ∗-semiring, then co-spec(R) is a T0-space; it is a compact space; the quasi-
compact open subsets of its are closed under �nite intersection and it is a sober
space. Consequently, it is a spectral space. Equivalently, it is homeomorphic to
spec(S), with the Zariski topology, for some commutative ring S.
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2. Preliminaries

In order to make this paper easier to follow, we recall in this section various notions
from topology theory and co-ideals theory of commutative semirings which will be
used in the sequel. A commutative semiring R is de�ned as an algebraic system
(R,+, .) such that (R,+) and (R, cdot) are commutative semigroups, connected
by a(b+c) = ab+ac for all a, b, c ∈ R, and there exists 0, 1 ∈ R such that r+0 = r
and r0 = 0r = 0 and r1 = 1r = r for each r ∈ R. In this paper all semirings
considered will be assumed to be commutative with non-zero identity.

Let R be a semiring. A non-empty subset I of R is called co-ideal, if it is closed
under multiplication and satis�es the condition r + a ∈ I for all a ∈ I and r ∈ R.
A co-ideal I in R is called strong provided that 1 ∈ I. (Clearly, 0 ∈ I if and only
if I = R) [4, 7, 8, 10]. A strong co-ideal I of R is called subtractive if x, xy ∈ I,
then y ∈ I [7]. A proper strong co-ideal P of R is prime if x + y ∈ P , then x ∈ P
or y ∈ P . The notation co-spec(R) denotes the set of all prime strong co-ideals of
R. A proper strong co-ideal I of R is said to be maximal if J is a strong co-ideal
in R with I ⊆ J and I 6= J , then J = R. If D is an arbitrary nonempty subset
of R, then the set F (D) consisting of all elements of R of the form d1d2 · · · dn + r
(with di ∈ D for all 1 6 i 6 n and r ∈ R) is a co-ideal of R containing D [8, 10].

We need the following propositions, proved in [7].

Proposition 2.1. Let R be a semiring. Then any proper co-ideal of R is contained

in a maximal co-ideal of R. Moreover, any maximal co-ideal of R is a prime and

subtractive strong co-ideal of R.

A topological space X is called irreducible if X 6= ∅ and every �nite intersection
of non-empty open sets of X is non-empty. A (non-empty) subset Y of a topology
space X is an irreducible set if the subspace Y of X is irreducible. For this to be
so, it is necessary and su�cient that, for every pair of sets Y1, Y2 which are closed
in X and satisfy Y ⊆ Y1 ∪ Y2, then Y ⊆ Y1 or Y ⊆ Y2.

Let Y be a closed subset of a topological space. An element y ∈ Y is called a
generic point of Y if Y = {y}. Note that a generic point of the irreducible closed
subset Y of a topological space is unique if the topological space is a T0-space.

The co�nite topology (sometimes called the �nite complement topology) is a
topology which can be de�ned on every set X. It has precisely the empty set and
all co�nite subsets of X as open sets. As a consequence, in the co�nite topology,
the only closed subsets are �nite sets, or the whole of X. Then X is automatically
compact in this topology, since every open set only omits �nitely many points of
X. Also, the co�nite topology is the smallest topology satisfying the T1 axiom;
i.e., it is the smallest topology for which every singleton set is closed. If X is not
�nite, then this topology is not Hausdor�.

Following Hochster [9], we say that a topological space X is a spectral space in
case X is homeomorphic to spec(S), with the Zariski topology, for some commu-
tative ring S. Spectral spaces have been characterized by Hochster [9] as the topo-
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logical spaces X which is a quasi-compact T0-space such that the quasi-compact
open subsets of X are closed under �nite intersection and each its irreducible closed
subset has a generic point, i.e., X is a sober space.

3. Strong co-ideals and Zariski topology

Let R be a semiring with non-zero identity. For any subset E of R by V (E) we
mean the set of all prime strong co-ideals of R containing E.

Lemma 3.1. Let R be a semiring. Then V (R) = ∅ and V (F ({1})) = co − spec(R).

Proof. This follows directly from de�nitions.

Lemma 3.2. Let P be a prime strong co-ideal of a semiring R. If I and J are

co-ideals of R such that I + J ⊆ P , then I ⊆ P or J ⊆ P .

Proof. It su�ces to show that if I + J ⊆ P and I 6⊆ P , then J ⊆ P . Let b ∈ J .
By assumption, there exists a ∈ I such that a /∈ P . As a + b ∈ P , P prime gives
b ∈ P , as needed.

Proposition 3.3. Let R be a semiring.

(1) If E is a subset of R, then V (E) = V (F (E)).
(2) If I and J are co-ideals of R with I ⊆ J , then V (J) ⊆ V (I).
(3) If I and J are co-ideals of R, then V (I + J) = V (J) ∪ V (I).
(4) If {Ii}i∈Γ is a family of co-ideals of R, then V (F (

⋃
i∈Γ Ii)) =

⋂
i∈Γ V (Ii).

Proof. (1). Assume that P ∈ V (E) (so E ⊆ P ) and let r + s1 · · · sn ∈ F (E)
where s1, . . . , sn ∈ E and r ∈ R. Since s1, . . . , sn ∈ E ⊆ P , we must have
s1 · · · sn ∈ P ; hence r + s1 · · · sn ∈ P since P is a co-ideal. Therefore F (E) ⊆ P ,
and so P ∈ V (F (E)). Thus V (E) ⊆ V (F (E)). For the reverse inclusion, assume
that P ∈ V (F (E)). Since E ⊆ F (E) ⊆ P , we get P ∈ V (E), and so we have
equality.

(2). is clear.
(3). Let P ∈ V (I + J). By Lemma 3.2, either I ⊆ P or J ⊆ P . This implies

that P ∈ V (I)∪V (J); hence V (I +J) ⊆ V (J)∪V (I). Since I and J are co-ideals,
we have I +J ⊆ I and I +J ⊆ J ; thus V (J)∪V (I) ⊆ V (I +J) by (2). Therefore,
V (I + J) = V (J) ∪ V (I).

(4). By (1), it su�ces to show that V (
⋃

i∈Γ Ii) =
⋂

i∈Γ V (Ii). Consider an
arbitrary P ∈

⋂
i∈Γ V (Ii). Then for each i ∈ Γ, Ii ⊆ P . Thus

⋃
i∈Γ Ii ⊆ P .

Therefore P ∈ V (
⋃

i∈Γ Ii). For the reverse inclusion, let P ∈ V (
⋃

i∈Γ Ii). From
Ii ⊆

⋃
i∈Γ Ii and P ∈ V (

⋃
i∈Γ Ii), we have P ∈ V (Ii) for each i ∈ Γ. Therefore

V (
⋃

i∈Γ Ii) ⊆
⋂

i∈Γ V (Ii). Hence V (
⋃

i∈Γ Ii) =
⋂

i∈Γ V (Ii).
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Let R be a semiring. If ξ(R) denotes the collection of all subsets V (I) of co-
spec(R), then ξ(R) contains the empty set and co-spec(R) = X and is closed under
arbitrary intersection and �nite union by Proposition 3.3. Thus ξ(R) satis�es the
axioms of closed subsets of a topological spaces, which is called the Zariski-topology
for co-ideals of commutative semirings.

Let I be a co-ideal of R. Put

co-rad(I) = {x ∈ R | nx ∈ I for some n ∈ N}
and

co-rad(R) = {x ∈ R | nx ∈ F ({1}) for some n ∈ N}.

We will denote the closure of Y in co-spec(R) by Y , and intersections of ele-
ments of Y by T (Y ).

Proposition 3.4. Let R be a semiring.

(1) If I is a co-ideal of R, then V (I) = V (co-rad(I)).
(2) If I is a co-ideal of R, then V (I) = V (T (V (I))).
(3) If I and J are co-ideals of R with V (I) ⊆ V (J), then J ⊆ T (V (I)).
(4) V (I) = V (J) if and only if T (V (I)) = T (V (J)) for each co-ideals I and

J of R.

Proof. (1). Since I ⊆co-rad(I), V (co-rad(I)) ⊆ V (I) by Proposition 3.3. For the
reverse inclusion, assume that P ∈ V (I). If x ∈co-rad(I), then nx ∈ I for some
n ∈ N. Since I ⊆ P , nx ∈ P , consequently x ∈ P . Thus co-rad(I) ⊆ P and so
V (I) ⊆ V (co-rad(I)). Hence V (co-rad(I)) = V (I).

(2). As I ⊆ T (V (I)), we have V (T (V (I))) ⊆ V (I). Conversely, let P ∈ V (I),
hence T (V (I)) =

⋂
Q∈V (I) Q ⊆ P . Therefore we have V (I) ⊆ V (T (V (I))), and so

V (T (V (I))) = V (I).
(3). Let I and J be co-ideals of R and V (I) ⊆ V (J). Therefore we obtain

T (V (J)) ⊆ T (V (I)). Since J ⊆ T (V (J)), J ⊆ T (V (I)).
(4). Let V (I) = V (J). By (2), we have V (I) = V (T (V (J))); hence we get

T (V (J)) ⊆ T (V (I)). Similarly, the reverse inclusion is hold. The converse impli-
cation is clear.

Let X =co-spec(R). For each subset E of R, by D(E) we mean X − V (E) =
{P ∈ X | E 6⊆ P}. If E = {f}, then by Xf we denote the set {P ∈ X | f /∈ P}.

Theorem 3.5. Let R be a semiring. Then A = {Xf | f ∈ R} forms a base for

Zariski topology for co-ideals of R.

Proof. Let U be an open set. Then U = X − V (I) for some co-ideal I of R. Let
P ∈ U . Then I 6⊆ P , so there exists f ∈ I such that f 6∈ P ; hence P ∈ Xf . We
claim that Xf ⊆ U . Let Q ∈ Xf . Then f 6∈ Q, so I 6⊆ Q; thus Q ∈ U . Hence
Xf ⊆ U . Therefore A is a base for Zariski topology on X.

Proposition 3.6. Let R be a semiring and X =
⋃

i∈Γ Xai
. If I = F ({ai}i∈Γ),

then I = R.
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Proof. Suppose that I 6= R. Then there exists a maximal co-ideal P of R such
that I ⊆ P by Proposition 2.1. Since P ∈ X, there exists i ∈ Γ such that ai 6∈ P ,
a contradiction with I ⊆ P . Hence I = R.

Theorem 3.7. Let R be a semiring. Then the following statements are hold.

(1) Xf ∩Xg = Xf+g for each f, g ∈ R.

(2) Xf = X if and only if fn has additive inverse for some n ∈ N.

(3) Xf = ∅ if and only if f ∈ P for each P ∈co-spec(R) (or equivalently,

f ∈ T (V ({1}))).

Proof. (1). If P ∈ Xf ∩ Xg, then f /∈ P and g /∈ P ; hence f + g /∈ P . Thus
Xf ∩ Xg ⊆ Xf+g. For the reverse inclusion, let P ∈ Xf+g. Then f + g /∈ P , so
f /∈ P and g /∈ P . Therefore P ∈ Xf ∩Xg, and we have equality.

(2). Let Xf = X. By Proposition 3.6, R = F ({f}). Therefore fn + r = 0 for
some n ∈ N and r ∈ R. Conversely, assume that fn has inverse for some n ∈ N.
We show that Xf = X. If P ∈ X and P 6∈ Xf , then f ∈ P . It follows that 0 ∈ P ;
hence P = R, which is a contradiction. Thus X = Xf .

(3). It is clear that Xf = ∅ if and only if f ∈ P for each P ∈co-spec(R).

Proposition 3.8. Let I be a strong co-ideal of semiring R. Then D(I) =⋃
a∈I Xa. In particular, if I = F ({a1, . . . , an}), then D(I) =

⋃n
i=1 Xai

.

Proof. Let P ∈ D(I). So I 6⊆ P . Thus there exists a ∈ I such that a 6∈ P ; hence
P ∈ Xa. Therefore, P ∈

⋃
a∈I Xa, and so D(I) ⊆

⋃
a∈I Xa. Conversely, assume

that P ∈
⋃

a∈I Xa. Then P ∈ Xa for some a ∈ I. Since a 6∈ P , I 6⊆ P . Hence
P ∈ D(I) and so the equality is hold. The "in particular" statement is clear.

Theorem 3.9. Let R be a semiring. Then X =co-spec(R) is a compact space.

Proof. Let X =
⋃

i∈Γ Xai
. By Proposition 3.6, F ({ai}i∈Γ) = R; hence 0 = r +

a1 · · · an for some a1, . . . , an ∈ {ai}i∈Γ. We claim that X ⊆
⋃n

i=1 Xai . Let P ∈ X.
If for each 1 6 i 6 n, ai ∈ P , then a1 · · · an ∈ P , and so 0 = r + a1 · · · an ∈ P
which is a contradiction. Therefore there exists 1 6 i 6 n such that ai 6∈ P . Hence
P ∈ Xai

, as desired.

De�nition 3.10. A semiring R is called ∗-semiring if co-rad(I) = T (V (I)) for
each proper strong co-ideal I of R.

Example 3.11. (1) Let R = (Z+,+,×). Then the only strong co-ideals of R is
I1 = {n ∈ Z+ | 1 6 n} and Z+. Also the only prime strong co-ideals of R is I1.
Therefore, R is a ∗-semiring.

(2) Let Y={a,b,c} and S = (P (Y ),∪,∩) a semiring, where P (Y ) is the family
of all subsets of Y . An inspection will show that S is a ∗-semiring.

(3) Let T = (Z+ ∪ {∞},max,min). An inspection will show that the list of
strong co-ideals of T are T , In = {k | k > n}. It is clear that each proper strong
co-ideal of T is prime and T is a ∗-semiring.
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The following example shows that a semiring need not be a ∗-semiring.

Example 3.12. Let R = {0, 1, 2, 3, 4, 5}. De�ne

a + b =


5 if a 6= 0, b 6= 0, a 6= b,
a if a = b,
b if a = 0,
a if b = 0,

and

a ∗ b =


0 if a = 0 or b = 0,
2 if a = b = 3,
b if a = 1,
a if b = 1,
5 otherwise.

Then (R,+, ∗) is easily checked to be a commutative semiring. Suppose that
I = {1, 4, 5}. It is clear that I is a strong co-ideal of R and V (I) = {P1, P2},
where

P1 = {1, 2, 4, 5}, P2 = {1, 2, 3, 4, 5}.

Hence T (V (I)) = P1. It can be seen T (V (I)) 6=co-rad(I) because 2 ∈ T (V (I))
and 2 /∈ co-rad(I). Therefore R is not ∗-semiring.

Theorem 3.13. Let R be a ∗-semiring. For every a ∈ R, the set Xa is compact.

Speci�cally, the whole space X0 = X is compact.

Proof. Assume that Xa ⊆
⋃

i∈Γ Xbi
and let I = F ({bi}i∈Γ). We claim that V (I) ⊆

V ({a}). Assume that P ∈ V (I), so I ⊆ P ; hence P /∈
⋃

i∈Γ Xbi
. Since Xa ⊆⋃

i∈Γ Xbi
, P /∈ Xa. This implies that a ∈ P . Therefore V (I) ⊆ V ({a}). It follows

that a ∈ T (V (I)). As R is ∗-semiring, a ∈co-rad(I). Therefore na ∈ I for some
n ∈ N. Hence na = bi1 · · · bin + r for some bij ∈ {bi}i∈Γ, r ∈ R. We show that
Xa ⊆

⋃n
j=1 Xbij

. Let P ∈ Xa (so a /∈ P ). If for each 1 6 j 6 n, bij
∈ P , then

na = bi1 · · · bin
+r ∈ P , consequently a ∈ P , a contradiction. Therefore there exists

1 6 j 6 n such that bij
/∈ P . Hence P ∈

⋃n
j=1 Xbij

. Thus Xa ⊆
⋃n

j=1 Xbij
.

Corollary 3.14. Let R be a ∗-semiring. Then an open subset of X = co-spec(R)
is compact if and only if it is a �nite union of basic open sets.

Proof. Apply Theorem 3.5 and Theorem 3.13.

Theorem 3.15. Let R be a semiring. Then the toplologic space X = co-spec(R)
is a T0-space.

Proof. Let P,Q ∈ X and P 6= Q. We note that the set Xa is a neighborhood of P
if and only if a /∈ P . Suppose that Q ∈ Xb for all b /∈ P . Then we conclude that
b ∈ Q implies that b ∈ P ; hence Q ⊂ P . Now let c ∈ P −Q. Then c /∈ Q gives Xc

is a neighborhood of Q, but c ∈ P , so P /∈ Xc. This completes the proof.
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De�nition 3.16. A semiring R is called p-subtractive if every prime strong co-
ideal of R is subtractive.

Example 3.17. (1) Let Y={a,b,c} and R = (P (Y ),∪,∩) a semiring, where
P (Y )= the set of all subsets of Y . An inspection will shows that co-spec(R) =
{P1, P2, P3}, where

P1 = {{a}, {a, b}, {a, c}, X},

P2 = {{b}, {a, b}, {b, c}, X},

P3 = {{c}, {a, c}, {b, c}, X}.

Since P1, P2 and P3 are maximal co-ideal, they are subtractive by Proposition
2.1. Hence R is a p-subtractive semiring.

(2) Let S = (Z+,+,×). Then P = S − {0} is the only prime co-ideal of S
which is subtractive. Hence S is a p-subtractive semiring.

Theorem 3.18. Let R be a p-subtractive semiring. If the only elements of R such

that a + b ∈ P and ab 6∈ P for each P ∈ co-spec(R) are 0, 1, then X = co-spec(R)
is connected.

Proof. Suppose that X is not connected. Let X = Xa ∪Xb and Xa ∩Xb = ∅ for
some a, b ∈ R. Since Xa ∩ Xb = ∅, Xa+b = ∅ by Theorem 3.7. Thus a + b ∈ P
for all P ∈ co-spec(R) by Theorem 3.7. We claim that Xab = X. Let P ∈ X and
ab ∈ P . Since Xa+b = ∅, a + b ∈ P , therefore a ∈ P or b ∈ P . As P is subtractive
and ab ∈ P , P 6∈ Xa ∪ Xb. This contradicts our hypothesis that X = Xa ∪ Xb.
Therefore ab 6∈ P and Xab = X. Hence ab 6∈ P for all P ∈ X by Theorem 3.7.
Hence {a, b} = {0, 1}. Thus X is connected.

Example 3.19. (1) Let Y={a,b,c} and R = (P (Y ),∪,∩) be a semiring, where
P (Y ) is the collection of all subsets of Y . Then co-spec(R) = X{a}

⋃
X{b,c} and

X{a}
⋂

X{b,c} = ∅. Therefore co-spec(R) is not connected.

(2) Let T = (Z+ ∪ {∞},max,min) and Ii = {n ∈ T |n > i}. It is clear
that Ii is a prime strong co-ideal of T for each i ∈ N. Then for each n ∈ T ,
Xn = {Ii | i > n + 1}. Therefore X0 ⊇ X1 ⊇ · · · ⊇ X∞. This implies that
co-spec(T ) is connected.

Theorem 3.20. Let R be a semiring. Then co-spec(R) is irreducible if and only

if T (V ({1})) is a prime strong co-ideal.

Proof. Let co-spec(R) be irreducible, and a + b ∈ T (V ({1})) for some a, b ∈ R.
Then Xa+b = Xa∩Xb = ∅ by Theorem 3.7. Since co-spec(R) is irreducible, Xa = ∅
or Xb = ∅. Thus a ∈ T (V ({1})) or b ∈ T (V ({1})). Therefore T (V ({1})) is prime.

Conversely, let T (V ({1})) be prime; we show that co-spec(R) is irreducible. If
Xa ∩ Xb = ∅, then by Theorem 3.7, Xa+b = ∅. Hence a + b ∈ T (V ({1})). As
T (V ({1})) is prime, a ∈ T (V ({1})) or b ∈ T (V ({1})). Thus Xa = ∅ or Xb = ∅.
Therefore, co-spec(R) is irreducible.
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Proposition 3.21. Let R be a semiring and P,Q ∈ X = co-spec(R). Then:

(1) {P} = V (P ) for each P ∈ co-spec(R),
(2) Q ∈ {P} if and only if P ⊆ Q,

(3) {P} is closed in X if and only if P is a maximal co-ideal of R.

Proof. (1). As {P} =
⋂

P∈V (I) V (I), and P ∈ V (P ), we have {P} ⊆ V (P ). On

the other hand, if Q ∈ V (P ), then P ⊆ Q. Thus Q ∈ V (I) for each I ⊆ P . Hence
Q ∈ {P}. Therefore {P} = V (P ).

(2) is a consequence of (1), (3) is a consequence of (2).

Theorem 3.22. Let R be a semiring. Then X is a T1-space if and only if each

prime strong co-ideal is maximal.

Proof. Let X be a T1-space, then for each P ∈ X, {P} is closed in X. Hence
P is maximal strong co-ideal by Proposition 3.21. Conversely, assume that each
prime strong co-ideal of R is maximal, then using Proposition 3.21 we see that
each singleton {P} is closed in X, for each P ∈ X. Hence X is a T1-space.

Let R be a semiring with |co-spec(R)| 6 1. Then co-spec(R) is the trivial space
and so it is a Hausdor� space. The following theorem gives a relation between
Hausdor� axiom and T1 axiom for Zariski-topology for co-ideals of semirings.

Theorem 3.23. Let R be a semiring. If X = co-spec(R) is a Hausdor� space,

then it is a T1-space.

Proof. Let P1, P2 ∈ X. Since X is a Hausdor� space, there exist a, b ∈ R such that
P1 ∈ Xa and P2 ∈ Xb and Xa ∩Xb = ∅. Hence Xa+b = ∅. Therefore, a + b ∈ P1

and a + b ∈ P2. This implies that a ∈ P2 and b ∈ P2. Consequently, P1 6⊆ P2

and P2 6⊆ P1. Hence each prime strong co-ideal is maximal. Therefore, X is a
T1-space.

It is well-known that if X is a �nite space, then X is a T1-space if and only if
X is the discrete space. Thus we have the following Proposition.

Proposition 3.24. For a semiring R with a �nite X = co-spec(R) the following

conditions are equivalent:

(1) X is a Hausdor� space,

(2) X is a T1-space,

(3) X has a co�nite topology,

(4) X is discrete,

(5) every prime co-ideal is maximal.

Lemma 3.25. Let R be a semiring. Then for each P ∈ co-spec(R), V (P ) is

irreducible.
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Proof. Let V (P ) ⊆ Y1 ∪ Y2, where Y1 and Y2 are closed sets; so P ∈ V (P ) gives,
P ∈ Y1 or P ∈ Y2. Let P ∈ Y1. As V (P ) = {P} by Proposition 3.21, we have
V (P ) = ∩{Y | P ∈ Y, Y is closed set} ⊆ Y1. Similarly, if P ∈ Y2, then V (P ) ⊆ Y2.
Hence V (P ) is irreducible.

Theorem 3.26. Let R be a semiring. Then Y ⊆ co-spec(R) is irreducible if and

only if T (Y ) is a prime strong co-ideal.

Proof. Let Y be irreducible and a+b ∈ T (Y ). We claim that Y ⊆ V ({a})∪V ({b}).
Let P ∈ Y . Since Y ⊆ V (T (Y )) and a + b ∈ T (Y ), a + b ∈ P . Hence a ∈ P
or b ∈ P . Therefore Y ⊆ V ({a}) ∪ V ({b}). As Y is irreducible, Y ⊆ V ({a}) or
Y ⊆ V ({b}). If Y ⊆ V ({a}), then a ∈ T (Y ). Similarly, If Y ⊆ V ({b}), then
b ∈ T (Y ). Hence T (Y ) is prime. Conversely, assume that T (Y ) is a prime strong
co-ideal. We show that Y is irreducible. Let Y ⊆ Y1∪Y2 for some closed subset Y1

and Y2 of co-spec(R). Thus Y1 = V (I1) and Y2 = V (I2) for some strong co-ideals
I1 and I2. As Y ⊆ V (I1) ∪ V (I2), for each P ∈ Y , I1 ⊆ P or I2 ⊆ P . Hence
I1 +I2 ⊆ P for each P ∈ Y . Thus I1 +I2 ⊆ T (Y ). Since T (Y ) is prime I1 ⊆ T (Y )
or I2 ⊆ T (Y ) by Lemma 3.2. Therefore Y ⊆ Y1 or Y ⊆ Y2, as needed.

Theorem 3.27. For every ∗-semiring R, co-spec(R) is spectral.

Proof. Let R be a ∗-semiring. We show that X = co-spec(R) is spectral in four
steps.

1. X is a T0-space by Theorem 3.15.
2. X is quasi-compact by Theorem 3.9.
3. The quasi-compact open subsets of X are closed under �nite intersection by

Corollary 3.14.
4. Let Y be an irreducible closed subset of X. Then Y = V (I) for some strong

co-ideal I of R. By Theorem 3.26, P = T (Y ) is a prime strong co-ideal of R. An
inspection will show that V (P ) = Y . Since {P} = V (P ) = Y , {P} is a generic
point of Y . Thus X is spectral.

Corollary 3.28. Let R be a ∗-semiring, then X = co-spec(R) is a T1-space if and

only if it is a Hausdor� space.

Proof. By Theorem 3.27, co-spec(R) is homeomorphic to spec(S), with the Zariski
topology, for some commutative ring S. By [1], spec(S) is a Hausdor� space if and
only if it is T1. Therefore X is Hausdor� if and only if it is T1.
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