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Shortest single axioms with neutral element

for groups of exponent 2 and 3

Nick C. Fiala and Keith M. Agre

Abstract. In this note, we study identities in product and a constant e only that are valid in all
groups of exponent 2 (3) with neutral element e and that imply that a groupoid satisfying one of
them is a group of exponent 2 (3) with neutral element e. Such an identity will be called a single
axiom with neutral element for groups of exponent 2 (3). We utilize the automated reasoning
software Prover9 and Mace4 to attempt to �nd all shortest single axioms with neutral element for
groups of exponent 2 (3). Beginning with a list of 1323 (1716) candidate identities that contains
all shortest possible single axioms with neutral element for groups of exponent 2 (3), we �nd 173

(148) single axioms with neutral element for groups of exponent (2) 3 and eliminate all but 5

(119) of the remaining identities as not being single axioms with neutral element for groups of
exponent 3. We also prove that a �nite model of any of these 5 (119) identities must be a group
of exponent 2 (3) with neutral element e.

1. Introduction

We assume the reader is familiar with the de�nitions of groupoids, semigroups,
and groups. The variables v, w, x, y, and z will always be universally quanti�ed.
The letter e will always denote a constant and will denote the neutral element if
in the context of a group. The letter n will always denote a natural number. We
write xn+1 for xxn, where x1 = x. The capital letters S and T will always denote
terms in product or in product and e unless otherwise stated and T\e will denote
the corresponding term with all occurrences of e deleted. We denote by V (T ) the
number of variable occurrences in T . Identities are always in product only or in
product and e only.

De�nition 1.1. A group of exponent n is a group such that xn = e.

Strictly speaking, a group of exponent n is a group such that n is the smallest

integer for which xn = e. Therefore, our �groups of exponent n� are actually
groups of exponent dividing n. Nevertheless, we will refer to any group satisfying
the condition in De�nition 1.1 as a group of exponent n.

Therefore, groups of exponent n can be axiomatized in terms of product only
by
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(1) xy · z = x · yz,

(2) xn = yn, and

(3) xyn = x

or in terms of product and e only by

(1′) xy · z = x · yz,

(2′) xn = e, and

(3′) xe = x.

De�nition 1.2. By an identity (identity with neutral element), we shall mean an
identity in product only (identity in product and e only) unless otherwise stated.
We say that an identity (identity with neutral element) S = T is a single axiom

for groups of exponent n (single axiom with neutral element for groups of exponent

n) if and only if S = T is true in all groups of exponent n (groups of exponent
n with neutral element e) and every model of S = T satis�es (1), (2), and (3)
((1′), (2′), and (3′)). In either case, it is clear that we must have S or T being
just a single variable occurrence, otherwise the identity would be valid in any zero
semigroup. We sometimes refer to identities and identities with neutral element
simply as identities (Note that we do not assume that e is neutral, only that it is
a constant. An identity must imply that e is neutral for it to be a single axiom.).

Neumann [12] proved that the variety of groups that satisfy S = e, where S is
any term in product and inverse only, can be axiomatized by the single identity
T = x, where T is the term in product and inverse only

w(((x−1 · w−1y)−1z · (xz)−1)(SS′−1)−1)−1.

In the above, w, x, y, and z are variables not occurring in S and S′ is a renaming
of S using di�erent variables. Taking S = vn and replacing all occurrences of −1
by n − 1 in the above identity, we obtain a single axiom for groups of exponent
n of the form T = x, where V (T ) = n4 − 2n2 + n + 1. This leaves open the
problem of �nding shorter and simpler single axioms (with neutral element) for
groups of exponent n. No variety of groups can be axiomatized by a single identity
in product, inverse, and neutral element [12], [15].

For example, in [11], Meredith and Prior proved that

(yx · z) · yz = x

is a single axiom for groups of exponent 2 (Boolean groups), in [10], Mendelsohn
and Padmanabhan proved that

x · (xy · z)y = z
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and
(xy · xz)y = z

are also single axioms for Boolean groups, and, in [9], McCune and Wos proved
that

x((y · ez) · xz) = y

is a single axiom with neutral element for Boolean groups.
As another example, in [9], it is proved that

y · (y · y(x · zz))z = x,

y(y(yx · z) · zz) = x,

and
y((yy · xz)z · z) = x

are single axioms for groups of exponent 3 and that

x(x(xy · z) · (e · zz)) = y

is a single axiom with neutral element for groups of exponent 3.
As a �nal example, in [5], Kunen proved that

y(y(yy · xz) · (z · zz)) = x,

(yy · y) · ((y · xz) · zz)z = x,

and
y(((yy · y) · xz)z) · zz = x

are single axioms for groups of exponent 4 and, in [9], it is proved that

x(x(x(e(xy · z) · z) · z) · z) = y

along with nine others are single axioms with neutral element for groups of expo-
nent 4.

In the present note, we endeavor to �nd all shortest (with respect to the num-
ber of variable and constant occurrences) single axioms with neutral element for
groups of exponent 2 (3) using the automated theorem-prover Prover9 and the
model-�nder Mace4. Beginning with a list of 1323 (1716) candidate identities
that contains all shortest possible single axioms with neutral element for groups of
exponent 3, we �nd 173 (148) single axioms with neutral element for groups of ex-
ponent 2 (3) and eliminate all but 5 (119) of the remaining identities as not being
single axioms with neutral element for groups of exponent 2 (3). We also prove
that a �nite model of any of these 5 (119) identities must be a group of exponent
2 (3) with neutral element e, hence obtaining the same type of classi�cation as
was achieved in [10] ([4]) for shortest single axioms (without neutral element) for
groups of exponent 2 (3).
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2. Preliminary Results

In this section, we present some preliminary results that will be needed in the
subsequent sections. We begin with an obvious observation.

De�nition 2.1. De�ne the mirror of T , denoted M(T ), as follows: M(T ′T ′′) =
M(T ′′)M(T ′) for subterms T ′ and T ′′ of T , M(x) = x for variables x occurring in
T , and M(e) = e for constants e occurring in T .

Theorem 2.2. The identity (with neutral element) T = x is a single axiom (with
neutral element) for groups of exponent n if and only if M(T ) = x is a single

axiom (with neutral element) for groups of exponent n.

The next result demonstrates that the structure of the single axioms (with
neutral element) for groups of exponent n presented in Section is no accident.

Theorem 2.3. [4], [5] Suppose T = x is a single axiom (with neutral element)
for groups of exponent n, n ≥ 2. Then V (T ) ≥ 2n + 1. If n = 2 and V (T ) = 5,
then a renaming of T\e is an association of an arrangement of y2xz2 If n ≥ 3 and

V (T ) = 2n + 1, then a renaming of T\e is an association of ynxzn. (in the latter

case, it is clear that we must not have x being the left-most (right-most) symbol in

T , otherwise the identity would be valid in any left-zero (right-zero) semigroup).

In light of Theorem 2.3, the single axioms (with neutral element) for groups of
exponent n presented in Section are as short as possible. In the case of exponent 3,
in [4], it is proved that the three examples from Section are the only shortest single
axioms (up to renaming, mirroring, and symmetry), with the possible exceptions
of

y · y((y · xz) · zz) = x

and
yy · (y(xz · z) · z) = x.

The status of these two identities is unknown. It is known that a non-group model
of either identity must be in�nite [4]. In the case of exponent 4, it is proved in [5]
that the three examples from Section are the only shortest single axioms (up to
mirroring, renaming, and symmetry). It is known that there are shortest possible
single axioms (with neutral element) for groups of exponent n, n odd [4]. It is
unknown if there are shortest possible single axioms (with neutral element) for
groups of exponent n, n ≥ 6 even. An exhaustive search for shortest possible
single axioms for groups of exponent 6 was attempted in [3]. The search failed to
�nd any single axioms but did reduce the number of candidates to 204.

We need two more results.

Theorem 2.4. [4], [5] Suppose a renaming of T\e is an association of an arrange-

ment of y2xz2 with T containing at most one occurrence of e. Then any associative

and commutative model of T = x is a group of exponent 2 (in particular, if all
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models of T = x are associative and commutative, then T = x is a single axiom

(with neutral element) for groups of exponent 2). Suppose a renaming of T\e is

an association of ynxzn, n ≥ 3, with T containing at most one occurrence of e.
Then any associative model of T = x is a group of exponent n (in particular, if

all models of T = x are associative, then T = x is a single axiom (with neutral

element) for groups of exponent n).

Theorem 2.5. [4] If G is a non-trivial group, then there exists a non-associative

groupoid H such that H satis�es every identity that contains at most two distinct

variables and that is valid in G.

3. Prover9 and Mace4

In this section, we brie�y describe the software Prover9 and Mace4.

Prover9 [8] is a resolution-style [1], [13] automated theorem-prover for �rst-
order logic with equality that was developed by McCune at Argonne National
Laboratory. Prover9 is the successor to the well-known OTTER [7] theorem-prover
and, like OTTER, utilizes the set of support strategy [1], [16].

The language of Prover9 is the language of clauses, a clause being a disjunction
of (possible one or zero) literals in which all variables whose names begin with u, v,
w, x, y, or z are implicitly universally quanti�ed and all other symbols represent
constants, functions, or predicates (relations). An axiom may also be given to
Prover9 as an explicitly quanti�ed �rst-order formula which is immediately trans-
formed by Prover9 into a set of clauses by a Skolemization [1], [2] procedure. The
conjunction of these clauses is not necessarily logically equivalent to the formula,
but they will be equisatis�able [1], [2]. Therefore, the set of clauses can be used
by Prover9 in place of the formula in proofs by contradiction.

Prover9 can be asked to prove a potential theorem by giving it clauses or
formulas expressing the hypotheses and a clause or formula expressing the nega-
tion of the conclusion. Prover9 �nds a proof when it derives the empty clause, a
contradiction.

Prover9 has an autonomous mode [8] in which all inference rules, settings, and
parameters are automatically set based upon a syntactic analysis of the input
clauses (the mechanisms of inference for purely equational problems being demod-

ulation and paramodulation [1], [14]).

One very important parameter used by Prover9 is the maximum weight [8]
of a clause. By default, the weight of a literal is the number of occurrences of
constants, variables, functions, and predicates in the literal and the weight of a
clause is the sum of the weights of its literals. Prover9 discards derived clauses
whose weight exceeds the maximum weight speci�ed. By specifying a maximum
weight, we sacri�ce refutation-completeness [1], [13], although in practice it is
frequently necessary. We will use the autonomous mode throughout this paper,
sometimes overriding Prover9's assignment to the maximum weight parameter.
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A useful companion to Prover9 is Mace4 [6], also developed by McCune. Mace4
is a �nite �rst-order model-�nder. With possibly some minor modi�cations, the
same input can be given to Mace4 as to Prover9, Prover9 searching for a proof
by contradiction and Mace4 searching for counter-examples of speci�ed sizes (a
groupoid found by Mace4 would be returned as an n × n Cayley table with the
elements of the structure assumed to be 0, 1, . . . , n− 1 and the element in the ith
row and jth column being ij).

Remark 3.1. The reader should note that Mace4 interprets non-negative integers
as distinct constants and other constants as not necessarily distinct unless other-
wise stated. This is in contrast to Prover9 which interprets all constants as not
necessarily distinct unless otherwise stated. The use of non-negative integers for
constants in Mace4 can have the advantage of speeding up the search for a model.

The scripting language Perl was also used to further automate the process.

4. The Search

In this section, we describe our search for shortest single axioms with neutral
element for groups of exponent 3.

First, all identities T = x such that T contains exactly one occurrence of e and
T\e is an association of an arrangement of y3xz3 were generated up to renaming
and mirroring. This resulted in 1716 identities.

We then sent the negation of each identity (stored in the Perl variable
$negated_identity) to Prover9 and ran

assign(max_seconds, 1). % one second time limit per identity

formulas(sos). % set of support clauses

e * x = x.

x * e = x.

x * y = y * x.

(x * x) * x = e.

x * (x * x) = e.

(x * x) * (x * y) = y.

x * (x * (x * y)) = y.

((x * y) * y) * y = x.

(x * y) * (y * y) = x. % one and two distinct variable identities

% valid in Z_3

$negated_identity. % negation of candidate identity

end_of_list. % end of set of support clauses

to search for a proof that the identity is derivable from the set of one and two
distinct variable identities that are valid in Z3. If this is the case, then by Theorem
2.5, there is a non-associative model for the identity and it can be eliminated. This
reduced the number of candidate identities to 546.
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Remark 4.1. We determine whether or not Prover9 has found a proof by ob-
serving its exit status. Prover9 outputs an exit code of 0 if and only if it �nds a
proof.

Next, we sent each identity (stored in the variable $identity) to Mace4 (e
will always be renamed 0 in Mace4 input) and ran

assign(max_seconds, 60). % one minute time limit

% per identity

formulas(theory). % theory clauses

x * y != x * z | y = z. % left cancellative

y * x != z * x | y = z. % right cancellative

(x * y) * (z * u) = (x * z) * (y * u). % medial

0 * 0 = 0. % e idempotent

$identity. % candidate identity

(a * b) * c != a * (b * c). % non-associative

end_of_list. % end of theory clauses

to search for a non-associative, cancellative (left cancellative (xy = xz implies
y = z) and right cancellative (yx = zx implies y = z)), medial (xy · zu = xz · yu)
groupoid with e idempotent (ee = e) that satis�es the identity. Any identity
for which an example was found was eliminated. This reduced the number of
candidate identities to 267.

Remark 4.2. We determine whether or not Mace4 has found a model by observing
its exit status. Mace4 outputs an exit code of 0 if and only if it �nds a model.

We then sent each remaining identity to Prover9 and ran

assign(max_seconds, 300). % five minute time limit

% per weight per identity

assign(max_weight, $max_weight). % maximum clause weight

formulas(sos). % set of support clauses

$identity. % candidate identity

a * b = a * c.

b != c. % not left cancellative

end_of_list. % end of set of support clauses

to search for a proof that the identity implies left cancellativity. We made a run
for every value of $max_weight from 20 to 150 in steps of 5. A proof was found
for 186 identities. The mirror of each identity for which a proof was not found was
then sent back to Prover9 to search for a proof that it implies left cancellativity.
An additional 57 proofs were found.

Next, we sent each of these 243 identities back to Prover9 and ran

assign(max_seconds, 300). % five minute time limit

% per weight per identity

assign(max_weight, $max_weight). % maximum clause weight

formulas(sos). % set of support clauses
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$identity. % candidate identity

x * y != x * z | y = z. % left cancellative

b * a = c * a.

b != c. % not right cancellative

end_of_list. % end of set of support clauses

to search for a proof that the identity implies right cancellativity. We made a run
for every value of $max_weight from 20 to 150 in steps of 5. A proof was found
for 148 identities.

We then sent each of these 148 identities back to Prover9 and ran

assign(max_seconds, 600). % 10 minute time limit

% per weight per identity

assign(max_weight, $max_weight). % maximum clause weight

formulas(sos). % set of support clauses

$identity. % candidate identity

x * y != x * z | y = z. % left cancellative

y * x != z * x | y = z. % right cancellative

e * e != e. % e not idempotent

end_of_list. % end of set of support clauses

to search for a proof that the identity implies that e is idempotent. We made a
run for every value of $max_weight from 18 to 150 in steps of 2. A proof was
found for all 148 identities.

Finally, we sent each of these 148 identities back to Prover9 and ran

assign(max_seconds, 600). % 10 minute time limit

% per weight per identity

assign(max_weight, $max_weight). % maximum clause weight

formulas(sos). % set of support clauses

$identity. % candidate identity

x * y != x * z | y = z. % left cancellative

y * x != z * x | y = z. % right cancellative

e * e = e. % e idempotent

(a * b) * c != a * (b * c). % non-associative

end_of_list. % end of set of support clauses

to search for a proof that the identity implies associativity. We made a run for
every value of $max_weight from 18 to 150 in steps of 2. A proof was found for
all 148 identities. By Theorem 2.4, these 148 identities are all single axioms with
neutral element for groups of exponent 3.

5. Finite Models

In this section, we show that a �nite model of any of the 119 remaining candidate
identities must be a group of exponent 3 with neutral element e.
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Consider the following identity (one of the 119 remaining candidate identities).

(y · ey)(y(x · zz) · z) = x

Let G be a �nite groupoid satisfying this identity. De�ne Lx, Rx : G −→ G by
Lx(y) = xy and Rx(y) = yx. Therefore,

Ly·ey ◦Rz ◦ Ly ◦Rzz = Id

where Id is the identity mapping on G. Thus, Rzz is injective and Ly·ey is surjec-
tive. Since G is �nite, Rzz is surjective and Ly·ey is injective.

Running the third block of code in Section for every value of $max_weight
from 20 to 150 in steps of 5 with this candidate identity and with the additional
lines

R(z,u) = u * (z * z). % R_zz definition

L(y,u) = (y * (e * y)) * u. % L_y(ey) definition

R(z,f(z,u)) = u. % R_zz surjective

L(y,u) != L(y,v) | u = v. % L_y(ey) injective

in the set of support, Prover9 �nds a proof that this identity implies that G is
left cancellative. Running the fourth block of code in Section for every value of
$max_weight from 20 to 150 in steps of 5 with this candidate identity and with
these additional lines, Prover9 �nds a proof that this identity implies that G is
right cancellative. Running the �fth block of code in Section for every value of
$max_weight from 18 to 150 in steps of 2 with this candidate identity and with
these additional lines, Prover9 �nds a proof that this identity implies that e is
idempotent in G. Running the sixth block of code in Section for every value
of $max_weight from 18 to 150 in steps of 2 with this candidate identity and
with these additional lines, Prover9 �nds a proof that this identity implies that
G is associative. By Theorem 2.4, G must be a group of exponent 3 with neutral
element e.

The above procedure was automated and carried out for each of the 119 re-
maining candidate identities and each one was shown to imply that a �nite model
of it must be a group of exponent 3 with neutral element e. Therefore, if any one
of these 119 identities fails to be a single axiom with neutral element for groups
of exponent 3 (the authors feel that it is likely that most if not all of them fail to
be), then it can only be eliminated from contention through the construction of
an in�nite non-associative model.

6. Conclusion

In this section, we summarize our results.

Theorem 6.1. The following 148 identities with neutral element (and their mir-

rors) are single axioms with neutral element for groups of exponent 3.
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ey · ((yy · xz)z · z) = x y(e(y(yx · z) · z) · z) = x y(y(e(yx · z) · z) · z) = x
(yy · ((ye · x)z · z))z = x e(y(y · (y · xz)z) · z) = x e(y(y(y · xz) · z) · z) = x
(ey · ((yy · x)z · z))z = x y(e(y(y · xz) · z) · z) = x (ye · (yy · xz)z)z = x

(yy · (ey · xz)z)z = x ((yy · e) · (y · xz)z)z = x y(y(y · (e · xz)z) · z) = x
yy · ((ye · xz)z · z) = x y(((yy · e) · xz)z · z) = x y(y · (e · (y · xz)z)z) = x

y(y · (y · (e · xz)z)z) = x (e · (y · y(yx · z))z)z = x (y · y(e(yx · z) · z))z = x
(ey · (yy · x)z) · zz = x (ey · ((yy · x) · zz))z = x (ye · (yy · x)z) · zz = x

(ye · ((yy · x) · zz))z = x (yy · (ye · x)z) · zz = x (y · y(y(ex · z) · z))z = x
(y · (y · y(ex · z))z)z = x (yy · ((ye · x) · zz))z = x (y · ((yy · e)x · z)z)z = x
((yy · e)(yx · z) · z)z = x e(y(y · (yx · z)z) · z) = x (e · y((y · yx)z · z))z = x
y(e(y · (yx · z)z) · z) = x (y · e((y · yx)z · z))z = x y(y(e · (yx · z)z) · z) = x
(y · y((e · yx)z · z))z = x e(y · (y(y · xz) · z)z) = x (e · y(y(y · xz) · z))z = x
((e · yy) · (y · xz)z)z = x ((ey · y) · (y · xz)z)z = x y(e · (y(y · xz) · z)z) = x
(y · e(y(y · xz) · z))z = x ((y · ey) · (y · xz)z)z = x (y · y(e(y · xz) · z))z = x
y(y · (y(e · xz) · z)z) = x (y · y(y(e · xz) · z))z = x (y · y((y · ex)z · z))z = x
(y · ((y · ye) · xz)z)z = x (y · ye)((y · xz)z · z) = x y(y(y · (ex · z)z) · z) = x
y(((e · yy) · xz)z · z) = x y(((ey · y) · xz)z · z) = x y(((y · ey) · xz)z · z) = x
e((y · y(yx · z))z · z) = x y((y · e(yx · z))z · z) = x ((y · ye) · (yx · z)z)z = x
(y · ((e · yy)x · z)z)z = x (y · ((ey · y)x · z)z)z = x (y · ((y · ey)x · z)z)z = x
y((y · y(ex · z))z · z) = x y(y · (e(y · xz) · z)z) = x y((e · y(yx · z))z · z) = x
(y · ((ye · y) · xz)z)z = x (y · ((yy · e) · xz)z)z = x (ye · y)((y · xz)z · z) = x
(yy · e)((y · xz)z · z) = x ((ye · y) · (yx · z)z)z = x ((yy · e) · (yx · z)z)z = x
y((y · y(e · xz)) · zz) = x ey · (y(yx · z) · zz) = x y · e(y(yx · zz) · z) = x

y(y · e(yx · z)) · zz = x y(y(ey · (x · zz)) · z) = x e(y((y · yx) · zz) · z) = x
y(ey · (yx · zz)) · z = x y((ye · (yx · z)) · zz) = x ye · (y · y(x · zz))z = x

(y · y((ye · x) · zz))z = x (ye · (y · yx)z) · zz = x ey · (y(y · xz) · zz) = x
y(e(yy · xz) · zz) = x (ey · y)((y · xz) · zz) = x y(((yy · e) · xz) · zz) = x

e(yy · (yx · z)) · zz = x yy · (y(ex · zz) · z) = x y(y(ye · (x · zz)) · z) = x
y · (ey · (yx · zz))z = x ye · (y(yx · z) · zz) = x y(ye · (yx · zz)) · z = x

(yy · e)(y(x · zz) · z) = x y(y · (ey · x)z) · zz = x y((ey · y)(x · zz) · z) = x
(ey · y)(yx · zz) · z = x (yy · e)(yx · z) · zz = x (e · yy)(yx · zz) · z = x
y((ey · y)x · z) · zz = x y((yy · e)x · zz) · z = x y(((ey · y) · xz) · zz) = x

(yy · e)((y · xz) · zz) = x (ye · y)((y · xz) · zz) = x y · (ye · y(x · zz))z = x
y · (yy · e(x · zz))z = x y((y · (ye · x)z) · zz) = x y((yy · (ex · z)) · zz) = x
yy · (e · y(x · zz))z = x (ey · y)(y(x · zz) · z) = x y((yy · e)(x · zz) · z) = x

y((ye · y)(x · zz) · z) = x (ye · y(yx · zz))z = x (yy · e(yx · zz))z = x
(y · y((ey · x) · zz))z = x e((y · (yy · x)z) · zz) = x e · (yy · (yx · zz))z = x

y(e · (yy · x)z) · zz = x e((y · y(yx · z)) · zz) = x e · (y · y(yx · zz))z = x
y((y · e(yx · z)) · zz) = x y · e(y(yx · z) · zz) = x y(y(y · e(x · zz)) · z) = x
e((y · (y · yx)z) · zz) = x y(y · e(yx · zz)) · z = x y((ey · (yx · z)) · zz) = x

ey · (y · y(x · zz))z = x y · (y · e(yx · zz))z = x y((y · ye)x · zz) · z = x
(y · ye)(yx · z) · zz = x y((e · y(y · xz))z · z) = x (e · y(y · (y · xz)z))z = x

y(y((e · yx)z · z) · z) = x (y · e(y · (y · xz)z))z = x e(y · (y · (yx · z)z)z) = x
y(y · (y · (ex · z)z)z) = x y((y · e(y · xz))z · z) = x (y · y(e · (y · xz)z))z = x
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y(y((y · ex)z · z) · z) = x e(y · (y(yx · z) · z)z) = x y((y · y(e · xz))z · z) = x
(y · (e · y(y · xz))z)z = x (e · y(y · (yx · z)z))z = x y(e · (y · (yx · z)z)z) = x
y(y · (y(ex · z) · z)z) = x e(y((y · yx)z · z) · z) = x y((y · (e · yx)z)z · z) = x
(y · (y · e(y · xz))z)z = x (y · e(y · (yx · z)z))z = x y((y · (y · ex)z)z · z) = x
y(e · (y(yx · z) · z)z) = x (y · y(e · (yx · z)z))z = x e((y · (y · yx)z)z · z) = x
(y · (y · y(e · xz))z)z = x

A �nite model of any of the following 119 identities with neutral element (or their
mirrors) is a group of exponent 3 with neutral element e.

y · y(y(x · zz) · ez) = x yy · (y(x · ze) · zz) = x y((yy · (x · ze)) · zz) = x
y · y(y(x · ze) · zz) = x yy · (y · (x · ez)z)z = x y · (yy · (xe · z)z)z = x

y(y · (y(xe · z) · z)z) = x y(y · (y · (xe · z)z)z) = x y(y · (y · x(ez · z))z) = x
y(y(y(xz · z) · z) · e) = x y(y · (y(xz · z) · z)e) = x y(y(y(xz · z) · e) · z) = x
y(y · (y(xz · z) · e)z) = x y(y · (y(xz · e) · z)z) = x ey · ((yy · xz) · zz) = x

y · e(y(y · xz) · zz) = x ye · ((yy · xz) · zz) = x ye · (yy · (xz · z))z = x
y(ye · ((y · xz) · zz)) = x y((ye · y)(xz · z) · z) = x yy · ((ey · xz) · zz) = x
(yy · e)(y(xz · z) · z) = x y · y(y(e · xz) · zz) = x y((y · ye)(xz · z) · z) = x

yy · ((ye · xz) · zz) = x ey · (yy · (x · zz))z = x ye · (yy · (x · zz))z = x
yy · (ey · (x · zz))z = x y(y · (y · e(x · zz))z) = x yy · (ye · (x · zz))z = x
yy · (ey · (xz · z))z = x y · (yy · (x · zz)e)z = x e(yy · (y(x · zz) · z)) = x
yy · (y · (x · ze)z)z = x y(y · (y · x(z · ez))z) = x y(y · (y · x(e · zz))z) = x

y(y · (y · xz)(zz · e)) = x y(y · (y · xz)(z · ze)) = x y(y · (y · xz)(ze · z)) = x
e(y · y(y(xz · z) · z)) = x (e · yy)(y(xz · z) · z) = x (ey · y)(y(xz · z) · z) = x
y(e · y(y(xz · z) · z)) = x y(e · (y · y(xz · z))z) = x ye · y((y · xz) · zz) = x
(y · ey)(y(xz · z) · z) = x y(y · e((y · xz) · zz)) = x y(y · (e · y(xz · z))z) = x

y · y((ye · xz) · zz) = x y(y · (y · e(xz · z))z) = x y((yy · e)(xz · z) · z) = x
e(y · (y · y(xz · z))z) = x y · (yy · x(zz · e))z = x y(ey · ((y · xz) · zz)) = x

yy · e((y · xz) · zz) = x yy · (y · x(z · ez))z = x y · (yy · x(z · ez))z = x
y((e · yy)(x · zz) · z) = x yy · (y · xz)(zz · e) = x yy · (y · xz)(z · ze) = x

y · (yy · xz)(z · ez) = x y(((e · yy) · xz) · zz) = x y · y((ey · xz) · zz) = x
yy · (y(e · xz) · zz) = x e · y((yy · xz) · zz) = x y(y · e(y(x · zz) · z)) = x

y(y · (ey · (x · zz))z) = x (ye · y)(y(x · zz) · z) = x yy · (y(xe · zz) · z) = x
y((yy · (xz · z)) · ze) = x yy · (y(xz · ez) · z) = x yy · (y(xz · e) · zz) = x
(e · yy)((y · xz) · zz) = x yy · (y · x(zz · e))z = x y · (yy · x(z · ze))z = x

yy · (y · x(e · zz))z = x (e · yy)(y(x · zz) · z) = x yy · (y(xz · z) · ze) = x
yy · (y · xz)(z · ez) = x y · (yy · xz)(e · zz) = x y(((ye · y) · xz) · zz) = x

y((yy · (x · zz))z · e) = x y(e · (yy · (x · zz))z) = x y((yy · (xe · z)) · zz) = x
yy · (y(xe · z) · z)z = x y((yy · (xe · z))z · z) = x yy · (y(xz · z) · e)z = x

y(e · (y · y(x · zz))z) = x yy · (y · (xe · z)z)z = x y(y · ((y · xz)z · z)e) = x
y(y(y · (xz · z)e) · z) = x y(y · ((y · xz)z · e)z) = x y(y · (y · (xz · z)e)z) = x
y(y(y · (xz · e)z) · z) = x y(y · ((y · xz)e · z)z) = x y(y · (y · (xz · e)z)z) = x
e(y · y((y · xz)z · z)) = x y(e · y((y · xz)z · z)) = x y(e(y · y(xz · z)) · z) = x
y(y · e(y(xz · z) · z)) = x y(y · e((y · xz)z · z)) = x y(y(e · y(xz · z)) · z) = x
y(y(y · e(xz · z)) · z) = x y((yy · (xz · z))e · z) = x y(((y · ye) · xz) · zz) = x
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(y · ye)(y(x · zz) · z) = x yy · (y · x(ez · z))z = x y((y · ye)(x · zz) · z) = x
(y · ye)((y · xz) · zz) = x y · (yy · xz)(ez · z) = x (y · ey)((y · xz) · zz) = x

y · (yy · x(ze · z))z = x y((y · ey)(x · zz) · z) = x y(((y · ey) · xz) · zz) = x
yy · (y · x(ze · z))z = x y · (yy · xz)(ze · z) = x (y · ey)(y(x · zz) · z) = x
yy · (y · xz)(ze · z) = x y(y(y · (xe · z)z) · z) = x

Any additional single axioms with neutral element for groups of exponent 3 are

among these 119 identities with neutral element (up to renaming, mirroring, and

symmetry).

A similar search for shortest single axioms with neutral element for Boolean
groups was also carried out with the following results.

Theorem 6.2. The following 173 identities with neutral element (and their mir-

rors) are single axioms with neutral element for Boolean groups.

e(x(xy · z) · y) = x ex · (xy · zy) = x e(x · y(x · zy)) = x
e(xy · (x · zy)) = x ex · y(x · zy) = x (e · xy)(y · zx) = x
e((x · yz) · xy) = x ex · y(z · xy) = x e(x · y(z · yx)) = x
e((x · yz)y · x) = x ex · y(z · yx) = x e(x · yz) · yx = x
(e · (x · yz)z)x = x x(ey · (x · zy)) = x xe · y(x · zy) = x

xe · (yx · z)y = x (xe · y)(x · zy) = x (x · (ey · x)z)y = x
(x · (ey · x)z)z = x (xe · (yx · z))z = x xe · y(yz · x) = x
x(ey · (z · xy)) = x x((e · yz) · xy) = x x(ey · z) · xy = x
x((e · yz)x · z) = x xe · (y · zx)z = x xe · (yz · x)z = x
((xe · y) · zx)z = x ((x · ey)z · x)z = x ((xe · y)z · x)z = x
x(e · y(zy · x)) = x x((ey · z) · yx) = x (xe · y)(zy · x) = x

x(ey · z) · yx = x (x(e · yz) · y)x = x ((xe · y)z · y)x = x
(x(e · yz) · z)x = x (xe · yz)z · x = x x(x(ey · z) · y) = x

x · (xe · yz)y = x x(x(y · ez) · y) = x x(y · e(x · zy)) = x
x(ye · (x · zy)) = x xy · (ex · z)y = x x(y · (e · yz)x) = x
x(ye · (yz · x)) = x xy · (ey · z)x = x (x · ye)(y · zx) = x
(xy · (e · yz))x = x ((x · ye) · yz)x = x x(y · e(z · xy)) = x
(x · ye)(zx · y) = x x(y · ez) · xy = x ((x · ye)z · x)y = x

(xy · ez) · xz = x (x · ye)z · xz = x (xy · ez)x · z = x
x(y · ez) · yx = x ((x · ye) · zy)x = x x((y · ez) · zx) = x
(xy · ez) · zx = x (x(y · ez) · z)x = x e(x · (x · yz)y) = x

(ex · (xy · z))y = x e(x · (yx · z)y) = x e(xy · (xz · y)) = x
ex · (yx · zy) = x (e · xy)(x · zy) = x (e · x(y · xz))y = x
e(xy · xz) · y = x (ex · (yx · z))y = x ((e · xy) · xz)y = x

(ex · (y · xz))z = x (ex · (yx · z))z = x e(xy · (yz · x)) = x
ex · y(yz · x) = x (ex · y)(yz · x) = x ((e · xy) · yz)z = x

e(x · (yz · x)y) = x ex · (yz · xy) = x (e · x(y · zx))y = x
e((xy · z)x · z) = x ex · (yz · xz) = x ex · (yz · x)z = x
(e(xy · z) · x)z = x e(x · y(zy · x)) = x e((x · yz) · yx) = x
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ex · (yz · yx) = x (ex · yz) · yx = x e((x · yz)y · z) = x
e(xy · z) · yz = x e(xy · zy) · z = x ((e · xy) · zy)z = x

(e(x · yz) · y)z = x (ex · yz)z · x = x e((x · yz)z · y) = x
e(xy · z) · zy = x x · e(yx · zy) = x x((ey · x) · zy) = x

x((e · yx)z · y) = x (x · ey)(xz · y) = x (x · e(yx · z))y = x
x(ey · xz) · y = x (xe · (y · xz))y = x ((xe · y) · xz)y = x
xe · (y · xz)z = x (x · e(yx · z))z = x ((xe · y) · xz)z = x

x(e · y(yz · x)) = x x · e(yz · xy) = x x(e · (yz · x)y) = x
x((ey · z) · xy) = x x((e · yz)x · y) = x (x · e(y · zx))y = x
((xe · y) · zx)y = x x(e · (yz · x)z) = x (xe · yz) · xz = x

x · e(yz · yx) = x x(ey · (z · yx)) = x (xe · yz) · zx = x
x((x · ey) · zy) = x x((xe · y)z · y) = x (x · (x · ey)z)y = x
x(xy · (e · zy)) = x x(x(ye · z) · y) = x x · (xy · ez)y = x
x((xy · e)z · y) = x x(xy · ez) · y = x xy · e(x · zy) = x

xy · e(xz · y) = x (xy · e)(x · zy) = x (x · y(e · xz))y = x
x(ye · xz) · y = x (xy · (e · xz))y = x ((xy · e) · xz)y = x

x(y · (ey · z)x) = x xy · e(y · zx) = x xy · e(yz · x) = x
(xy · e)(y · zx) = x ((xy · e) · yz)x = x x((y · ez)x · y) = x
(x · y(e · zx))y = x x((y · ez) · xz) = x x · (ye · zx)z = x
x((y · ez)x · z) = x (x · y(e · zx))z = x (x · y(ez · x))z = x

x(ye · zx) · z = x ((xy · e) · zx)z = x x(y · e(zy · x)) = x
x(y · (ez · y)x) = x (x(y · ez) · y)x = x x(ye · z) · zx = x
e(x · (xy · z)y) = x e(x(yx · z) · y) = x (ex · (y · xz))y = x
e(x(yx · z) · z) = x ((e · xy) · yz)x = x (ex · yz) · xy = x
(e(x · yz) · y)x = x x(ye · z) · xz = x e((xy · z) · yz) = x
x(e(x · yz) · y) = x x(e(xy · z) · y) = x xe · (x · yz)y = x

x · e(xy · zy) = x x · (ex · yz)y = x x((e · xy)z · y) = x
xe · (xy · z)y = x (x · e(xy · z))y = x

A �nite model of any of the following 5 identities with neutral element (or their

mirrors) is a Boolean group with neutral element e.

(ex · y)z · xz = x ((ex · y)z · x)z = x (ex · y)z · yz = x
(ex · yz)y · z = x (ex · yz)z · y = x

Any additional single axioms with neutral element for Boolean groups are among

these 5 identities with neutral element (up to renaming, mirroring, and symmetry).
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