Intra-regular, left quasi-regular and semisimple fuzzy ordered semigroups

Niovi Kehayopulu

Abstract. We characterize the ordered semigroup which are both intra-regular and left quasiregular also the ordered semigroups which are both intra-regular and semisimple in terms of fuzzy sets.

In this paper we prove that an ordered semigroup S is intra-regular and left quasi-regular if and only if for every fuzzy subset f of S we have $f \leq 1 \circ f^2 \circ 1 \circ f$. It is intra-regular and semisimple if and only if for every fuzzy subset f of S we have $f \leq 1 \circ f^2 \circ 1 \circ f \circ 1$. Moreover, the property $f \leq f \circ 1 \circ f^2 \circ 1$ characterizes the ordered semigroups which are intra-regular and right quasi-regular. An ordered semigroup (S, \cdot, \leq) is called left (resp. right) quasi-regular if $a \in (SaSa]$ (resp. $a \in (aSaS]$ for every $a \in S$. In other words, S is left (resp. right) quasi-regular if for every $a \in S$ there exist $x, y \in S$ such that $a \leq xaya$ (resp. $a \leq axay$). An ordered semigroup S is called semisimple if $a \in (SaSaS]$ for every $a \in S$. That is, if for every $a \in S$ there exist $x, y, z \in S$ such that $a \leq xayaz$ [2]. Intra-regular ordered semigroups are well known. These are the ordered semigroups in which $a \in (Sa^2S]$ for each $a \in S$. We remind that for a subset H of S, (H) is the set $\{t \in S \mid t \leq h \text{ for some } h \in H\}$. As always, denote by 1 the fuzzy subset of S defined by 1(x) = 1 for every $x \in S$. Recall that if S is an intra-regular ordered semigroup, then $1 \circ 1 = 1$. If f, g are fuzzy subsets of S such that $f \leq g$, then for any fuzzy subset h of S we have $f \circ h \preceq g \circ h$ and $h \circ f \preceq h \circ g$. Denote $f^2 := f \circ f$, and by f_a the characteristic function on the set S defined by $f_a(x) = 1$ if x = aand $f_a(x) = 0$ if $x \neq a$ $(a \in S)$. Denote by A_a the subset of $S \times S$ defined by $A_a := \{(x, y) \in S \times S \mid a \leq xy\}$ [3]. The paper in a continuation of our papers in [1,5], for information not given in the present paper we refer to those papers. Exactly as in [1,5], our aim is to present a proof which is drastically simplified than the usual one.

Lemma 1. Let (S, \cdot, \leq) be an ordered groupoid, f, g fuzzy subsets of S and $a \in S$. The following are equivalent:

(1) $(f \circ g)(a) \neq 0.$

(2) There exists $(x, y) \in A_a$ such that $f(x) \neq 0$ and $g(y) \neq 0$.

2010 Mathematics Subject Classification: 06F05 (08A72).

Keywords: Ordered semigroup, fuzzy set, intra-regular, left (right) quasi-regular, semisimple.

Lemma 2. Let (S, \cdot, \leq) be an ordered groupoid, f a fuzzy subset of S and $a \in S$. The following are equivalent:

- (1) $(f \circ 1)(a) \neq 0.$
- (2) There exists $(x, y) \in A_a$ such that $f(x) \neq 0$.

Lemma 3. Let (S, \cdot, \leq) be an ordered groupoid, g a fuzzy subset of S and $a \in S$. The following are equivalent:

- (1) $(1 \circ g)(a) \neq 0.$
- (2) There exists $(x, y) \in A_a$ such that $g(y) \neq 0$.

Theorem 4. An ordered semigroup S is intra-regular and left quasi-regular if and only if for every fuzzy subset f of S we have

$$f \preceq 1 \circ f^2 \circ 1 \circ f.$$

Proof. (\Rightarrow). Let $a \in S$. By hypothesis, there exist $x, y, z, t \in S$ such that $a \leq xa^2y$ and $a \leq zata$. Then we have $a \leq z(xa^2y)ta$. Since $(zxa^2yt, a) \in A_a$, we have $A_a \neq \emptyset$ and

$$(1 \circ f^{2} \circ 1 \circ f)(a) = \bigvee_{(u,v) \in A_{a}} \min\{(1 \circ f^{2} \circ 1)(u), f(v)\} \\ \ge \min\{(1 \circ f^{2} \circ 1)(zxa^{2}yt), f(a)\}.$$

Since $(zxa^2, yt) \in A_{zxa^2yt}$, we have $A_{zxa^2yt} \neq \emptyset$ and

$$(1 \circ f^2 \circ 1)(zxa^2yt) = \bigvee_{(u,v) \in A_{zxa^2yt}} \min\{(1 \circ f^2)(u), 1(v)\}$$

$$\geq \min\{(1 \circ f^2)(zxa^2), 1(yt)\}$$

$$= (1 \circ f^2)(zxa^2).$$

Since $(zxa, a) \in A_{zxa^2}$, we have $A_{zxa^2} \neq \emptyset$ and

$$(1 \circ f^2)(zxa^2) = \bigvee_{\substack{(u,v) \in A_{zxa^2} \\ \geqslant \min\{(1 \circ f)(zxa), f(a)\}}} \min\{(1 \circ f)(zxa), f(a)\}.$$

Since $(zx, a) \in A_{zxa}$, we have $A_{zxa} \neq \emptyset$ and

$$(1 \circ f)(zxa) = \bigvee_{(u,v) \in A_{zxa}} \min\{1(u), f(v)\}$$
$$\geq \min\{1(zx), f(a)\}$$
$$= f(a).$$

Thus we have

$$\begin{aligned} (1 \circ f^2 \circ 1 \circ f)(a) &\ge \min\{(1 \circ f^2 \circ 1)(zxa^2yt), f(a)\} \\ &\ge \min\{(1 \circ f^2)(zxa^2), f(a)\} \\ &\ge \min\{\min\{(1 \circ f)(zxa), f(a)\}, f(a)\} \\ &\ge \min\{f(a), f(a)\} \\ &= f(a). \end{aligned}$$

(\Leftarrow). Let $a \in S$. Since f_a is a fuzzy set in S, by hypothesis, we have $1 = f_a(a) \leq (1 \circ f_a^2 \circ 1 \circ f_a)(a)$. Since $1 \circ f_a^2 \circ 1 \circ f_a$ is a fuzzy set in S, we have $(1 \circ f_a^2 \circ 1 \circ f_a)(a) \leq 1$. Thus we have $(1 \circ f_a^2 \circ 1 \circ f_a)(a) = 1$. By Lemma 1, there exists $(x, y) \in A_a$ such that $(1 \circ f_a^2)(x) \neq 0$ and $(1 \circ f_a)(y) \neq 0$. Since $(1 \circ f_a^2)(x) \neq 0$, by Lemma 3, there exists $(x, v) \in A_y$ such that $f_a(v) \neq 0$. Since $(1 \circ f_a)(y) \neq 0$, by Lemma 3, there exists $(u, v) \in A_y$ such that $f_a(v) \neq 0$. Since $f_a^2(t) \neq 0$, by Lemma 1, there exists $(w, h) \in A_t$ such that $f_a(w) \neq 0$ and $f_a(h) \neq 0$. Since $f_a(v) \neq 0$, we have $f_a(v) = 1$. Similarly $f_a(w) = 1$, $f_a(h) = 1$. Hence we obtain

$$a \leqslant xy \leqslant (zt)(uv) \leqslant z(wh)uv$$
 and $v = w = h = a$.

Then $a \leq za^2ua \in Sa^2S \cap SaSa$. Then $a \in (Sa^2S]$ and $a \in (SaSa]$, that is, S is intra-regular and left quasi-regular.

In an analogous way we prove the next theorem.

Theorem 5. An ordered semigroup S is intra-regular and right quasi-regular if and only if for every fuzzy subset f of S we have

$$f \preceq f \circ 1 \circ f^2 \circ 1.$$

Theorem 6. An ordered semigroup S is intra-regular and semisimple if and only if for every fuzzy subset f of S we have

$$f \preceq 1 \circ f^2 \circ 1 \circ f \circ 1.$$

Proof. (\Rightarrow). Let $a \in S$. By hypothesis, there exist $x, y, z, t, h \in S$ such that $a \leq xa^2y$ and $a \leq zatah$, then $a \leq z(xa^2y)tah$. Since $(zxa^2yta, h) \in A_a$, we have $A_a \neq \emptyset$ and

$$(1 \circ f^2 \circ 1 \circ f \circ 1)(a) = \bigvee_{(u,v) \in A_a} \min\{(1 \circ f^2 \circ 1 \circ f)(u), 1(v)\}$$

$$\geqslant \min\{(1 \circ f^2 \circ 1 \circ f)(zxa^2yta), 1(h)\}$$

$$= (1 \circ f^2 \circ 1 \circ f)(zxa^2yta).$$

Since $(zxa^2yt, a) \in A_{zxa^2yta}$, we have $A_{zxa^2yta} \neq \emptyset$ and

$$(1 \circ f^2 \circ 1 \circ f)(zxa^2yta) = \bigvee_{\substack{(u,v) \in A_{zxa^2yta} \\ \geqslant \min\{(1 \circ f^2 \circ 1)(zxa^2yt), f(a)\}}$$

Since $(zxa, ayt) \in A_{zxa^2yt}$, we have $A_{zxa^2yt} \neq \emptyset$ and

$$(1 \circ f^{2} \circ 1)(zxa^{2}yta) = \bigvee_{(u,v) \in A_{zxa^{2}yt}} \min\{(1 \circ f^{2})(u), 1(v)\}$$

$$\geq \min\{(1 \circ f^{2})(zxa), 1(ayt)\}$$

$$= (1 \circ f^{2})(zxa).$$

Since $(zxa, a) \in A_{zxa^2}$, we have $A_{zxa^2} \neq \emptyset$ and

$$(1 \circ f^2)(zxa) = \bigvee_{\substack{(u,v) \in A_{zxa^2} \\ \geqslant \min\{(1 \circ f)(zxa), f(a)\}}} \min\{(1 \circ f)(zxa), f(a)\}.$$

Since $(zx, a) \in A_{zxa}$, we have $A_{zxa} \neq \emptyset$ and

$$(1 \circ f)(zxa) = \bigvee_{(u,v) \in A_{zxa}} \min\{1(u), f(v)\}$$
$$\geqslant \min\{1(zx), f(a)\}$$
$$= f(a).$$

Thus we have

$$(1 \circ f^2 \circ 1 \circ f \circ 1)(a) \ge (1 \circ f^2 \circ 1 \circ f)(zxa^2yta)$$

$$\ge \min\{(1 \circ f^2 \circ 1)(zxa^2yt), f(a)\}$$

$$\ge \min\{(1 \circ f^2)(zxa), f(a)\}$$

$$\ge \min\{\min\{(1 \circ f)(zxa), f(a)\}, f(a)\}$$

$$= \min\{f(a), f(a)\}$$

$$= f(a).$$

(\Leftarrow). Let $a \in S$. Since f_a and $1 \circ f_a^2 \circ 1 \circ f_a \circ 1$ are fuzzy sets in S, by hypothesis, we have $1 = f_a(a) \leq (1 \circ f_a^2 \circ 1 \circ f_a \circ 1)(a) \leq 1$, then $(1 \circ f_a^2 \circ 1 \circ f_a \circ 1)(a) = 1$. By Lemma 1, there exists $(x, y) \in A_a$ such that $(1 \circ f_a^2)(x) \neq 0$ and $(1 \circ f_a \circ 1)(y) \neq 0$. Since $(1 \circ f_a^2)(x) \neq 0$, by Lemma 3, there exists $(z, t) \in A_x$ such that $f_a^2(t) \neq 0$. Since $(1 \circ f_a \circ 1)(y) \neq 0$, by Lemma 3, there exists $(u, v) \in A_y$ such that $(f_a \circ 1)(v) \neq 0$. Since $f_a^2(t) \neq 0$, by Lemma 1, there exists $(h, k) \in A_t$ such that $f_a(h) \neq 0$, $f_a(k) \neq 0$. Since $(f_a \circ 1)(v) \neq 0$, by Lemma 2, there exists $(g, w) \in A_v$ such that $f_a(g) \neq 0$. We have

$$a \leq xy \leq (zt)(uv) \leq z(hk)uv \leq z(hk)u(gw)$$
 and $h = k = g = a$.

Then $a \leq zhkugw = za^2uaw \in Sa^2S \cap SaSaS$, so $a \in (Sa^2S]$ and $a \in (SaSaS]$ which means that S is intra-regular and semisimple.

For a second proof of Theorems 4 and 6 we need the following lemmas.

Lemma 7. [4] An ordered semigroup S is intra-regular if and only if for any fuzzy subset f of S we have $f \leq 1 \circ f^2 \circ 1$.

Lemma 8. [2] An ordered semigroup S is left (resp. right) quasi-regular if and only if for any fuzzy subset f of S we have $f \leq 1 \circ f \circ 1 \circ f$ (resp. $f \leq f \circ 1 \circ f \circ 1$).

Lemma 9. [2] An ordered semigroup S is semisimple if and only if for any fuzzy subset f of S we have $f \leq 1 \circ f \circ 1 \circ f \circ 1$.

Proof of Theorem 4. (\Rightarrow). Let f be a fuzzy subset of S. Since S is intra-regular, by Lemma 7, we have $f \leq 1 \circ f^2 \circ 1$. Since S is left quasi-regular, by Lemma 8, we have $f \leq 1 \circ f \circ 1 \circ f$. Thus we have

$$f \preceq 1 \circ f \circ 1 \circ f \preceq 1 \circ (1 \circ f^2 \circ 1) \circ 1 \circ f = 1 \circ f^2 \circ 1 \circ f.$$

 (\Leftarrow) . By hypothesis, for any fuzzy subset f of S, we have

$$f \preceq 1 \circ f^2 \circ 1 \circ f \preceq 1 \circ f^2 \circ 1, \ 1 \circ f \circ 1 \circ f.$$

By Lemmas 7 and 8, S is intra-regular and left quasi-regular.

Proof of Theorem 6. (\Rightarrow). By Lemmas 7 and 9, for any fuzzy subset f of S, we have $f \leq 1 \circ f^2 \circ 1$ and $f \leq 1 \circ f \circ 1 \circ f \circ 1$, then

$$f \preceq 1 \circ (1 \circ f^2 \circ 1) \circ 1 \circ f \circ 1 = 1 \circ f^2 \circ 1 \circ f \circ 1.$$

 (\Leftarrow) . For any fuzzy subset f of S, by hypothesis, we have

$$f \preceq 1 \circ f^2 \circ 1 \circ f \circ 1 \preceq 1 \circ f^2 \circ 1, \ 1 \circ f \circ 1 \circ f \circ 1.$$

By Lemmas 7 and 9, S is intra-regular and semisimple.

References

- N. Kehayopulu, Left quasi-regular and intra-regular ordered semigroups using fuzzy ideals, Quasigroups and Related Systems 20 (2012), 239 – 249.
- [2] N. Kehayopulu, Characterization of left quasi-regular and semisimple ordered semigroups in terms of fuzzy sets, Int. J. Algebra 6 (2012), 747-755.
- [3] N. Kehayopulu, On fuzzy ordered semigroups, Quasigroups and Related Systems 20 (2012), 251 - 256.
- [4] N. Kehayopulu and M. Tsingelis, Characterization of some types of ordered semigroups in terms of fuzzy sets, Lobachevskii J. Math. 29 (2008), 14-20.
- [5] N. Kehayopulu and M. Tsingelis, On fuzzy ordered semigroups, Quasigroups and Related Systems 20 (2012), 61 – 70.

Received November 7, 2012

University of Athens Department of Mathematics 15784 Panepistimiopolis Athens, Greece

email: nkehayop@math.uoa.gr