Nuclei and commutants of C-loops

Muhammad Shah, Asif Ali and Volker Sorge

Abstract. C-loops are loops that satisfy the identity x(y(yz)) = ((xy)y)z. In this note we use the order of nuclei of C-loops to show that (1) nonassociative C-loops of order 2p, where p is prime, are Steiner loops, (2) nonassociative C-loops of order 3n are non-simple and non-Steiner, (3) no nonassociative C-loop of order $2 \cdot 3^t$, $t \ge 1$ exists, and (4) if every element of the commutant of a C-loop is of odd order the commutant forms a subloop.

1. Introduction

C-loops are loops satisfying the identity x(y(yz)) = ((xy)y)z. The nature of the identity, where unlike in other Bol-Moufang identities the repeated variable is not separated by either of the other variables, makes them a difficult target of study. Nevertheless they have been investigated in [1, 2, 3, 4, 6, 9, 10, 12, 13, 14, 15].

In this note we extend some results of [14], in particular [14, Proposition 3.1] that states that only even order nonassociative C-loops exist. Investigating this result further using the order of nuclei of C-loops, we prove that (1) all nonassociative C-loops of order 2p, where p is prime, are Steiner loops, (2) all nonassociative C-loops of order 3n are non-simple and non-Steiner, (3) there exists no nonassociative C-loop of order $2 \cdot 3^t$, $t \ge 1$, and (4) if C(L) is the commutant of a C-loop L and every element of C(L) is of odd order, then C(L) is a subloop of L.

All examples presented in this paper have been computed by FINDER [16] and verified by GAP [11].

2. Preliminaries

In this paper we are concerned exclusively with finite loops. Let L be a loop we then define left nucleus N_{λ} , middle nucleus N_{μ} , and right nucleus N_{ρ} of L as the sets

$$\begin{split} N_{\lambda} &= \{ x \in L; x(yz) = (xy)z \text{ for every } y, z \in L \}, \\ N_{\mu} &= \{ x \in L; y(xz) = (yx)z \text{ for every } y, z \in L \}, \\ N_{\rho} &= \{ x \in L; y(zx) = (yz)x \text{ for every } y, z \in L \}. \end{split}$$

2010 Mathematics Subject Classification: 20N99

Keywords: C-loop, nucleus, Steiner loop, commutant.

The nucleus N of L is the defined as $N = N_{\lambda} \cap N_{\mu} \cap N_{\rho}$. N is subgroup of L and, in particular, for C-loops we have $N = N_{\lambda} = N_{\mu} = N_{\rho}$.

We also define the *commutant* C(L) of a loop L to be the set

 $C(L) = \{ c \in L : cx = xc \text{ for every } x \in L \}.$

The following hold for a C-loop L with commutant C(L) and nucleus N.

- (i) There is no C-loop with nucleus of index 2 [14, Lemma 2.9].
- (*ii*) C(L) is a normal subgroup of L [14, Proposition 2.7].
- (iii) If L is nonassociative, of order n and N of order m. Then
 - (a) $n/m \equiv 2 \pmod{6}$ or $n/m \equiv 4 \pmod{6}$,
 - (b) *n* is even, and
 - (c) if n = pk for some prime p and positive integer k, then p = 2 and k > 3 [14, Proposition 3.1].

Moreover, there is a nonassociative non-Steiner C-loop of order 2k for every k > 3.

3. Nucleus of C-loops

We start our considerations with a corollary to [14, Proposition 3.1].

Corollary 3.1. Let L be a nonassociative C-loop of order n with nucleus N of order m. Then

- (i) $n/m \equiv 1 \pmod{3}$ or $n/m \equiv 2 \pmod{3}$,
- (ii) (n/2)/m is an integer of the form 3k-1 or 3k+1,
- (*iii*) $(n/m)^2 \equiv 4 \pmod{6}$ or $n/m \equiv 4 \pmod{6}$,
- (iv) n/m is of the form 2(3k-1) or $(n/m)^2$ is of the form 2(3k-1).

Proof. (i) and (iii) are straightforward. (ii) We have

 $\begin{array}{l} n/m\equiv 2(\bmod 6) \mbox{ or } n/m\equiv 4(\bmod 6)\\ n/m=6k+2 \mbox{ or } n/m=6k+4 \mbox{ for some positive integer } k\\ n/m=2(3k+1) \mbox{ or } n/m=2(3k+2)\\ n/2m=3k+1 \mbox{ or } n/2m=3k+2\\ (n/2)/m=3k+1 \mbox{ or } (n/2)/m=3k+2. \mbox{ But every integer of the form}\\ 3k+2 \mbox{ is also of the form } 3k-1. \end{array}$

Thus (n/2)/m = 3k + 1 or (n/2)/m = 3k - 1. (*iv*) By part (*iii*), we have

> $(n/m)^2 \equiv 4 \pmod{6}$ or $n/m \equiv 4 \pmod{6}$ $(n/m)^2 = 6k + 4$ or n/m = 6k + 4 for some positive integer k $(n/m)^2 = 2(3k + 2)$ or n/m = 2(3k + 2) $(n/m)^2 = 2(3k - 1)$ or n/m = 2(3k - 1).

Proposition 3.2. A nonassociative C-loop L of order 3n is non-simple and non-Steiner.

Proof. L/N(L) is Steiner, hence 3n/m is congruent to 2 or 4 mod 6. So 3n/m is not divisible by 3, thus m is divisible by 3. Therefore, N(L) is a group containing an element of order 3 and hence L is not Steiner. Since N(L) is nontrivial and since N(L) is normal in L by [14], it follows that L is not simple.

The following example illustrates the above proposition.

Example 3.3. A nonassociative, noncommutative, non-Steiner non-simple C-loop of order 12 (size of nucleus = 3) is given in Table 1.

•	0	1	2	3	4	5	6	$\overline{7}$	8	9	10	11											
0	0	1	2	3	4	5	6	7	8	9	10	11		0	1	2	3	4	5	6	7	8	9
1	1	2	0	4	5	3	7	8	6	10	11	9	(0	1	2	3	4	5	6	7	8	9
2	2	0	1	5	3	4	8	6	$\overline{7}$	11	9	10	1	1	0	3	2	5	4	9	8	7	6
3	3	4	5	0	1	2	9	10	11	6	7	8	2	2	3	0	1	6	8	4	9	5	7
4	4	5	3	1	2	0	10	11	9	$\overline{7}$	8	6	3	3	2	1	0	7	9	8	4	6	5
5	5	3	4	2	0	1	11	9	10	8	6	7	4	4	5	6	7	0	1	2	3	9	8
6	6	$\overline{7}$	8	10	11	9	0	1	2	5	3	4	5	5	4	8	9	1	0	7	6	2	3
$\overline{7}$	7	8	6	11	9	10	1	2	0	3	4	5	6	6	9	4	8	2	7	0	5	3	1
8	8	6	7	9	10	11	2	0	1	4	5	3	7	7	8	9	4	3	6	5	0	1	2
9	9	10	11	8	6	$\overline{7}$	3	4	5	2	0	1	8	8	$\overline{7}$	5	6	9	2	3	1	0	4
10	10	11	9	6	7	8	4	5	3	0	1	2	g) Ç	6	7	5	8	3	1	2	4	0
11	11	9	10	7	8	6	5	3	4	1	2	0											
					Ta	ble	1:									r	Fal	ole	2:				

Corollary 3.4. Let L be a nonassociative C-loop of order n with nucleus N of order m, then if for some positive integer t, 3^t divides n, then 3^t also divides m. \Box

The next proposition confirms that there are indeed some even orders for which no nonassociative C-loop exists.

Proposition 3.5. There is no nonassociative C-loop of order $2 \cdot 3^t$ for $t \ge 1$.

Proof. n/m is not divisible by 3, hence L/N(L) is of index at most 2, which is impossible by [14].

The following proposition states that there exist orders for which all nonassociative C-loops will be Steiner.

Proposition 3.6. A nonassociative C-loop L of order 2p with p prime, is Steiner.

Proof. Since L is nonassociative, p > 2. Let m be the order of N(L). Since N(L) is normal in L by [14], m divides 2p. If m = 2p, L = N(L) is a group. If m = p then N(L) is of index 2 in L, which is impossible by [14]. Similarly, by [14] L/N(L) is Steiner. If m = 2 then L/N(L) is Steiner of order p, which again is impossible. Thus m = 1 and L is Steiner.

Example 3.7. The smallest nonassociative C-loop (size of nucleus = 1) is given in table 2. Since its order is $n = 10 = 2 \cdot 5$, it is also Steiner.

It is well known that there are two nonassociative C-loops of order 14. Being of order of the form 2p both are Steiner with nucleus of order 1.

Remark 3.8. Exploiting the results of Propositions 3.2, 3.5, and 3.6 can speed up automatic enumeration of C-loops. For example, we know by 3.2 that there is no nonassociative C-loop of order 18, by 3.6 that C-loops of order 24 are all non-Steiner and by 3.5 that C-loops of order 22 are all Steiner.

Next we give the general forms of the nuclei of the nonassociative C-loops. Here p is an odd prime other than 3.

Order of C-loop	Admissible order of nucleus
$2 \cdot 3^k p, k \geqslant 1$	3^k
2p	1
$2^l, l \ge 4$	$1, 2, 2^2, \dots, 2^{l-2}$
$2^l \cdot 3^k, \ l \ge 1, k \ge 1$	$2^h \cdot 3^k, 0 \leqslant h \leqslant l - 2$
$2^{2}p$	1, 2, p
$2p^2$	1, p
$2^k p, k > 2$	$2^{h}, 2^{l}p, 0 \leqslant h \leqslant k - 1, 0 \leqslant l \leqslant k - 2$
$2p^k, k > 2$	$p^l, 0 \leqslant l \leqslant k-1$
$2^2 p^2$	$1, 2, p, p^2, 2p$
$2^2 \cdot 3 \cdot p$	3, 6, 3p

As application of the above table we can give the orders of C-loops and the admissible orders of their corresponding nuclei in the following table.

C-loop	Nucleus	C-loop	Nucleus	C-loop	Nucleus
10	1	42	3	74	1
12	3	44	1, 2, 11	76	1, 2, 19
14	1	46	1	78	3
16	1, 2, 4	48	3, 6, 12	80	1, 2, 4, 5, 8, 10, 20
20	1, 2, 5	50	1,5	82	1
22	1	52	1, 2, 13	84	3, 6, 21
24	3, 6	56	1, 2, 4, 7, 14	86	1
26	1	58	1	88	1, 2, 4, 11
28	1, 2, 7	60	3, 6, 15	90	9, 18, 45
30	3	62	1	92	1, 2, 23
32	1, 2, 4, 8	64	1, 2, 4, 8, 16	94	1
34	1	66	3	96	3, 6, 12
36	9	68	1, 2, 7	98	1,7
38	1	70	1, 5, 7	100	1, 2, 5
40	1, 2, 4, 5, 10	72	9,18		•

4. Commutant of C-loops

The commutant of a loop is also known as the centrum, Moufang center or semicenter [8]. As discussed in [8], in a group, or even a Moufang loop, the commutant is a subloop, but this does not need to be the case in general. In [8], it has been proved that the commutant of a Bol loop of odd order is a subloop. In the following we discuss such a special case for the commutant of C-loops, which is not necessarily a subloop as the following example demonstrates:

Example 4.1. Consider the following nonassociative flexible C-loop of order 20, which has a commutant as $\{0, 1, 2, 3, 4, 5\}$ that is not a subloop.

•	0	1	2	3	4	5	6	$\overline{7}$	8	9	10	11	12	13	14	15	16	17	18	19
0	0	1	2	3	4	5	6	$\overline{7}$	8	9	10	11	12	13	14	15	16	17	18	19
1	1	0	3	2	5	4	$\overline{7}$	6	9	8	11	10	13	12	15	14	17	16	19	18
2	2	3	1	0	6	$\overline{7}$	5	4	10	11	9	8	18	19	16	17	15	14	13	12
3	3	2	0	1	7	6	4	5	11	10	8	9	19	18	17	16	14	15	12	13
4	4	5	6	7	1	0	3	2	12	13	16	17	9	8	18	19	11	10	15	14
5	5	4	$\overline{7}$	6	0	1	2	3	13	12	17	16	8	9	19	18	10	11	14	15
6	6	$\overline{7}$	5	4	3	2	0	1	14	15	18	19	16	17	8	9	12	13	10	11
7	7	6	4	5	2	3	1	0	15	14	19	18	17	16	9	8	13	12	11	10
8	8	9	10	11	12	13	15	14	0	1	2	3	4	5	$\overline{7}$	6	18	19	16	17
9	9	8	11	10	13	12	14	15	1	0	3	2	5	4	6	7	19	18	17	16
10	10	11	9	8	16	17	19	18	2	3	1	0	15	14	12	13	5	4	6	$\overline{7}$
11	11	10	8	9	17	16	18	19	3	2	0	1	14	15	13	12	4	5	7	6
12	12	13	18	19	9	8	17	16	4	5	14	15	1	0	11	10	6	7	3	2
13	13	12	19	18	8	9	16	17	5	4	15	14	0	1	10	11	$\overline{7}$	6	2	3
14	14	15	16	17	18	19	9	8	6	$\overline{7}$	13	12	10	11	1	0	3	2	5	4
15	15	14	17	16	19	18	8	9	7	6	12	13	11	10	0	1	2	3	4	5
16	16	17	15	14	11	10	13	12	18	19	5	4	7	6	3	2	0	1	8	9
17	17	16	14	15	10	11	12	13	19	18	4	5	6	$\overline{7}$	2	3	1	0	9	8
18	18	19	13	12	15	14	11	10	16	17	$\overline{7}$	6	3	2	5	4	8	9	0	1
19	19	18	12	13	14	15	10	11	17	16	6	7	2	3	4	5	9	8	1	0

We now investigate a condition under which the commutant of C-loop will be a subloop.

Proposition 4.2. Let C(L) be the commutator of a C-loop L. If every element in C(L) has odd order then C(L) is a subloop of L.

Proof. Since C(L) is has odd order by [14], then in fact, C(L) = Z(L). By [14] L is power-alternative, thus C(L) is closed under powers. Now, let $a, b \in C(L)$ with |a| = 2k + 1. Then $a = a^{2k+2}$ is a square, hence in N(L) again by [14]. The rest of the proof is clear from this observation.

References

- [1] A. Beg, A Theorem on C-loops, Kyungpook Math. J. 17 (1977), 91-94.
- [2] A. Beg, On LC-, RC-, and C-loops, Kyungpook Math. J. 20(2) (1980), 211-215.
- [3] F. Fenyves, Extra Loops I, Publ. Math. Debrecen 15 (1968), 235-238.

- [4] F. Fenyves, Extra Loops II, Publ. Math. Debrecen 16 (1969), 187–192.
- [5] E. G. Goodaire, E. Jespers and C. P. Milies, *Alternative Loop Rings*, North-Holland Math. Studies, 184, Elsevier.
- [6] M. K. Kinyon, K. Kunen and J. D. Philips, A generalization of Moufang and Steiner loops, Algebra Universalis 48 (2002), 81-101.
- [7] M. K. Kinyon, Kyle Pula and P. Vojtechovsky, Admissible orders Of Jordan loops, J. Combinatorial Designs 17 (2009), 103-118.
- [8] M. K. Kinyon, J. D. Phillips, Commutants of Bol loops of odd order, Proc. Amer. Math. Soc. 132 (2004), 617-619.
- [9] M. K. Kinyon, J. D. Philips and P. Vojtechovsky, Loops of Bol-Moufang type with a subgroup of index 2, Bul. Acad. Stiinte Repub. Mold. Mat. 3 (2005), 71-87.
- [10] M. K. Kinyon, J. D. Philips and P. Vojtechovsky, C-loops: extensions and constructions, J. Algebra Appl. 6 (2007), 1-20.
- [11] G. P. Nagy and P. Vojtechovsky, LOOPS: Computing with quasigroups and loops in GAP, version 1.0.0, http://www.math.du.edu/loops.
- [12] J. D. Phillips and P. Vojtechovsky, The varieties of loops of Bol-Moufang type, Algebra Universalis 54 (2005), 259-271.
- [13] J. D. Phillips and P. Vojtechovsky, The varieties of quasigroups of Bol-Moufang type: An equational reasoning approach, J. Algebra 293 (2005), 17–33.
- [14] J. D. Philips and P. Vojtechovsky, C-loops: an introduction, Publ. Math. Debrecen 68 (2006), 115-137.
- [15] V. S. Ramamurthi and A. R. T. Solarin, On finite right central loops, Publ. Math.Debrecen 35 (1988), 260-264.
- [16] J. Slaney, FINDER, finite domain enumerator: System description. In Proc. of CADE-12, pp. 798-801, Springer, 1994.
- [17] J. Slaney and A. Ali, Generating loops with the inverse property. In Proc. of ESARM 2008, pp. 55-66.

Received September 24, 2012

M. Shah, A. Ali

Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan E-mails: shahmaths_problem@hotmail.com, dr_asif_ali@hotmail.com

V. Sorge

School of Computer Science, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

E-mail: v.sorge@cs.bham.ac.uk