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Nuclei and commutants of C-loops

Muhammad Shah, Asif Ali and Volker Sorge

Abstract. C-loops are loops that satisfy the identity z(y(yz)) = ((zy)y)z. In this note we use
the order of nuclei of C-loops to show that (1) nonassociative C-loops of order 2p, where p is
prime, are Steiner loops, (2) nonassociative C-loops of order 3n are non-simple and non-Steiner,
(3) no nonassociative C-loop of order 2-3%, ¢ > 1 exists, and (4) if every element of the commutant

of a C-loop is of odd order the commutant forms a subloop.

1. Introduction

C-loops are loops satisfying the identity z(y(yz)) = ((zy)y)z. The nature of the
identity, where unlike in other Bol-Moufang identities the repeated variable is not
separated by either of the other variables, makes them a difficult target of study.
Nevertheless they have been investigated in [1, 2, 3, 4, 6, 9, 10, 12, 13, 14, 15].

In this note we extend some results of [14], in particular [14, Proposition 3.1]
that states that only even order nonassociative C-loops exist. Investigating this
result further using the order of nuclei of C-loops, we prove that (1) all nonassocia-
tive C-loops of order 2p, where p is prime, are Steiner loops, (2) all nonassociative
C-loops of order 3n are non-simple and non-Steiner, (3) there exists no nonasso-
ciative C-loop of order 23", ¢ > 1, and (4) if C(L) is the commutant of a C-loop
L and every element of C'(L) is of odd order, then C(L) is a subloop of L.

All examples presented in this paper have been computed by FINDER [16] and
verified by GAP [11].

2. Preliminaries

In this paper we are concerned exclusively with finite loops. Let L be a loop we
then define left nucleus Ny, middle nucleus N,, and right nucleus N, of L as the
sets

Ny ={z € L;z(yz) = (vy)=z for every y, z € L},
N, ={z € Lyy(zz) = (yz)z for every y,z € L},
N, ={z € L;y(zz) = (yz)x for every y,z € L}.
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The nucleus N of L is the defined as N = NyNN,NN,. N is subgroup of L and,
in particular, for C-loops we have N = N\ = N, = N,.

We also define the commutant C(L) of a loop L to be the set
C(L) ={ce€ L:cx =xcforevery x € L}.

The following hold for a C-loop L with commutant C(L) and nucleus N.
(¢7) There is no C-loop with nucleus of index 2 [14, Lemma 2.9].
(#9) C(L) is a normal subgroup of L [14, Proposition 2.7].
(7i7) If L is nonassociative, of order n and N of order m. Then
(a) n/m = 2(mod 6) or n/m = 4(mod 6),
(b) nis even, and
(¢) if n = pk for some prime p and positive integer k, then p = 2 and
k > 3 [14, Proposition 3.1].
Moreover, there is a nonassociative non-Steiner C-loop of order 2k for every k > 3.

3. Nucleus of C-loops

We start our considerations with a corollary to [14, Proposition 3.1].

Corollary 3.1. Let L be a nonassociative C-loop of order n with nucleus N of
order m. Then
(7) n/m = 1(mod3) or n/m = 2(mod3),
(i1) (n/2)/m is an integer of the form 3k — 1 or 3k + 1,
(iii) (n/m)? = 4(mod6) or n/m = 4(mod6),
(iv) n/m is of the form 2(3k — 1) or (n/m)? is of the form 2(3k — 1).

Proof. (i) and (ii4) are straightforward.
(#1) We have

n/m = 2(mod6) or n/m = 4(mod6)

n/m = 6k + 2 or n/m = 6k + 4 for some positive integer k

n/m =23k +1) or n/m = 2(3k + 2)

n/2m =3k +1or n/2m = 3k + 2
(n/2)/m =3k + 1 or (n/2)/m = 3k + 2. But every integer of the form
3k + 2 is also of the form 3k — 1.
Thus (n/2)/m =3k +1or (n/2)/m =3k — 1.
(iv) By part (ii1), we have
(n/m)? = 4(mod6) or n/m = 4(mod6)

(n/m)* = 6k +4 or n/m = 6k +4 for some positive integer k
(n/m)? = 2(3k + 2) or n/m = 2(3k + 2)
(n/m)? = 2(3k — 1) or n/m = 2(3k — 1). O
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Proposition 3.2. A nonassociative C-loop L of order 3n is non-simple and non-
Steiner.

Proof. L/N(L) is Steiner, hence 3n/m is congruent to 2 or 4 mod 6. So 3n/m is
not divisible by 3, thus m is divisible by 3. Therefore, N(L) is a group containing
an element of order 3 and hence L is not Steiner. Since N(L) is nontrivial and
since N (L) is normal in L by [14], it follows that L is not simple. O

The following example illustrates the above proposition.

Example 3.3. A nonassociative, noncommutative, non-Steiner non-simple C-loop
of order 12 (size of nucleus = 3) is given in Table 1.

01 2 3 45 6 7 8 9 1011
0(01 2 3 45 6 7 8 91011 10123456789
1{1 2 0 4 5 3 7 8 61011 9 0|0 123456789
2(2 01 5 3 48 6 7119 10 111032549876
31345012 910116 7 8 2/2301684957
414 5 3 1 2 01011 9 7 8 6 313210798465
5(56 3 4 2 0 111 9108 6 7 4|4 56 7012398
6(6 7 81011 9 0 1 2 5 3 4 5/54891076 23
7|7 8 611 9101 2 0 3 4 5 6|6 948270531
88 6 7 91011 2 0 1 4 5 3 77894365012
9/9 10118 6 7 3 45 2 01 8|8 756923104
101011 9 6 7 8 4 5 3 0 1 2 919 6 75831240
1111 9 10 7 8 6 5 3 4 1 2 O

Table 1: Table 2:

Corollary 3.4. Let L be a nonassociative C-loop of order n with nucleus N of
order m, then if for some positive integer t, 3t divides n, then 3¢ also divides m. [

The next proposition confirms that there are indeed some even orders for which
no nonassociative C-loop exists.

Proposition 3.5. There is no nonassociative C-loop of order 2 - 3¢ for t > 1.

Proof. n/m is not divisible by 3, hence L/N(L) is of index at most 2, which is
impossible by [14]. O

The following proposition states that there exist orders for which all nonasso-
ciative C-loops will be Steiner.

Proposition 3.6. A nonassociative C-loop L of order 2p with p prime, is Steiner.

Proof. Since L is nonassociative, p > 2. Let m be the order of N(L). Since N(L)
is normal in L by [14], m divides 2p. If m = 2p, L = N(L) is a group. If m = p
then N(L) is of index 2 in L, which is impossible by [14]. Similarly, by [14] L/N(L)
is Steiner. If m = 2 then L/N(L) is Steiner of order p, which again is impossible.
Thus m =1 and L is Steiner. O



100 M. Shah, A. Ali and V. Sorge

Example 3.7. The smallest nonassociative C-loop (size of nucleus = 1) is given
in table 2. Since its order is n = 10 = 2 - 5, it is also Steiner.

It is well known that there are two nonassociative C-loops of order 14. Being
of order of the form 2p both are Steiner with nucleus of order 1.

Remark 3.8. Exploiting the results of Propositions 3.2, 3.5, and 3.6 can speed
up automatic enumeration of C-loops. For example, we know by 3.2 that there
is no nonassociative C-loop of order 18 ; by 3.6 that C-loops of order 24 are all
non-Steiner and by 3.5 that C-loops of order 22 are all Steiner.

Next we give the general forms of the nuclei of the nonassociative C-loops.
Here p is an odd prime other than 3.

Order of C-loop Admissible order of nucleus
2.3 k>1 3k
2p 1

2L 1>4 1,2,22,...,2!72

2L.3k 1>1,k>1 2h .3k o< h<g<l—2
2%p 1,2,p

2> 1,p

2%p k>2| 2" 2p0<h<k—1,0<I<k—2

2", k> 2 PLo<i<k—1

2%p? 1,2,p,p* 2p

22.3.p 3,6,3p

Ag application of the above table we can give the orders of C-loops and the

admissible orders of their corresponding nuclei in the following table.

C-loop | Nucleus C-loop | Nucleus C-loop | Nucleus
10 1 42 3 74 1

12 3 44 1,2,11 76 1,2,19
14 1 46 1 78 3

16 1,2,4 48 3,6, 12 30 1,2,4,5,8,10,20
20 1,2,5 50 1,5 82 1

22 1 52 1,2,13 84 3,6, 21
24 3,6 56 1,2,4,7,14 | 86 1

26 1 58 1 38 1,2,4,11
28 1,2,7 60 3,6,15 90 9,18,45
30 3 62 1 92 1,2,23
32 1,2,4,8 64 1,2,4,8,16 | 94 1

34 1 66 3 96 3,6,12
36 9 68 1,2,7 98 1,7

38 1 70 1,5,7 100 1,2,5
40 1,2,4,5,10 | 72 9,18
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4. Commutant of C-loops

The commutant of a loop is also known as the centrum, Moufang center or semi-
center [8]. As discussed in [8], in a group, or even a Moufang loop, the commutant
is a subloop, but this does not need to be the case in general. In [8], it has been
proved that the commutant of a Bol loop of odd order is a subloop. In the fol-
lowing we discuss such a special case for the commutant of C-loops, which is not
necessarily a subloop as the following example demonstrates:

Example 4.1. Consider the following nonassociative flexible C-loop of order 20,
which has a commutant as {0,1,2,3,4,5} that is not a subloop.

101 2 3 45 6 7 8 9 10111213 141516 17 18 19
0(0 1.2 3 4 5 6 7 8 9 10111213 14 1516 17 18 19
11 0 3 2 5 4 7 6 9 8 1110131215 14 17 16 19 18
212 3106 7 5 41011 9 8 181916 17 15 14 13 12
313 2 01 7 6 4 511108 9 19181716 14 15 12 13
414 5 6 7 1 0 3 212131617 9 8 1819 11 10 15 14
5/5 4 7 6 01 2 313121716 8 9 1918 10 11 14 15
6|6 7 5 4 3 2 0 1141518191617 8 9 121310 11
7|7 6 45 2 31 0151419181716 9 8 13121110
818 9101112131514 0 1 2 3 4 5 7 6 181916 17
919 8 1110131214151 0 3 2 5 4 6 7 191817 16
101011 9 8 16171918 2 3 1 0 15141213 5 4 6 7
11j11 10 8 9 17161819 3 2 0 1 14151312 4 5 7 6
12112131819 9 8 1716 4 5 14151 0 1110 6 7 3 2
13(13121918 8 9 1617 5 4 1514 0 1 1011 7 6 2 3
14(14 1516171819 9 8 6 7 13121011 1 0 3 2 5 4
15(1514 1716 1918 8 9 7 6 12131110 0 1 2 3 4 5
1616 171514 111013121819 5 4 7 6 3 2 0 1 8 9
17(17 16 14 151011 12131918 4 5 6 7 2 3 1 0 9 8
1818 1913121514 11101617 7 6 3 2 5 4 8 9 0 1
19119181213 141510111716 6 7 2 3 4 5 9 8 1 0

We now investigate a condition under which the commutant of C-loop will be
a subloop.

Proposition 4.2. Let C(L) be the commutator of a C-loop L. If every element
in C(L) has odd order then C(L) is a subloop of L.

Proof. Since C(L) is has odd order by [14], then in fact, C(L) = Z(L). By [14] L
is power-alternative, thus C(L) is closed under powers. Now, let a,b € C(L) with
la| = 2k + 1. Then a = a?**2 is a square, hence in N(L) again by [14]. The rest
of the proof is clear from this observation. O
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