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Simple ternary semigroups

G. Sheeja and S. Sri Bala

Abstract. Simple ternary semigroups are studied using idempotent pairs. The concept of
primitive idempotent pairs is introduced and the connection between them and minimal left
(right) ideals are studied. An example of ternary semigroups containing primitive idempotent
pairs is given. Some simple ternary semigroups containing a primitive idempotent pair are
characterized.

1. Introduction

Investigation of ideals is an essential part of the study of any algebraic system.
Investigation of ideals and radicals in ternary semigroups was initiated by Sioson
[16]. The study has been continued by many authors for ternary semigroups and
more generally for n-ary semigroups [8, 9, 10]. Cyclic ternary groups are described
by Dörnte [3]. The n-ary power was introduced by Post [12]. The notion of minimal
(maximal) left and right ideals in a ternary semigroups has been studied in [9] and
a characterization has been obtained. In this paper we study some aspects of
ternary semigroups such as Green's relations and simplicity. The de�nition of D-
and H-equivalences given here are more general than those de�ned in [2]. In this
paper a 0-t-simple ternary semigroup is de�ned and a characterization is obtained.
Primitive idempotent pairs in a ternary semigroup are de�ned. Some results for 0-
t-simple ternary semigroup which contains primitive idempotent pairs are proved.
A connection between primitive idempotents and minimal (left and right) ideals
are established. Completely 0-t-simple ternary semigroups are introduced and
characterized.

2. (0)-simple ternary semigroups

A ternary semigroup is called (right, left) simple if it does not contains any proper
(right, left) ideals. A ternary semigroup T is called t-simple if it does not contain
any proper two-sided ideal. A t-simple ternary semigroup is simple. A simple
ternary semigroup is surjective, i.e., T = T<1> = [TTT ].

2010 Mathematics Subject Classi�cation: 20N10
Keywords: 0-simple, t-simple, 0-t-simple, primitive idempotent pairs, Green's equivalence,
completely 0-t-simple.



104 G. Sheeja and S. Sri Bala

For other de�nitions we refer [8, 9, 16].

We start with the following simple lemma proved in [8].

Lemma 2.1. A ternary semigroup T is a right (left) simple if and only if [aTT ] =
T (respectively, [TTa] = T ) for all a ∈ T.

From this lemma we deduce

Corollary 2.2. A ternary semigroup T is a right (left) simple if and only if for

given a, b ∈ T there exist u, v ∈ T such that [auv] = b.

The following facts are almost obvious

Lemma 2.3. A ternary semigroup T is a right (left) simple if and only if [abT ] =
T (resp. [Tab] = T ) for all a, b ∈ T.

Corollary 2.4. A ternary semigroup T is a right (left) simple if and only if for

given a, b, c ∈ T there exist x ∈ T such that [abx] = c (resp. [xab] = c).

Lemma 2.5. A ternary semigroup T is simple if and only if T = [TaT ]∪[TTaTT ]
for any a ∈ T.

Lemma 2.6. A ternary semigroup T is t-simple if and only if [TTaTT ] = T for

any a ∈ T.

An element z ∈ T is called a zero element if [abz] = [zab] = [azb] = z for all
a, b ∈ T. A zero element is uniquely determined and is denoted by 0. If T has no
zero element, then a zero element can be adjoined by putting [abc] = 0 if any of
a, b, c is a zero. We denote this fact by T 0 = T ∪{0}. If a ternary semigroup has a
zero, then clearly {0} is an ideal of T . It is denoted by (0). A ternary semigroup
T with 0 is called a null ternary semigroup if [abc] = 0 for all a, b, c ∈ T . It is
clear that a ternary semigroup with 0 has at least two ideals: 0 and T . If it has
no other ideals (two-sided ideals) and T<1> 6= (0), then it is called 0-simple (resp.
0-t-simple.

Lemma 2.7. If a ternary semigroup T with 0 has only one two-sided ideal A 6= T ,

then either T is 0-t-simple or T is the null ternary semigroup of order 2.

Proof. Clearly A = (0). Since T<1> is an ideal of T , we have T<1> = T or
T<1> = (0). In the �rst case T = (0), which means that T is 0-t-simple. In the
second case for any non-zero element t ∈ T the set {0, t} is a non-zero two-sided
ideal of T and so {0, t} = T. Thus T is a null ternary semigroup of order 2.

Lemma 2.8. A ternary semigroup T is 0-simple if and only if for every non-zero

a ∈ T we have T = [TaT ] ∪ [TTaTT ].
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Proof. Suppose that T is 0-simple. Then T<1> is a non-zero ideal of T and so
T<1> = T. Hence T = T<1> = T<2>. For any non-zero element a ∈ T the subset
[TaT ]∪ [TTaTT ] is an ideal of T . Hence we have either [TaT ]∪ [TTaTT ] = (0) or
[TaT ]∪[TTaTT ] = T. Suppose [TaT ] = (0). Then the set M = {m ∈ T : [TmT ] =
(0)} contains the nonzero element a. M is a non-zero ideal and so M = T. This
means that T<1> = (0), a contradiction. Therefore [TaT ] ∪ [TTaTT ] = T for
every non-zero element a ∈ T. The converse is obvious.

Lemma 2.9. A ternary semigroup T is 0-t-simple if and only if T = [TTaTT ]
for all a 6= 0 ∈ T.

Proof. Suppose that T is 0-t-simple. Then T<1> 6= 0 and T<1> is an ideal of T.
Hence T = T<1> = T<2>. For any non-zero element a ∈ T, the subset [TTaTT ]
of T is a two-sided ideal. Thus we have either [TTaTT ] = T or [TTaTT ] = (0).
If [TTaTT ] = (0), then as in Lemma 2.8 we obtain a contradiction. Thus T =
[TTaTT ].

In a similar way we can prove

Lemma 2.10. If a ternary semigroup T is 0-t-simple, then T = [TaT ] for all

a 6= 0 ∈ T.

3. Green's equivalence on ternary semigroups

The Green's equivalence relation L and R on a ternary semigroup T are de�ned
as follows (see [2]):

aLb ⇐⇒ a ∪ [TTa] = b ∪ [TTb],

aRb ⇐⇒ a ∪ [aTT ] = b ∪ [bTT ],

H = L ∩R.

In other words aLb if and only if a and b generate the same left ideal, i.e.,
a = b or a = [xyb], b = [uva] for some x, y, u, v ∈ T . Similarly, aRb if and only if
a and b generate the same right ideal, i.e., a = b or a = [bpq], b = [ars] for some
p, q, r, s ∈ T .

Note that our de�nition of H is di�erent from that found in [2].

Lemma 3.1. L is a right congruence and R is a left congruence.

Proposition 3.2. In ternary semigroups R ◦ L = L ◦ R.

Proof. Let (a, b) ∈ L ◦ R. Then there exists c ∈ T such that aLc and cRb so,
there exist x, y, u, v, p, q, r, s ∈ T such that a = [xyc], c = [uva] and c = [bpq], b =
[crs]. Put d = [[xyc]rs]. Then [ars] = [[xyc]rs] = d, and, [dpq] = [[xyc]rs]pq] =
[[xy[crs]]pq] = [[xyb]pq] = [xy[bpq]] = [xyc] = a. Therefore aRd. Also [xyb] =
[xy[crs]] = d and [uvd] = [[uva]rs] = [crs] = b, and so dLb. Hence (a, b) ∈ R ◦ L.
Thus L◦R ⊆ R◦L. Similarly we can prove R◦L ⊆ L◦R. Therefore R◦L = L◦R
is an equivalence relation on T .
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Proposition 3.3. D = R◦L = L◦R is the smallest equivalence on T containing

R and L.

The equivalence D de�ned by us is contained in the equivalence D de�ned by
Dixit and Dewan [2].

Recall [13, 14] that an element t ∈ T is called regular if [tut] = t for some t ∈ T .
If [tut] = t and [utu] = u, then u and t are inverses of one another.

Proposition 3.4. If a D-class D of T contains a regular element, then every

element of D is regular.

Proof. Let D be a D-class in T and a ∈ T be a regular element in D. Let b
be an arbitrary element of D. Since b ∈ D, for some c ∈ T we have aLcRb.
From aLc we obtain either a = c or a = [efc], c = [uva] for some e, f, u, v ∈ T.
Similarly, cRb gives either c = b or c = [bpq], b = [crs] for some p, q, r, s ∈ T.
Let x be an inverse of a. Then [axa] = a, [xax] = x. Take y = [[pqx]ef ] we
get [byb] = [b[[pqx]ef ]b] = [[bpq]x[efb]] = [cx[efb]] = [cx[ef [crs]]] = [cx[efc]rs] =
[[uva]xa]rs] = [uv[axa]rs] = [uv[ars]] = [[uva]rs] = [crs] = b. Similarly if a = c,
or c = b, then by taking y = [pqx] (y = [xef ]) we can show that b is regular
element.

Let La (Ra, Da, Ha) be the L (R, D, H)-class containing a ∈ T.
The following Lemmas are found in [2].

Lemma 3.5. Let a, b be R-equivalent elements in a ternary semigroup T and let

p, q, r, s ∈ T be such that a = [brs], b = [apq]. Then the right translations ρpq|La,

ρrs|Lb are mutually inverse R-class preserving bijections from La onto Lb and

from Lb onto La respectively.

Lemma 3.6. Let a, b be L−equivalent elements in a ternary semigroup T and let

x, y, u, v ∈ T be such that a = [xyb], b = [uva]. Then the left translations λxy|Ra,

λrs|Rb are mutually inverse L- class preserving bijections from Ra onto Rb and

from Rb onto Ra respectively.

Using the above maps the following lemma can be proved.

Lemma 3.7. Let a, b be D-equivalent elements in a ternary semigroup T. Then
|Ha| = |Hb|.

Proof. If c is such that aRc, cLb, then there exists p, q, r, s, x, y, u, v ∈ T such that
a = [crs], c = [apq] and b = [xyc], c = [uvb]. Then by Lemmas 3.5 and 3.6 we see
that ρpq|Ha is a bijection onto Hc and λxy|Hc is a bijection onto Hb. Thus ρpqλxy

is a bijection from Ha onto Hb. Therefore, |Ha| = |Hb|.

Corollary 3.8. If x, y, z ∈ T are such that [xyz] ∈ Hx, then ρyz is a bijection of

Hx onto itself. If [xyz] ∈ Hz, then λxy is a bijection of Hz onto itself.
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Theorem 3.9. If H is an H-class of a ternary semigroup T, then we have either

H<1> ∩H = ∅ or H<1> = H and H is a ternary subgroup of T.

Proof. Suppose that H<1> ∩ H 6= ∅. Then there exists a, b, c ∈ H such that
[abc] ∈ H. By Corollary 3.8, the right translation ρbc and the left translation
λab are bijections of H onto itself. Hence [hbc] ∈ H and [abh] ∈ H for every
h ∈ H. Also ρbh and λhb are bijections of H onto itself. Therefore [hbH] = H
and [Hbh] = H. By Lemma 2.1, H is a right and left simple ternary semigroup.
Therefore by Theorem 1.1 in [13], H is a ternary group.

4. Minimal ideals

If A, B are two-sided ideals of a ternary semigroup T, then A and B both contain
the product [ATB]. Therefore there can be almost one minimal two-sided ideal
of T. Similarly we see that if A and B are ideals of a ternary semigroup, then
[ATB] ∪ [TATBT ] is an ideal of T contained in A and B. Therefore a minimal
ideal (if it exists) is unique. If T = [a] = {a<n>, n > 0} is a cyclic ternary
semigroup, then [a] = (a) ⊃ (a)3 ⊃ . . . is an in�nite descending chain of ideals of
T and T does not have a minimal two-sided ideal. If T is a �nite cyclic ternary
semigroup, then T = {a<n> : a<m> = a<m+r> : m = index, r = period} and
T = (a) ⊃ (a)3 ⊃ · · · ⊃ Ka, where Ka = {a<m>, . . . , a<m+r−1>} is the unique
minimal ideal of T.

If a non-zero ideal M of a ternary semigroup T with 0 ,is said to be 0-minimal

if M 6= (0) and (0) is the only ideal of T contained in M. Similarly 0-minimal left
(right, two-sided) ideals are de�ned.

Lemma 4.1. Let L be a minimal left ideal of a ternary semigroup T and let

x, y ∈ T. Then [Lxy] is a minimal left ideal of T.

Proof. [Lxy] is a left ideal of T. Let M be a left ideal of T contained in [Lxy].
Consider the set N = {n ∈ L : [nxy] ∈ M}. Then [Nxy] = M. For t1, t2 ∈ T, and
n ∈ N [[t1t2n]xy] = [t1t2[nxy]] ∈ [TTM ] ⊆ M. Therefore [t1t2n] ∈ N and so N
is a left ideal of T contained in L. From the minimality of L we obtain N = L.
Therefore M = [Lxy] and so [Lxy] is minimal.

Theorem 4.2. Let M be a minimal two-sided ideal of a ternary semigroup T.
Then M is a t-simple ternary subsemigroup of T.

Proof. M<1> is a two-sided ideal of T contained in M. Therefore M<1> = M. For
any a ∈ M, (a)t = a∪[TTa]∪[aTT ]∪[TTaTT ] is a two-sided ideal of T contained in
M. Therefore (a)t = M. Consequently, M = M<1> = M<2> = [MM(a)tMM ] =
[MM(a ∪ [TTa] ∪ [aTT ] ∪ [TTaTT ])MM ] = [MMaMM ] ⊆ M<2> = M. Thus,
M = [MMaMM ] for all a ∈ M and so M is a t-simple ternary semigroup by
Lemma 2.9.
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Let K denote the intersection of all two-sided ideals and K∗ the intersection
of all ideals of a ternary semigroup T. Clearly K ⊂ K∗. Suppose K 6= ∅.

Lemma 4.3. K is a t-simple ternary semigroup.

Proof. For a ∈ K, (a)t = a ∪ [TTa] ∪ [aTT ] ∪ [TTaTT ] is a two-sided ideal of T
contained in K and so K = (a)t for all a ∈ K. Thus K is the unique minimal
two-sided ideal of T and so K is t-simple by Theorem 4.2.

Lemma 4.4. K∗ is a simple ternary semigroup.

Proof. For a ∈ K∗, (a) = a ∪ [TTa] ∪ [aTT ] ∪ [TaT ] ∪ [TTaTT ] ⊂ K. Therefore
K∗ = (a) for all a ∈ K∗. Hence K∗ is a simple ternary semigroup.

Lemma 4.5. K∗ = [TKT ].

Proof. Since K ⊆ K∗, we have [TKT ] ⊆ [TK∗T ] ⊆ K∗. Thus [TT (K∪ [TKT ])] =
[TTK] ∪ [TTTKT ] = [TTK] ∪ [TKT ] ⊆ K ∪ [TKT ]. Therefore K ∪ [TKT ] is a
left ideal of T . Similarly, K ∪ [TKT ] is an ideal and so K∗ ⊆ K ∪ [TKT ]. Since
K ⊆ K∗ we have K∗ ⊆ [TKT ]. Therefore K∗ = [TKT ].

Theorem 4.6. K = K∗.

Proof. Put M = [KK∗K]. Then M ⊂ K; M ⊆ K∗. M is an ideal and so K∗ ⊂ M.
Therefore K∗ = M. Similarly K = M. Hence K = K∗(= M).

De�nition 4.7. If K = K∗ is nonempty, then it is called the kernel of T.

Lemma 4.8. If L is a 0-minimal left ideal of a ternary semigroup T with 0 such

that L<1> 6= (0), then L = [TTa] for every element a 6= 0 of L.

Proof. For any a 6= (0) in L, [TTa] is clearly a left ideal of T contained in L. If
[TTa] = (0) then a<1> = (0) and {0, a} is a non-zero left ideal of T contained in
L and so {0, a} = L and L<1> = (0), a contradiction. Hence [TTa] 6= (0) and so
[TTa] = L.

Lemma 4.9. Let L be a 0-minimal left ideal of a ternary semigroup T with 0 and

let x, y ∈ T. Then [Lxy] is either (0) or a 0-minimal left ideal of T.

Proof. Assume that [Lxy] 6= (0). Then [Lxy] is a left ideal of T. Let M be a left
ideal of T contained in [Lxy]. Let N = {n ∈ L : [nxy] ∈ M}. Then [Nxy] = M.
Recalling the proof of Lemma 4.1, it can be shown that N is a left ideal of T so
that N = (0) or N = L. Therefore either M = (0) or M = [Lxy] proving that
[Lxy] is a 0-minimal left ideal.

Theorem 4.10. Let M be a 0-minimal two-sided ideal of a ternary semigroup

with zero 0. Then either M<1> = (0) or M is a 0-t-simple ternary subsemigroup

of T.
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Proof. M<1> is an two-sided ideal of T contained in M. Therefore M<1> = (0) or
M<1> = M. Suppose M<1> 6= (0). Then M = M<1> = M<2>. As in the proof of
Theorem 4.2, we can show that for every a ∈ M, a 6= 0 M = [MMaMM ]. Thus
M is a 0-t-simple ternary semigroup.

Theorem 4.11. Let T be a ternary semigroup with 0. If a 0-minimal two-sided

ideal M of T contains at least one 0-minimal left ideal of T, then M is the union

of all the 0-minimal left ideals of T contained in M.

Proof. Let N be the union of all the 0-minimal left ideal of T contained in M.
Clearly N is a left ideal of T. We prove that N is a right ideal. Let n ∈ N and
x, y ∈ T. By the de�nition, n ∈ L for some 0- minimal left ideal L of T contained
in M. By Lemma 4.9, [Lxy] = (0) or [Lxy] is a 0-minimal left ideal of T. Moreover,
[Lxy] ⊆ [Mxy] ⊆ M and hence [Lxy] ⊆ N. Therefore [nxy] ∈ N, for all n ∈ N.
Hence, N 6= (0) since it contains at least one 0-minimal left ideal of T. Thus N
is a non-zero two-sided ideal of T contained in M. Therefore N = M, by the
0-minimality of M.

Lemma 4.12. Let M be a 0-minimal two-sided ideal of a ternary semigroup T
with 0 such that M<1> 6= (0). Then also L<1> 6= (0) L for any non-zero left ideal

of T contained in M .

Proof. Since [LTT ] is two-sided ideal of T contained in M we have either [LTT ] =
M or [LTT ] = (0). If [LTT ] = (0), then L is an ideal of T whence L = M, and
so M<1> = [LMM ] ⊂ [LTT ] = (0), contrary to our hypothesis on M. Hence
[LTT ] = M and so M = M<1> = [[LTT ][LTT ][LTT ]] = [L[TTL][TTL]TT ] ⊆
[[LLL]TT ]. Therefore L<1> 6= (0).

Theorem 4.13. Let M be a 0-minimal two-sided ideal of a ternary semigroup T
with 0 such that M<1> 6= (0), and assume that M contains at least one 0-minimal

left ideal of T. Then every left ideal of M is also a left ideal of T.

Proof. Let L be a non-zero left ideal of M and 0 6= a ∈ L. By Theorem 4.10, M
is 0-t-simple and so M = [MMaMM ]. Hence [MMa] 6= (0). By Theorem 4.10,
there is 0-t-minimal left ideal L1 of T such that a ∈ L1 ⊆ M. Since [MMa] is
a non-zero left ideal of T contained in L1, [MMa] = L1. Therefore a ∈ [MMa].
Hence L =

⋃
{[MMa] : a ∈ L} is a left ideal of T .

Similar results can be proved for right ideals and also for 0-minimal ideals.

5. Completely 0-t-simple ternary semigroups

We recall [13, 14] that a pair of elements (a, b) of a ternary semigroup T is said
to be an idempotent pair if [ababt] = [abt] and [tabab] = [tab]. Two idempotent
pairs (a, b) and (c, d) are said to be equivalent if [abt] = [cdt] and [tab] = [tcd].
〈a, b〉 denotes the equivalence class containing the idempotent pair (a, b). If (a, b),
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(c, d) are idempotent pairs of T, then (a, b) 6 (c, d) if [abcdt] = [cdabt] = [abt] and
[tabcd] = [tcdab] = [tab]. Then 6 is a partial order on the set E of equivalence
classes of idempotent pair of T . If S contains 0, then the class 〈0, 0〉 is the least
element of E. An idempotent pair (a, b) is said to be non-zero if (a, b) does not
belong to 〈0, 0〉. If T contains zero, a non-zero idempotent pair (u, v) is called
primitive if (a, b) 6 (u, v) for any idempotent pair (a, b) implies either (a, b) = 〈0, 0〉
or 〈a, b〉 = 〈u, v〉. If T does not contain zero, a primitive idempotent pair is
similarly de�ned. A completely 0-t-simple ternary semigroup is a 0-t-simple ternary
semigroup T containing a primitive idempotent pair.

Lemma 5.1. If L is a 0-minimal left ideal of a ternary semigroup T, then L\{0}
is an L-class.

Proof. For every x ∈ L, [TTx] is a left ideal of T contained in L so that [TTx] = (0)
or [TTx] = L. Suppose [TTx] = L for every x ∈ L\{0}. Then x ∪ [TTx] = L =
y ∪ [TTy] for every x, y ∈ L\{0} and so L\{0} is contained in the L-class Lx. If
y ∈ Lx, then y ∈ x∪ [TTx] = L so that Lx ⊆ L\{0}. Therefore L\{0} is an L-class
of T . Suppose [TTx] = (0) for some x ∈ L. Then {0, x} is a non-zero left ideal of
T contained in L so that {0, x} = L. Then x ∪ [TTx] = L and xLy implies x = y.
Hence in this case also L\{0} is a L-class of T .

A similar result can be proved for 0-minimal right ideals.

Lemma 5.2. Let T be a 0-t-simple ternary semigroup containing a 0-minimal left

ideal and a 0-minimal right ideal. Then to each 0-minimal left ideal L of T there

exists a 0-minimal right ideal R of T such that [LRT ] 6= (0) and [LRT ] = T. Also
[LTR] 6= (0) and [LTR] = T.

Proof. [LTT ] is a two-sided ideal of T so that [LTT ] = (0) or [LTT ] = L. If
[LTT ] = (0), then L<1> = (0) and L is a two-sided ideal of T so that T = L and
T<1> = L<1> = (0) contrary to the hypothesis. Therefore [LTT ] = L. Then for
some x ∈ T [LxT ] 6= (0). Since T is the union of all the 0-minimal right ideals of
T (by the dual of Theorem 4.11), x ∈ R for some 0-minimal right ideal R of T .
Hence [LRT ] 6= (0), [LRT ] is a non-zero two sided ideal of T and so [LRT ] = T.
Similarly it can be shown that [LTR] = T.

Lemma 5.3. Let L and R be 0-minimal left and right ideals respectively of a 0-
t-simple ternary semigroup T . Then [LRT ] 6= (0) if and only if [TLR] 6= (0). In

this case [LRT ] = T = [TLR].

Proof. By Lemma 5.2, if [LRT ] 6= (0), then [LRT ] = T. Then T = T<1> =
[LRTTLRT ], whence [TLR] 6= (0). Then [TLR] = T. Conversely, if [TLR] 6= (0),
then we can show that [TLR] = T. Further, T = T<1> = [TLRTT ]. Therefore,
[LRT ] 6= (0) and [LRT ] = T.

Lemma 5.4. Let L (resp. R) be a 0-minimal left (right) ideal of a 0-t-simple ter-

nary semigroup and a ∈ L\{0} (resp. R\{0}). Then [TTa] = L (resp. [aTT ] = R).
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Proof. Since T is a 0-t-simple, by Lemma 2.9, T = [TTaTT ], so [TTa] 6= (0). Since
[TTa] is a non-zero left ideal contained in L, [TTa] = L. Similarly we can show
that [aTT ] = R for a ∈ R\{0}.

Let T be a 0-t-simple ternary semigroup and L and R are 0-minimal left and
right ideals of T such that [LRT ] 6= (0). Then we have the following result.

Lemma 5.5. [RTL] is a ternary group with 0.

Proof. Since [LRT ] 6= (0) by Lemma 5.3 [LRT ] = T = [TLR]. Then T = T<1> =
[LRTLRTT ] and so [RTL] 6= (0). Choose a ∈ [RTL], a 6= 0. Then a ∈ R∩L. Then
by Lemma 2.9, T = [TTaTT ] and so [aTT ] 6= (0). Therefore [aTT ] = R. Similarly
[TTa] = L and T = [TLR] = [TLaTT ]. Therefore [TLa] 6= (0), so [TLa] = L.
[RTL] = [RTTLa] = [RT [LRT ]La] = [[RTL][RTL]a] proving that [RTL] is left
simple. Similarly [aRT ] = R and [a[RTL][RTL]] = [aR[LRT ]TL] = [aRTTL] =
[RTL]. Therefore [RTL] is right simple. Hence by Theorem 1.1 in [13], [RTL] is
a ternary group with 0.

Lemma 5.6. [RTL] = R ∩ L.

Proof. Clearly [RTL] ⊂ R ∩ L. By Lemma 5.1, L\{0} is a L-class of T . Similarly
R\{0} is a R-class of T . Therefore H = R\{0} ∩ L\{0} is a H-class of T . Since
[RTL] is a ternary group with 0, for every a ∈ [RTL], a 6= 0 there exists the
ternary group inverse a−1 of a in [RTL]. Thus (a, a−1) is an idempotent pair
in [RTL] and for every z ∈ [RTL], z 6= 0 z = [za−1a]. Since a, a−1, z ∈ [RTL],
a, a−1, z ∈ H and z = [za−1a] ∈ H<1>∩H. Hence, by Theorem 3.9, H is a ternary
group. Therefore R ∩ L is a ternary group with 0. If z ∈ R ∩ L, z 6= 0, then,
by Lemma 5.1, z and a are in some L-class and so for some u, v ∈ T, we have
z = [uva] = [uvaa−1a] = [za−1a] ∈ [RTL]. Therefore [RTL] = R ∩ L.

Lemma 5.7. For every non-zero idempotent pair (a, b) in [RTL], R = [abT ],
L = [Tab] and [RTL] = [abTab].

Proof. Let (a, b) be a non-zero idempotent pair in [RTL]. If [aba] = 0, then
[abx] = [ababx] = 0 for every x ∈ [RTL]. Similarly [xab] = 0. Therefore (a, b) is
equivalent to the zero idempotent pair, contrary to the hypothesis that (a, b) is a
non-zero idempotent pair. Therefore [aba] 6= 0 and [bab] 6= 0. Then [Tab] 6= (0)
and [abT ] 6= (0). If L = [Tab] and R = [abT ], then [RTL] = [abTTTab] = [abTab].
In particular for every a ∈ [RTL], a 6= 0, [RTL] = [aa−1Taa−1].

Lemma 5.8. Every idempotent pair in [RTL] is primitive in T .

Proof. Let (a, b) be an idempotent pair in [RTL]. Then [aba] is regular with
[bab] as the inverse in [RTL] and (a, b) and ([aba], [bab]) are equivalent to [RTL].
Therefore [abz] = [abababz] = z for all z ∈ [RTL]. Similarly [zab] = z. Since [aba]
is regular, ([aba], [bab]) is an idempotent pair in T. Therefore for any t ∈ T, [abt] =
[[abababa]bt] = [ababt]. Similarly [tab] = [tabab]. Thus (a, b) is an idempotent pair
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in T and (a, b) ∼ ([aba], [bab]). Hence without loss of generality we can take an
idempotent pair (a, a−1) in [RTL].

Lemma 5.9. Let T be a completely 0-t-simple ternary semigroup and (a, b) a

primitive idempotent pair in T . Then [Tab] and [abT ] are 0-minimal left and right

ideals of T, respectively.

Proof. Since (a, b) is a primitive idempotent pair, as in Lemma 5.7 we see that
L = [Tab] is a non-zero left ideal of T and R = [abT ] is a non-zero right ideal.
Let A be a non-zero right ideal of T contained in R. Let x 6= 0, x ∈ A. Then
x ∈ R and [abx] = x. Since T is 0-t-simple, T = [TTxTT ] (Lemma 2.9). Hence
for some ui, vi, wi, zi ∈ T, i = 1, 2, a = [u1v1xw1z1], b = [u2v2xw2z2]. Put
c1 = [abau2v2ab], d1 = [w2z2aba], c2 = [babu1v1ab], d2 = [w1z1bab]. We can easily
show that [c1xd1] = [aba] and [c2xd2] = [bab]. Clearly ci, di 6= 0, i = 1, 2. So,
([c1xd1], [c2xd2]) is an idempotent pair equivalent to (a, b). Also, [abc1] = c1 =
[c1ab], [bac2] = c2 = [c2ab]. Put f1 = [xd1c2], f2 = [xd2c1], [c1f1xd2a] = [aba]
and [c2f2xd1b] = [bab]. Therefore f1 6= 0, f2 6= 0. Further [f1f2f1] = f1 and
[f2f1f2] = f2. Therefore (f1, f2) is a non-zero idempotent pair in T . Moreover,
also (f1, f2) 6 (a, b). Since (a, b) is a primitive idempotent pair, (f1, f2) ∼ (a, b).
Therefore R = [abT ] = [f1f2T ] = [xd1c2xd2c1T ] = [xTT ] ⊆ A. Thus R = A and R
is 0-minimal. Let B be a non-zero left ideal of T contained in L. Let x ∈ B, x 6= 0.
Since T is 0-t-simple, T = [TTxTT ]. Hence we can �nd elements ui, vi, wi, zi ∈ T,
i = 1, 2 such that a = [u1v1xw1z1] and b = [u2v2xw2z2]. Put c1 = [abau2v2],
d1 = [abw2z2aba], c2 = [babu1v1], d2 = [abw1z1bab]. Then [c1xd1] = [aba] and
[c2xd2] = [bab]. Put f1 = [d1c2x], f2 = [d2c1x]. As before we can show that (f1, f2)
is a non-zero idempotent pair such that (f1, f2) 6 (a, b). Therefore (f1, f2) ∼ (a, b).
Hence L = [Tab] = [Tf1f2] = [Td1c2xd2c1x] ⊆ [TTx] ⊆ B. Therefore L = B and
L is 0-minimal.

Theorem 5.10. Let T be 0-t-simple. T is completely 0-t-simple if and only if T
contains at least one 0-minimal left ideal and at least one 0-minimal right ideal.

Proof. If T is completely 0-t-simple, then T contains a primitive idempotent pair
(a, b). By Lemma 5.9, [Tab] and [abT ] are 0-minimal left ideal and 0-minimal right
ideal, respectively. Conversely, assume that T contains at least one 0-minimal left
ideal and one 0-minimal right ideal. Let L be a 0-minimal left ideal of T . Then
by Lemma 5.2, there exists a 0-minimal right ideal R of T such that [LTR] 6= (0).
Then by Lemma 5.4, T contains a primitive idempotent pair and so T is completely
0-t-simple.

Corollary 5.11. A completely 0-t-simple ternary semigroup is union of its 0-
minimal left (right) ideals.

Proof. Follows from the above Theorem and Lemma 5.4.
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Corollary 5.12. Let M be a 0-minimal two-sided ideal of a ternary semigroup T
such that M<1> 6= (0). If M contains at least one 0-minimal left ideal and at least

one 0-minimal right ideal, then M is a completely 0-t-simple ternary subsemigroup

of T .

Theorem 5.13. Let T be a completely 0-t-simple ternary semigroup. Then non-

zero elements of T form a D-class and T is regular.

Proof. Let T be a completely 0-t-simple ternary semigroup. Let a, b be non-zero
elements of T . Then a lies in some 0-minimal left ideal L and b lies in some 0-
minimal right ideal R of T . Thus L = [TTa] and R = [bTT ]. By Lemma 5.1 L\{0}
is the L-class containing a, R\{0} is the R-class containing b and [bTa] ⊆ R ∩ L.
Since T is 0-t-simple, T = [TTaTT ] and T = [TTbTT ]. Hence T = [TTT ] =
[TTbTTTTTaTT ] = [TTbTaTT ]. Therefore [bTa] 6= (0) and, by Lemma 5.1, its
dual [bTa] ⊂ Rb ∩ La. If c ∈ Rb ∩ La, then aLc, cRb so, aDb. Since a completely
0-t-simple ternary semigroup T containing a primitive idempotent pair (u, v) then
(u, v) and [uvu] both belongs to D, and [uvu] is a regular element in D. Therefore
by Proposition 3.4 the D-class T\{0} is regular. Hence T is regular.

6. M-ternary semigroups

Below we introduce the concept of M-ternary semigroups generalizing the notion
of Rees matrix ternary semigroups.

Let G be a ternary group. We consider G ∪ {0}, where we extend the ternary
multiplication in G to G∪ {0} by putting [abc] = 0 whenever any of a, b, c is zero.
Let P = (pλi) be a Λ × I matrix with entries in G ∪ {0}. P is said to be regular

if for every i ∈ I there exists λ ∈ Λ such that pλi 6= 0 and for every λ ∈ Λ there
exists i ∈ I such that pλi 6= 0. Consider the set

M0(G; I,Λ; P ) = {(a)iλ : a ∈ G ∪ {0}, i ∈ I, λ ∈ Λ},

where (a)iλ denotes the Λ × I matrix with entries a in (i, λ) position and 0 in
other places. The (0)iλ is written as 0 and is independent of i and λ. We see
that (a)iλ = (b)jµ if and only if a = b, i = j, λ = µ. A ternary multiplication is
introduced on this set as follows:

[(a)iλ(b)jµ(c)kν ] = ([apλjbpµkc])iν .

Lemma 6.1. M0(G; I,Λ; P ) is a ternary semigroup.

De�nition 6.2. The ternary semigroup M0(G; I,Λ; P ) is called a M-ternary

semigroup (Matrix ternary semigroup).

Lemma 6.3. If P is regular, then M0(G; I,Λ; P ) is a regular ternary semigroup.
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Proof. For given (a)iλ consider the elements ([p−1
λj a−1p−1

µi ])jµ for every (j, µ). The
set {([p−1

λj a−1p−1
µi ])jµ} of non-zero element is the set I((a)iλ) of all inverses of

(a)iλ.

Corollary 6.4. If P is regular, then the pair ((a)iλ, ([p−1
λj a−1p−1

µi ])jµ) is an idem-

potent pair.

Lemma 6.5. If P is regular, then the idempotent pairs ((a)iλ, ([p−1
λj a−1p−1

µi ])jµ)
and ((b)kν , ([p−1

νl b−1p−1
ωk ])lω) are equivalent if and only if k = i and µ = ω.

Proof. Suppose that ((a)iλ, ([p−1
λj a−1p−1

µi ])jµ) and ((b)kν , ([p−1
νl b−1p−1

ωk ])lω) are idem-

potent pairs. Then for all z = (z)mδ we have [xx1z] = [(a)iλ([p−1
λj a−1p−1

µi ])jµ)(z)mδ]
= ([p−1

µi pµmz])iδ and [yy1z] = [(b)kν([p−1
νl b−1p−1

ωk ])lω)(z)mδ] = ([p−1
ωkpωmz])kδ. They

are equivalent if and only if i = k and ω = µ. In the same manner we ob-
tain [zxx1] = [(z)mδ(a)iλ([p−1

λj a−1p−1
µi ])jµ)] = ([zpδip

−1
µi ])mµ, and analogously,

[zyy1] = [(z)mδ(b)kν([p−1
νl b−1p−1

ωk ])lω)] = ([zpδkp−1
ωk ])mω. Therefore, [zxx1] = [zyy1]

if and only if k = i and ω = µ.

Theorem 6.6. If P is regular, then M0(G; I,Λ; P ) is a 0-t-simple ternary semi-

group.

Proof. For (a)iλ, (b)jµ we have [(a−1)jγ([p−1
γi ap−1

γi ])iγ(a)iλ([p−1
λk a−1p−1

λk ])kλ(b)kµ]
= ([a−1pγip

−1
γi ap−1

γi pγiapλkp−1
λk a−1p−1

λk bpλk])jµ = [(b)jµ]. Hence M0(G; I,Λ; P ) is
a 0-t-simple ternary semigroup by Lemma 2.9.

Theorem 6.7. If P is regular, then in M0(G; I,Λ; P ) every idempotent pair is

primitive.

Proof. Suppose that ((a)iλ, ([p−1
λj a−1p−1

µi ])jµ) and ((b)kν , ([p−1
νl b−1p−1

ωk ])lω) are idem-

potent pairs. If (x, x1) 6 (y, y1) for some x = (a)iλ, x1 = ([p−1
λj a−1p−1

µi ])jµ), y =
(b)kν and y1 = ([p−1

νl b−1p−1
ωk ])lω, then for any z = (t)mα ∈M0(G; I,Λ; P ) we have

[xx1yy1z] = [(a)iλ([p−1
λj a−1p−1

µi ])jµ)(b)kν([p−1
νl b−1p−1

ωk ])lω)(t)mα] and [yy1xx1z] =
[(b)kν([p−1

νl b−1p−1
ωk ])lω)(a)iλ([p−1

λj a−1p−1
µi ])jµ)(t)mα], which obviously implies that

[apλjp
−1
λja

−1p−1
µj pµkbpνlp

−1
νl b−1p−1

ωkpωαt]iα=[bpνlp
−1
νl b−1p−1

ωkpωiapλjp
−1
λj a−1p−1

µj pµαt]kα

= ([p−1
µi pµα])iα Therefore i = k. Using the same method we can see that [zxx1yy1]

= [(t)mα(a)iλ([p−1
λj a−1p−1

µi ])jµ)(b)kν([p−1
νl b−1p−1

ωk ])lω)]. Analogously, [zyy1xx1] =
[(t)mα(b)kν([p−1

νl b−1p−1
ωk ])lω)(a)iλ([p−1

λj a−1p−1
µi ])jµ)]. From the above we obtain that

[tpαiapλjp
−1
λja

−1p−1
µj pµkbpνlp

−1
νl b

−1p−1
ωk ]mω=[tpαkbpνlp

−1
νl b−1p−1

ωkpωiapλjp
−1
λja

−1p−1
µj ]mµ

Therefore, (x, x1) is primitive if and only if k = i, ω = µ. This, by Lemma 6.5,
means that (x, x1) and (y, y1) are equivalent. Thus every idempotent pair is pri-
mitive.

As a consequence of Theorem 6.6 and Theorem 6.7 we obtain the following
corollary.
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Corollary 6.8. If P is regular, then M0(G; I,Λ; P ) is a completely 0-t-simple

semigroup.

Lemma 6.9. If P is regular, then in M0(G; I,Λ; P )

(a)iλL(b)jµ ⇐⇒ λ = µ,

(a)iλR(b)jµ ⇐⇒ i = j.

Corollary 6.10. If P is regular, then non-zero elements of M0(G; I,Λ; P ) form

a single D-class in G.

Proof. Indeed, (a)iλL(c)jλR(b)jµ for any c ∈ G.

It is clear that the set of non-zero L-classes in M0(G; I,Λ; P ) is {Lλ;λ ∈ Λ},
where Lλ = {(a)iλ : a ∈ G, i ∈ I}. Similarly, the set of non-zero R-classes is
{Ri : i ∈ I}, where Ri = {(a)iλ : a ∈ G, λ ∈ Λ}.

Corollary 6.11. If P is regular, then Hiλ = Lλ ∩Ri = {(a)iλ : a ∈ G}.
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