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On Latin squares of polynomially complete

quasigroups and quasigroups generated by shifts

Viacheslav A. Artamonov, Sucheta Chakrabarti,

Sugata Gangopadhyay and Saibal K. Pal

Abstract. We develop some methods and algorithms for checking the polynomial completeness
property of some �nite quasigroups by considering their corresponding Latin square representa-
tions. It is shown that polynomially complete quasigroups are simple and non-T -quasigroups.
We study cyclic decompositions of permutations related to rows and columns of Latin squares of
non-simple quasigroups and of T -quasigroups. Here we develop the criteria for the polynomial
completeness of �nite quasigroups based on this study.

1. Introduction

In this paper we develop some methods and algorithms for checking the polynomial
completeness property of some �nite quasigroups by considering their correspond-
ing Latin square representations. Quasigroups in some applications are mainly
given by their Latin squares. So we have to recognize algebraic properties basing
on these squares.

In Section 2 we discuss the preliminaries of quasigroups and polynomial com-
pleteness. Section 3 deals with congruence simplicity of quasigroups.

A �nite quasigroups is certainly polynomially complete if the combinations of
lengths of cyclic decompositions for all rows and columns does not belong to the
list of possible combinations for non-simple and for T -quasigroups. This ideas is
realized in the case of quasigroups of order 4.

In Section 4, T -quasigroups are considered and criteria for non-T -quasigroups
have been established from their corresponding Latin squares. Section 5 deals with
quasigroups generated by left or right shifts with unit elements.

We also consider connections with quasigroups with one-sided unit element
which are generated by shifts.
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2. Preliminaries

A quasigroup is a set Q with a binary operation of multiplication xy such that for
all a, b ∈ Q the equations ax = b, ya = b have unique solutions x = a�b, y = b�a.
It can be checked that the following identities hold

(xy)�y = x = (x�y)y, x�(xy) = y = x(x�y). (1)

Basic facts concerning quasigroups can be found in [3] and in [8].
If Q is a quasigroup with elements {x1, . . . , xn} then the multiplication table

is given by a Latin square

x1 . . . xn

x1 a11 . . . a1n

... . . . . . . . . .
xn an1 . . . ann

(2)

of size n, where an entry aij stands for the product xixj in the quasigroup Q.
Note that if we rearrange elements of Q using a permutation π then in the Latin
square will have the form

xπ(1) . . . xπ(n)

xπ(1) b11 . . . b1n

... . . . . . . . . .
xπ(n) bn1 . . . bnn

, (3)

where bij = aπ(i),π(j). Note that a rearrangement π gives an isomorphic quasi-
group. Moreover the set of lengths of cyclic decompositions of its row and column
permutations is stable under rearrangements.

It is useful to consider permutations of Q which are induced by operators Ly, Ry

of left and right multiplications by an element y, namely Lyx = yx, Ryx = xy.
An operator Lxi

permutes element of Q and a result of this permutation is
written in the ith row of the table (3). Similarly the map Rxi

is a permutation on
Q whose results are written in the ith column.

Let κ1 = Rx1 , . . . , κn = Rxn be column permutations and ρ1 = Lx1 , . . . ,
ρn = Lxn be row permutations. Then the jth row of the Latin square associated
with x�y is equal to k−1

i xj , i ∈ {1, . . . , n}. Similarly the jth column in the Latin
square associated with x�y is equal to ρ−1

i xj i ∈ {1, . . . , n}. These two new
squares are again Latin squares.

Denote by On(A) the set of all n-ary algebraic operations on A and by O(A)
the collection of all {On(A) | n > 0}.

Let F = {Fn | n > 0} be a family of sets called a signature. A non-empty
set A is an algebra of a signature F or brie�y an F -algebra if there is a map
α : F → O(A) such that α(Fn) ⊆ On(A). It means that each f ∈ Fn is realized
via α as an n-ary operation in A.
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If f ∈ On(A) and g1, . . . , gn ∈ Om(A) then one can de�ne aMenger composition

(superposition) f(g1, . . . , gn) ∈ Om(A) by the rule

[f(g1, . . . , gn)] (x1, . . . , xm) = f (g1(x1, . . . , xm), . . . , gn(x1, . . . , xm)) , (4)

for all x1, . . . , xm ∈ A.
The composition satis�es the super-associativity law

[f(g1, . . . , gn)] (h1, . . . , hm) = f (g1(h1, . . . , hm), . . . , gn(h1, . . . , hm)) ,

for all f ∈ On(A), g1, . . . , gn ∈ Om(A), h1, . . . , hm ∈ Or(A).
Observe that if the operations g1, . . . gn in (4) are nullary, that is m = 0 and

gi(∗) = ai ∈ A then [f(g1, . . . , gn)] (∗) = f(a1, . . . , an).
The family O(A) contains special operations of projections

pin(x1, . . . , xn) = xi,

for all n > 1 and all i = 1, . . . , n. Clearly, f = f(p1n, . . . , pnn) for f ∈ On(A).
A family C = {Cn ⊆ On(A) | n > 0} is called a clone of operations on A if

C contains all projections and it is closed under compositions. It means that if
f, g1, . . . , gn ∈ C, then f(g1, . . . , gn) ∈ C.

Proposition 2.1. Let f ∈ Cn and an operation g is obtained from f either by a

permutation or by an identi�cation of some of its arguments. Then g ∈ C.

Let A be an F -algebra of a signature F = {Fn | n > 0}. Without loss of
generality we can assume that Fn ⊆ On(A) for an any index n > 0.

Denote by T (F ) the least clone of operations on A containing F . Operations
from T (F ) are called term operations in the signature F .

De�nition 2.2. Let F be a signature. An operation f ∈ On(A) is polynomial if
there exist a term operation g ∈ On+m(A) and elements a1, . . . , am ∈ A such that
f(x1, . . . , xn) = g(x1, . . . , xn, a1, . . . , am) for all x1, . . . , xn ∈ A.

A clone Pol(F ) of all polynomial operations is the least clone containing F and
all nullary operations.

De�nition 2.3. An algebra A of a signature F is polynomially (functionally)
complete if O(A) = Pol(F ).

De�nition 2.4. A Malcev operation on a set X is a ternary operations m(x, y, z)
satisfying the identities m(x, x, y) = m(y, x, x) = y.

Any quasigroup Q has at least two Malcev terms operations [7].

De�nition 2.5. An algebra A is a�ne if A is equipped with a structure of an
additive Abelian group such that each term operation f has the form

f(x1, . . . , xn) = a0 + α1x1 + · · ·+ αnxn,

where a0 ∈ A and α1, . . . , αn are group endomorphisms.
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Note that if any term operation f has the above form then any polynomial
operation in A can be presented in a similar form.

De�nition 2.6. An algebra A is simple if it has only trivial congruences.

Proposition 2.7. Let an a�ne algebra A has a polynomial Malcev operation.

Then the addition in De�nition 2.5 is a polynomial operation.

Proof. Malcev polynomial operation m(x, y, z) has a presentation

m(x, y, z) = αx + βy + γz + c.

Now for any x, y ∈ A we get

y = m(x, x, y) = αx + βx + γy + c = m(y, x, x) = αy + βx + γx + c.

Hence α = −β = γ = 1 and c = 0. So m(x, y, z) = x − y + z for all x, y, z ∈ A.
Now x + y = m(x, 0, y) is a polynomial operation.

Theorem 2.8. [9] Let A be a �nite F -algebra containing at least two elements.

The following are equivalent:

(i) A is polynomially complete,

(ii) there exists a Malcev operation in Pol(F ) on A and the algebra A is simple

and non-a�ne.

3. Congruences on quasigroups and its simplicity

In the section we shall present some ideas of checking of a congruence-simplicity
of a quasigroup. Some of the facts seem to be a folklore, but for the sake of
completeness we include them into the text. For more details see [3], [13].

Let Q be a quasigroup with with a congruence ℘. It means that ℘ is a sub-
quasigroup of Q2, it contains a diagonal and it de�nes an equivalence in Q. The
congruence class of ℘ containing x is denoted by ℘(x).

It is easy to observe that for a congruence ℘

Ry (℘(x)) = ℘(xy), Ly (℘(x)) = ℘(yx).

In particular the maps Ry, Ly permute congruence classes of ℘.
Suppose that z, t ∈ Q and t ∈ ℘(z). There exists a unique element u ∈ Q such

that uz = x. Since ℘ contains a diagonal in Q2, we get (u, u) ∈ ℘ and therefore
(u, u)(z, t) = (uz, ut) = (x, ut) ∈ ℘. Hence, ut ∈ ℘(x). So Lu maps ℘(z) → ℘(x).
Since Q is a quasigroup, the map Lu is a bijection. So we have

Proposition 3.1. ([4], Theorem 3.4) Any two classes of a congruence ℘ in a

quasigroup Q have the same cardinality. In particular, if Q is a �nite quasigroup,

then the order of each congruence class divides the order of Q.
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Corollary 3.2. A quasigroup of a prime order is congruence-simple. If a non-

simple quasigroup has order p2 where p is a prime, then congruence classes of a

non-trivial congruence contain p elements.

Proposition 3.3. Let a quasigroup Q have a left unit e and ℘ is a congruence in

Q. Then the class ℘(e) is a subquasigroup of Q. If x, y ∈ Q, then (x, y) ∈ ℘ if and

only if x ∈ ℘(e)y. So the congruence classes consists of cosets ℘(e)x, x ∈ Q.

Proof. If y, z ∈ ℘(e), then the pairs (y, e), (z, e) ∈ ℘. Hence (yz, e) ∈ ℘ and
therefore yz ∈ ℘(e).

Now if (u, v) ∈ ℘ , then (u�v, v�v) ∈ ℘. But v�v = e because e is a left unit
element. Hence if (u, v) ∈ ℘, then u = (u�v)v ∈ ℘(e)v by (1).

Conversely if u = av, where a ∈ ℘(e) then of course (u, v) ∈ ℘.

The next statement is quite clear.

Proposition 3.4. Let Q be a quasigroup of order n then xj�xj = xi are equal

for all j = 1, . . . , n, if and only if xi is a left unit element. Similarly xj�xj are

equal to xi for all j if and only if xi is right unit element.

Proposition 3.5. Let Q be a symmetric (commutative) quasigroup of order n.
Then xi�xj = xj�xi.

So we can say that, if the Latin square w.r.t. multiplication is symmetric, then
the Latin squares w.r.t. the operations �, � are transpose to each other i.e. they
are adjoint.

Proposition 3.6. For a binary equivalence relation ℘ the following are equivalent:

(i) ℘ is a congruence,

(ii) if (xi, xj) ∈ ℘, then (ait, ajt) , (ati, atj) ∈ ℘ for all t in the square (2).

The property (ii) means that ith and jth rows and columns are coordinate-wise

congruent modulo ℘.

We can apply last two propositions to the case of a non-simple quasigroup Q
of order 4. If ℘ is a non-trivial congruence, then by Corollary 3.2 there are two
2-element ℘-classes, say, {xi, xj}, {xu, xv}. Since the quotient Q/℘ is a group of
order 2, one of classes is a unit element in Q/℘. Note that a class {xi, xj} is a
unit if and only if x2

i ∈ {xi, xj}. So

{xu, xv}{xi, xj} = {xi, xj}{xu, xv} = {xu, xv},
{xu, xv}{xu, xv} = {xi, xj}{xi, xj} = {xi, xj}.
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So the class {xi, xj} will be a two-element subquasigroup of order 2. So rearranging
if necessary xi, xj we can always assume that x2

i = xi. Then xixj = xjxi = xj

and x2
j = xi. Then in the Latin square of Q we have(

aii aij

aji ajj

)
=

(
xi xj

xj xi

)
. (5)

Now we have

Theorem 3.7. Let Q be a quasigroup of order 4 with a non-trivial congruence

℘. Then Q is partitioned into two blocks {xi, xj}, {xu, xv} such that rearranging

elements in the �rst block we can obtain (5). Then the block(
auu auv

avu avv

)
will either coincide with the block (5) or will be equal to(

xj xi

xi xj

)
.

Each of the blocks (
aiu aiv

aju ajv

)
,

(
aui auj

avi avj

)
has one of the forms (

xu xv

xv xu

)
,

(
xv xu

xu xv

)
.

There are 12 Latin squares of this form.

Corollary 3.8. If Q is a quasigroup of order 4 and it is non-simple, then its Latin

square (2) with n = 4 has the following property: there exists a row

(ai1 ai2 ai3 ai4)

such that the permutation (
x1 x2 x3 x4

ai1 ai2 ai3 ai4

)
,

associated with the left multiplication Lxi , is either a 2-cycle or a product of two

independent 2-cycles. Entries of non-trivial cycles and elements �xed by these

non-trivial permutations are congruence classes.

The remaining rows are either identical, 2-cycles, products of two independent

2-cycles or 4-cycles.
After a rearrangement according to these congruence classes as described we

obtain a modi�ed Latin square from Theorem 3.7.
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Example 3.9. Consider an example of an application of Theorem 3.7 and of
Corollary 3.8. Take a Latin square

1 2 3 4

1 2 3 4 1
2 1 2 3 4
3 4 1 2 3
4 3 4 1 2

The �rst and the third lines are 4-cycles, the second is identical, the fourth one is
a product of two 2-cycles (1, 3)(2, 4). So congruence classes could be {1, 3}, {2, 4}.
Note that 2 · 2 = 2. So we arrange the elements as 2, 4, 1, 3. Then the new Latin
square will be

2 4 1 3

2 2 4 1 3
4 4 2 3 1
1 3 1 2 4
3 1 3 4 2

So it really de�nes a non-simple quasigroup.

Example 3.10. As another application of Theorem 3.7 and of Corollary 3.8,
consider the quasigroup with the Latin square

1 2 3 4

1 4 1 2 3
2 3 2 1 4
3 2 4 3 1
4 1 3 4 2

(6)

The �rst row is a cycle of order 4, the second one has a decomposition (1, 3)(2, 4),
the third and the fourth rows are cycles of order 3. So Q is simple.

Example 3.11. Here we consider some more applications of Theorem 3.7 and of
Corollary 3.8 to the Latin squares of the quasigroups which are given below.

0 1 2 3

0 0 2 1 3
1 2 1 3 0
2 1 3 0 2
3 3 0 2 1

0 1 2 3

0 1 3 0 2
1 0 1 2 3
2 2 0 3 1
3 3 2 1 0

0 1 2 3

0 2 1 0 3
1 1 2 3 0
2 3 0 2 1
3 0 3 1 2

0 1 2 3

0 3 2 1 0
1 1 0 3 2
2 0 1 2 3
3 2 3 0 1

In the �rst Latin square the rows determine cycles of lengths 3, 4, 4, 3, respectively.
In the second Latin square the rows determine cycles of lengths 4, 0, 4, 2×2,

respectively. The 2-cycles from the last row are (0, 3)(1, 2). But 0 ·0 = 1, 3 ·3 = 0.
So if 0 ∼ 3, then 1 = 0 · 0 ∼ 3 · 3 = 0 which is not the case.

In the third Latin square the rows determine cycles of lengths 2, 4, 3, 3, re-
spectively.

In the last Latin square the rows determine cycles of lengths 2×2, 2×2, 0, 2×2,
respectively. Congruence classes are element of 2-cycles. Suppose that according
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to the decomposition of the �rst row the classes are (0, 3), (1, 2). Then 3 = 0 · 0 ∼
3 · 3 = 1 which is impossible. Suppose that the congruence classes are (0, 1), (2, 3)
according to the second row cycle decomposition. Again 3 = 0 · 0 ∼ 1 · 1 = 0, a
contradiction. Finally let congruence classes be (0, 2), (1, 3) according to the last
row. Then 3 = 0 ·0 ∼ 2 ·2 = 2, a contradiction. So all these squares also determine
simple quasigroups.

We end the section with a su�cient condition of a simplicity of a �nite quasi-
groups.

Suppose that Lx has a cycle
(
a, Lxa, L2

xa, . . . , Lp−1
x a

)
, Lp

xa = a, of order p
and ℘ is a congruence in Q. Choose the smallest positive integer d such that
Ld

xa ∈ ℘(a).

Proposition 3.12. d | p.

Proof. Let m be the greatest common divisor of p and d. Then m = du + pv for
some integeres u, v. Now Lm

x a =
(
Ld

x

)u (Lp
x)v

a ∈ ℘(a). Hence d 6 m 6 d and
therefore d = m. So p is divisble by d.

We can conclude that in the cycle of Lx the elements {a, Lxa, . . . , Ld−1
x a}

belong to di�erent classes of ℘, while {a, Ld
xa, . . . , L

d( p
d−1)

x } belong to ℘(a).

Proposition 3.13. Let p be a prime and p > |Q|
2 . Then Q is simple.

Proof. Consider the number d as above. Since p is a prime then either d = 1,
or d = p. Suppose that d = p. Then di�erent elements of the cycle belong to

di�erent classes of ℘. So p does not exceed the number of classes |G|
|ρ(a)| 6 |G|

2 , a

contradiction.
Suppose that d = 1. Then p does not exceed the number of elements in a class

ρ(a) and |ρ(a)| 6 |G|
2 . Again we get a contradiction.

Corollary 3.14. Let Q be a quasigroup of order 4. Suppose that some of its row

(column) permutations is a cycle of length 3. Then Q is simple.

4. Identi�cation of T -quasigroups

We consider the problem of a identi�cation of a T -quasigroups of order 4 based on
corresponding Latin squares. The identi�cation criteria are given in Proposition
4.4. It is used for a classi�cation of simple non-T quasigroups of order 4. Note
that simple T -quasigroups were characterized in [11, Theorem 2].

A quasigroup Q is a T -quasigroup if there exists a structure of an abelian group
(Q,+, 0,−) in Q such that

xy = α(x) + β(y) + c (7)



Completenees of quasigroups 125

for some automorphisms α, β of the group (Q, +, 0,−) and for some element c ∈ Q.
Since any quasigroup has Malcev term operation, by Proposition 2.7 a quasigroup
is a�ne if and only if it is a T -quasigroup. It follows that the class of a�ne
quasigroups coincides with the class of T -quasigroups.

Proposition 4.1. [10] For a quasigroup with multiplication (7) the following are

equivalent:

(i) Q has a left (right) unit element e,

(ii) β = 1 (α = 1) and e = −α−1c (e = −β−1c).

Suppose that T -quasigroup Q is de�ned on a cyclic group (Q,+) of order n.
Then each automorphisms has the form x 7→ ax, where a is an invertible element
of the ring Z/n. Thus (7) has the form

xy = ax + by + c, (8)

where a, b are invertible in Z/n and c ∈ Q.

Proposition 4.2. Let Q be a T -quasigroup with multiplication form (8). Let

n = pq. Then the relation x ∼ y ⇐⇒ x ≡ y (mod q) is a congruence. In

particular, if n is not a prime, then Q is not simple.

Proof. Let x, y, r, s ∈ Z/n. Then

(x + qr)(y + qs) = a(x + qr) + b(y + rs) + c = ax + by + c + q(ar + bs) ≡ xy.

Hence the relation ∼ is congruence relation.

We are interested in the case of simple non T -quasigroups of order 4. So by
Proposition 4.2 we can exclude the case when Q = Z/4 and consider the case when
(Q,+) = Z/2⊕ Z/2.

Then (7) holds for some α, β ∈ SL(2, Z/2). The group SL(2, Z/2) is isomorphic
to the symmetric group S3. Then α, β are one of 6 matrices(

1 0
0 1

)
, (9)(

0 1
1 0

)
,

(
1 1
0 1

)
,

(
1 0
1 1

)
, (10)(

0 1
1 1

)
,

(
1 1
1 0

)
. (11)

Here the matrix (9) is the unit, matrices from (10) have order 2, and matrices
from (11) have order 3.

Proposition 4.3. Let (Q, +) = Z/2 ⊕ Z/2. If xy has the from (7), then x2 =
(α + β)x + c. Hence the following are equivalent:
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(i) α = β,

(ii) Q is commutative,

(iii) x2 = c for all x,

(iv) the diagonal entries of the Latin square are equal to c.

It is easy to check that for any positive integer m we have

Lm
x y = βm(y) +

(
βm−1 + βm−2 + · · ·+ 1

)
(αx + c).

In particular,
L3

xy = β3y + (β2 + β + 1)(αx + c).

Hence if β has order 3, then β2 +β +1 = 0 and β3 = 1. So L3
x = 1 and since Lx is

not identical it determines 3-cycles in each row of the Latin square (2). Similarly
if α has order 3, then the operator of right multiplication Ry determines 3-cycles
in each column of the Latin square (2).

Suppose that β has order 2 and therefore β is one of the matrices (10).
Then

L2
xy = β2y + (β + 1) (αx + c) = y + (β + 1) (αx + c)

because β2 = 1.
Suppose L2

xy = y for some x. Then αx + c is annihilated by β + 1, where β is
from (10). Thus β + 1 is one of the matrices(

1 1
1 1

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
.

So z = αx + c is equal up to a scalar 0, 1 to one of vectors(
1
1

)
,

(
1
0

)
,

(
0
1

)
.

Thus

x = λα−1z + α−1c, λ = 0, 1. (12)

Moreover for each of x form (12) there exists an element y0 such that (1 + β)y0 =
z = αx + c. Then Lxy0 = αx + βy0 + c = y0. Thus taking di�erent λ we obtain
two rows which are 2-cycles having �xed elements y0. If x is di�erent from (12)
then Lx is a cyclic of order 4 in the corresponding row because

L4
xy = β4y +

(
β3 + β2 + β + 1

)
(αx + c) = y

for all y ∈ Q since β4 = 1 and β3 + β2 + β + 1 = 0.
Finally let β = 1. Then Lx = 1 if αx + c = 0. Suppose that Lx 6= 1. Then

L2
xy = y for all y. So in this case Lx is of the type 2× 2.
Hence we have
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Proposition 4.4. Let Q be a quasigroup of oder 4. Suppose that (Q,+) = Z/2⊕
Z/2 and xy is de�ned by (7). Then Q is a T -quasigroup if and only if either of

the following conditions holds:

1. If β is from (11), then rows of the Latin square of Q are 3-cycles.

2. If β is from (10), then there exists two rows which are 2-cycles. Other two

rows are 4-cycles.

3. If β is from (9), then one row is identical the other three rows are of type

2× 2. In particular Q has a left unit element.

Consider similar cases for α we obtain the same possible combinations for column

cycle structure as for rows.

For example the simple quasigroup Q with the Latin square (6) is not a T -
quasigroup, since as it was already mentioned its row have cycles of lengths 4, 4,
2× 2, 3. Hence it is polynomially complete.

Also cycle structures of rows of simple quasigroups from Example 3.11 are not
included into Proposition 4.4. So we can conclude that all these quasigroups are
polynomially complete.

5. Quasigroups generated by right and left shifts

A �nite quasigroup Q = {x1, . . . , xn} is generated by a right shift [5] if the following
property is satis�ed: for all 1 6 i, k, j 6 n we have

xi+k (mod n)xj = xixj−k (mod n). (13)

It means that apq = ars, provided p− r ≡ s− q (mod n). Similarly a quasigroup
Q is generated by a left shift if

xi+k (mod n)xj = xixj+k (mod n)

for any indices 1 6 i, j, k 6 n.

Proposition 5.1. Let Q be a quasigroup of order n = pq for some positive integers

p, q. Assume that Q it generated by the right shift and it has a left unit element.

Then the Latin square of Q has q cycles of length p.

Proof. Let Q = {x1, . . . , xn} and xi a left unit element of Q. Then xixj = xj for
all j = 1, . . . , n. Since Q is generated by a right shift xkxk = x1x1 = xi for all k.
Also for all k, j > 1 we have

xkx1 = xk−1xn, xkxj = xk−1xj−1.

Since xi is the left unit element for all 1 6 k 6 q we have

xi+q (mod n)xk = xi+q−k (mod n)xn = xixn−q+k (mod n) = xn−q+k (mod n),
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xi+q (mod n)xn−q+k (mod n) = xixn−q+k−q (mod n) = xn−2q+k (mod n),

xi+q (mod n)xn−2q+k (mod n) = xixn−2q+k−q (mod n) = xn−3q+k (mod n),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xi+q (mod n)xn−(p−1)q+k (mod n) = xixn−pq+k (mod n) = xk.

It means that the permutation of the (i + q (mod n))th row of the Latin square
has q disjoint p-cycles. Recall that here xi is the left unit, i.e. ith row of the Latin
square is the identity permutation.

Proposition 5.2. Let Q be a �nite quasigroup generated by the left shift and with

a left or a right unit element. Then Q is commutative. In particular left and right

units coincide.

Proof. Let xi be a left unit. Then for any xr, xs ∈ Q we have

xrxs = xixs+r−i = xr+s−i = xixs+r−i = xsxr.

The proof for the right unit xi is the same.

Similarly one can prove

Proposition 5.3. Let Q be a quasigroup of order n = pq for some positive integers

p, q. Assume that Q is generated by the left shift and it has a unit element. Then

the Latin square of Q has q cycles of length p.

Proposition 5.4. Let Q be generated by a right shift and Q has a left unit.

Suppose that |Q| = n = pq. Then the relation xa ∼ xb ⇐⇒ a ≡ b (mod q) is a

congruence in Q. Any congruence relation on Q can be obtained in this way.

Proof. Let xi be a left unit element of Q. By (13) for any integers k, s, u, v (mod n)
we have

xk+quxs+qv = xixs+qv−k−qu+i (mod n) = xs+q(v−u)−k+i (mod n).

So if we take elements xk+qu′ , xs+qv′ equivalent to xk+qu, xs+qv then their product

xk+qu′xs+qv′ = xs+q(v′−u′)−k+i (mod n)

is equivalent to xs+q(v−u)−k+i(mod n), because

s + q(v − u)− k + i ≡ s + q(v′ + u′)− k + i (mod q).

Now suppose that ℘ is a congruence relation in Q. By Proposition 3.3 the class
℘(xi) of a left unit element xi is a subquasigroup in Q. Suppose that this class
has order greater then 1. Take the smallest integer q > 0 such that xi+q ∈ ℘(xi).
If xj ∈ ℘(xi), then xi+qxj = xixj−q = xj−q ∈ ℘(xi). Hence it is easy to deduce
that ℘(xi) consists of all elements xi+lq for all l ∈ Z/n.
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We claim that (xm, xs) ∈ ℘ if and only if m ≡ s (mod q). In fact by Proposition
3.3 we have xm = xvxs, where xv ∈ ℘(xi). Hence v = i + lq and therefore
xvxs = xi+lqxs = xixs−lq = xs−lq. So m = s − lq ≡ s (mod q). Conversely let
xm+lq = xixm+lq = xi−lqxm ∈ ℘(xi)xm. Hence (xm+lq, xm) ∈ ℘.

Corollary 5.5. Each of cycles from Proposition 5.1 form a congruence class of

Q. Thus Q is not simple.

Proof. Each of p-cycles from Proposition 5.1 coincides with a class from Proposi-
tion 5.4.

Corollary 5.6. If the Latin square of the quasigroup Q of order n = 4 = 22 which

are of the above type, then Q has 2 disjoint 2-cycles.

Proposition 5.7. Let Q be a quasigroup of order n and it is generated by the

right shift then the operations xy, x�y are equal if and only if there exists a left

identity.

Proof. Let Q = {x1, . . . , xn} and xi a left unit element. It means that xixj = xj

for all j = 1, . . . , n. In particular we have x1x1 = x1.
We need to prove that xkxj = xk�xj . It su�ces to show that

(xkxj) xj = (xk�xj)xj .

In fact by the right shift property

(xkxj) xj =
(
xk−(k−i)xj−(k−i) (mod n)

)
xj =

(
xixj−(k−i) (mod n)

)
xj

= xj−(k−i) (mod n)xj = xj−(k−i)+(k−i) (mod n)xj+(k−i) (mod n)

= xjxj+(k−i) (mod n) = xi+(j−i)xk+(j−i) (mod n) = xixk

= xk = (xk�xj) xj .

Conversely assume that xkxj = xk�xj for all indices k, j = 1, . . . , n. Put
xi = x2

k for all k = 1, . . . , n by the right shift property.
We claim that xi is a left unit element in Q.
By the assumption (xixj) xj = (xi�xj)xj = xi and therefore xixj = xj for all

j = 1, . . . , n. Hence xi is the left unit element.

Corollary 5.8. Let Q be a quasigroup of order n and it is generated by the left

shift. The operations xy, x�y are equal if and only if there exists a unit. In this

case by Propsition 3.5 we have x�y = y�x for all x, y and x�x is the unit element

for all x.
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