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On Latin squares of polynomially complete

quasigroups and quasigroups generated by shifts

Viacheslav A. Artamonov, Sucheta Chakrabarti,
Sugata Gangopadhyay and Saibal K. Pal

Abstract. We develop some methods and algorithms for checking the polynomial completeness
property of some finite quasigroups by considering their corresponding Latin square representa-
tions. It is shown that polynomially complete quasigroups are simple and non-T-quasigroups.
We study cyclic decompositions of permutations related to rows and columns of Latin squares of
non-simple quasigroups and of T-quasigroups. Here we develop the criteria for the polynomial
completeness of finite quasigroups based on this study.

1. Introduction

In this paper we develop some methods and algorithms for checking the polynomial
completeness property of some finite quasigroups by considering their correspond-
ing Latin square representations. Quasigroups in some applications are mainly
given by their Latin squares. So we have to recognize algebraic properties basing
on these squares.

In Section 2 we discuss the preliminaries of quasigroups and polynomial com-
pleteness. Section 3 deals with congruence simplicity of quasigroups.

A finite quasigroups is certainly polynomially complete if the combinations of
lengths of cyclic decompositions for all rows and columns does not belong to the
list of possible combinations for non-simple and for T-quasigroups. This ideas is
realized in the case of quasigroups of order 4.

In Section 4, T-quasigroups are considered and criteria for non-7T-quasigroups
have been established from their corresponding Latin squares. Section 5 deals with
quasigroups generated by left or right shifts with unit elements.

We also consider connections with quasigroups with one-sided unit element
which are generated by shifts.
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2. Preliminaries

A quasigroup is a set Q with a binary operation of multiplication xy such that for
all a,b € @ the equations ax = b, ya = b have unique solutions x = a\b, y = b, a.
It can be checked that the following identities hold

(@y) y=z=(x/y)y, a\(zy)=y=2z(2\y) (1)
Basic facts concerning quasigroups can be found in [3] and in [8].
If Q is a quasigroup with elements {z1,...,2,} then the multiplication table

is given by a Latin square

T [N In
I a1 oo Q1p (2)
Tp | Ap1 ... Q(pn

of size n, where an entry a;; stands for the product z;z; in the quasigroup Q.
Note that if we rearrange elements of () using a permutation 7 then in the Latin
square will have the form

xg(l) . (Eg(n)
Tr(1) 11 e in

: ; (3)
x'n’(n) bnl “ o bn’n

where b;j = ar(;) x(j)- Note that a rearrangement 7 gives an isomorphic quasi-
group. Moreover the set of lengths of cyclic decompositions of its row and column
permutations is stable under rearrangements.

It is useful to consider permutations of () which are induced by operators L, R,
of left and right multiplications by an element y, namely L,z = yx, R,z = zy.

An operator L,, permutes element of () and a result of this permutation is
written in the ith row of the table (3). Similarly the map R, is a permutation on
() whose results are written in the ith column.

Let k1 = Ryy,...,5n = Ry, be column permutations and p; = Ly, ...,
pn = Ly, be row permutations. Then the jth row of the Latin square associated
with /'y is equal to ki_lxj, i€ {l,...,n}. Similarly the jth column in the Latin
square associated with x\y is equal to pi_lxj it € {1,...,n}. These two new
squares are again Latin squares.

Denote by 0, (A) the set of all n-ary algebraic operations on A and by O(A)
the collection of all {O,,(A) | n > 0}.

Let F = {F, | n > 0} be a family of sets called a signature. A non-empty
set A is an algebra of a signature F or briefly an F-algebra if there is a map
a: F — O(A) such that a(F,) C 0,(A). It means that each f € F, is realized
via « as an n-ary operation in A.
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Iffe0,(4)and g1,...,9n € O, (A) then one can define a Menger composition
(superposition) f(g1,...,9n) € Om(A) by the rule

[f(glaagn)] (xlv"'7$m) = f(gl(xh'"7zm)a"'agﬂ(I1a"'axm))a (4)

for all x1,...,2, € A.
The composition satisfies the super-associativity law

[f(gl,“'agn)] (hl’“'ahm) :f(gl(hl""7hm),'~~agn(h17""hm))’

for all f € 0,(A), g1,-.-,9n € O (A), hi,... hy € O,.(A).
Observe that if the operations ¢1,...g, in (4) are nullary, that is m = 0 and

gi(%) = a; € A then [f(gi,.. ., gn)] (+) = fas,..,an).
The family O(A) contains special operations of projections

pin(l‘ly cee ,l’n) = Ty,

foralln >1and all i =1,...,n. Clearly, f = f(pin,-..,pnn) for f € 0,(A).

A family € = {€, C 0,(A) | n > 0} is called a clone of operations on A if
C contains all projections and it is closed under compositions. It means that if
fagla"'agn € e) then f(glavgn) €C.

Proposition 2.1. Let f € C, and an operation g is obtained from f either by a
permutation or by an identification of some of its arguments. Then g € C. O

Let A be an F-algebra of a signature F = {F, | n > 0}. Without loss of
generality we can assume that F,, C 0, (A) for an any index n > 0.

Denote by T'(F') the least clone of operations on A containing F. Operations
from T'(F') are called term operations in the signature F.

Definition 2.2. Let F' be a signature. An operation f € 0,(A) is polynomial if
there exist a term operation g € O, 4,,(A) and elements ay, ..., a, € A such that
flxy,...,xn) =g(x1, ..., Tn,a1,...,ay) for all x1,...,2, € A.

A clone Pol(F) of all polynomial operations is the least clone containing F' and
all nullary operations.

Definition 2.3. An algebra A of a signature F is polynomially (functionally)
complete if O(A) = Pol(F).

Definition 2.4. A Malcev operation on a set X is a ternary operations m(z,y, z)
satisfying the identities m(z, z,y) = m(y, z,x) = y.

Any quasigroup @ has at least two Malcev terms operations [7].

Definition 2.5. An algebra A is affine if A is equipped with a structure of an
additive Abelian group such that each term operation f has the form

flx1, ..., xn) = a0 + 1@y + - - + i,

where ayp € A and oy, ..., a, are group endomorphisms.
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Note that if any term operation f has the above form then any polynomial
operation in A can be presented in a similar form.

Definition 2.6. An algebra A is simple if it has only trivial congruences.

Proposition 2.7. Let an affine algebra A has a polynomial Malcev operation.
Then the addition in Definition 2.5 is a polynomial operation.

Proof. Malcev polynomial operation m(z,y, z) has a presentation
m(z,y,z) = ax + By +yz+c.
Now for any z,y € A we get
y=m(z,z,y) =ax+ Br+yy+c=m(y,z,x) = ay + Bz + vz + c.

Hence « = —f =~y =1and ¢ =0. So m(z,y,2) =z —y+ 2z for all z,y,z € A.
Now z +y = m(x,0,y) is a polynomial operation. O

Theorem 2.8. [9] Let A be a finite F-algebra containing at least two elements.
The following are equivalent:

(i) A is polynomially complete,

(ii) there ezists a Malcev operation in Pol(F) on A and the algebra A is simple
and non-affine. O

3. Congruences on quasigroups and its simplicity

In the section we shall present some ideas of checking of a congruence-simplicity
of a quasigroup. Some of the facts seem to be a folklore, but for the sake of
completeness we include them into the text. For more details see [3], [13].

Let @ be a quasigroup with with a congruence p. It means that @ is a sub-
quasigroup of @2, it contains a diagonal and it defines an equivalence in Q. The
congruence class of o containing z is denoted by p(z).

It is easy to observe that for a congruence g

Ry (p(z)) = p(zy), Ly (p(2)) = p(yz).

In particular the maps R,,, L, permute congruence classes of p.

Suppose that z,¢t € Q and ¢t € p(z). There exists a unique element u € @ such
that uz = . Since p contains a diagonal in @2, we get (u,u) € p and therefore
(u,u)(z,t) = (uz,ut) = (z,ut) € p. Hence, ut € p(x). So L, maps p(z) — p(x).
Since @ is a quasigroup, the map L, is a bijection. So we have

Proposition 3.1. ([4], Theorem 3.4) Any two classes of a congruence p in a
quasigroup QQ have the same cardinality. In particular, if Q is a finite quasigroup,
then the order of each congruence class divides the order of Q. O
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Corollary 3.2. A quasigroup of a prime order is congruence-simple. If a non-
simple quasigroup has order p> where p is a prime, then congruence classes of a
non-trivial congruence contain p elements. O

Proposition 3.3. Let a quasigroup @ have a left unit e and @ is a congruence in
Q. Then the class p(e) is a subquasigroup of Q. If v,y € Q, then (x,y) € p if and
only if x € p(e)y. So the congruence classes consists of cosets p(e)x, x € Q.

Proof. If y,z € p(e), then the pairs (y,e),(z,e) € p. Hence (yz,e) € p and
therefore yz € p(e).

Now if (u,v) € g, then (u,/v,v,/v) € p. But v,/v = e because e is a left unit
element. Hence if (u,v) € p, then u = (v, v)v € p(e)v by (1).

Conversely if u = av, where a € p(e) then of course (u,v) € p. O

The next statement is quite clear.

Proposition 3.4. Let () be a quasigroup of order n then x;,/x; = x; are equal
forall j =1,...,n, if and only if x; is a left unit element. Similarly x;\x; are
equal to x; for all j if and only if x; is right unit element. O

Proposition 3.5. Let Q be a symmetric (commutative) quasigroup of order n.
Then J?i/SCj = I]\l‘z O

So we can say that, if the Latin square w.r.t. multiplication is symmetric, then
the Latin squares w.r.t. the operations ,\ are transpose to each other i.e. they
are adjoint.

Proposition 3.6. For a binary equivalence relation p the following are equivalent:
(i) g is a congruence,
(ii) of (zi, ;) € p, then (ai, ajt), (at,atj) € p for all t in the square (2).

The property (ii) means that ith and jth rows and columns are coordinate-wise
congruent modulo p. O

We can apply last two propositions to the case of a non-simple quasigroup @
of order 4. If p is a non-trivial congruence, then by Corollary 3.2 there are two
2-element p-classes, say, {z;,2;}, {zy, 2, }. Since the quotient Q/gp is a group of
order 2, one of classes is a unit element in Q/p. Note that a class {z;,z;} is a
unit if and only if 27 € {z;,z;}. So

{xuvxv}{xivxj} = {xi’xj}{xmxv} = {Tu, T},

{2u, 2o H{aw, o} = {2, 2 H{xi, 75} = {zi, 25}
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So the class {x;, z;} will be a two-element subquasigroup of order 2. So rearranging
if necessary z;,x; we can always assume that xf = x;. Then z;z; = z;x; = 2
and x? = x;. Then in the Latin square of () we have

Qi aij _ xX; l’j (5)
aji  ajj Ty xi)

Theorem 3.7. Let QQ be a quasigroup of order J with a non-trivial congruence
©. Then Q is partitioned into two blocks {x;,x;},{xy,x,} such that rearranging
elements in the first block we can obtain (5). Then the block

auu auv
Qyy  Ayy

will either coincide with the block (5) or will be equal to
T; I
Ti Ty ’
Qi Qi Ay Gy
Ay Gjy ’ Qypi Gy
Ty Ty Ty Ty
Ty Tu)' \Tu Tw)

There are 12 Latin squares of this form. O

Now we have

Each of the blocks

has one of the forms

Corollary 3.8. If Q is a quasigroup of order 4 and it is non-simple, then its Latin
square (2) with n = 4 has the following property: there exists a row

(ai1 a2 a3 ais)

such that the permutation

(371 Ty w3 x4>
ail G2 i3 Qi)'
associated with the left multiplication L,,, is either a 2-cycle or a product of two
independent 2-cycles. Entries of non-trivial cycles and elements fized by these
non-trivial permutations are congruence classes.

The remaining rows are either identical, 2-cycles, products of two independent
2-cycles or 4-cycles.

After a rearrangement according to these congruence classes as described we
obtain a modified Latin square from Theorem 3.7. O
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Example 3.9. Consider an example of an application of Theorem 3.7 and of
Corollary 3.8. Take a Latin square

W = =N =
== N W N
=N W | W
N W B =

W N =

The first and the third lines are 4-cycles, the second is identical, the fourth one is
a product of two 2-cycles (1, 3)(2,4). So congruence classes could be {1, 3}, {2,4}.
Note that 2 -2 = 2. So we arrange the elements as 2,4,1,3. Then the new Latin
square will be

2 4 1 3
212 4 1 3
414 2 3 1
113 1 2 4
311 3 4 2

So it really defines a non-simple quasigroup.

Example 3.10. As another application of Theorem 3.7 and of Corollary 3.8,
consider the quasigroup with the Latin square

(6)

=N WO
W RN =N
=W~ NWw
N =R QO

=W N =

The first row is a cycle of order 4, the second one has a decomposition (1, 3)(2,4),
the third and the fourth rows are cycles of order 3. So @ is simple.

Example 3.11. Here we consider some more applications of Theorem 3.7 and of
Corollary 3.8 to the Latin squares of the quasigroups which are given below.

01 2 3 01 2 3 01 2 3 01 2 3
00 2 1 3 0j1 3 0 2 012 1 0 3 013 2 1 O
112 1 3 0 110 1 2 3 111 2 3 0 111 0 3 2
2|11 3 0 2 212 0 3 1 213 0 2 1 2|10 1 2 3
313 0 2 1 313 2 1 0 310 3 1 2 312 3 0 1

In the first Latin square the rows determine cycles of lengths 3, 4, 4, 3, respectively.

In the second Latin square the rows determine cycles of lengths 4, 0, 4, 2x2,
respectively. The 2-cycles from the last row are (0,3)(1,2). But 0-0=1, 3-3=0.
Soif 0 ~ 3,then 1 =0-0~ 3-3 =0 which is not the case.

In the third Latin square the rows determine cycles of lengths 2, 4, 3, 3, re-
spectively.

In the last Latin square the rows determine cycles of lengths 2x2, 2x2, 0, 2x2,
respectively. Congruence classes are element of 2-cycles. Suppose that according
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to the decomposition of the first row the classes are (0,3),(1,2). Then 3=0-0 ~
3.3 = 1 which is impossible. Suppose that the congruence classes are (0, 1), (2, 3)
according to the second row cycle decomposition. Again 3=0-0~1-1=0, a
contradiction. Finally let congruence classes be (0,2), (1, 3) according to the last
row. Then 3 =0-0 ~ 2-2 = 2, a contradiction. So all these squares also determine
simple quasigroups.

We end the section with a sufficient condition of a simplicity of a finite quasi-
groups.

Suppose that L, has a cycle (a,Lma,Lia7...,L§_1a), LPa = a, of order p
and g is a congruence in Q). Choose the smallest positive integer d such that
Lia € p(a).

Proposition 3.12. d | p.

Proof. Let m be the greatest common divisor of p and d. Then m = du + pv for
some integeres u,v. Now L™a = (Lg)u (LP)"a € p(a). Hence d < m < d and

therefore d = m. So p is divisble by d. O
We can conclude that in the cycle of L, the elements {a, La,..., L% ta}
belong to different classes of o, while {a, La, ... ,Li(gil)} belong to p(a).

Proposition 3.13. Let p be a prime and p > % Then Q is simple.

Proof. Consider the number d as above. Since p is a prime then either d = 1,
or d = p. Suppose that d = p. Then different elements of the cycle belong to
different classes of ©. So p does not exceed the number of classes % < @, a
contradiction.

Suppose that d = 1. Then p does not exceed the number of elements in a class

p(a) and |p(a)] < % Again we get a contradiction. O

Corollary 3.14. Let Q be a quasigroup of order 4. Suppose that some of its row
(column) permutations is a cycle of length 3. Then @ is simple. O

4. Identification of T-quasigroups

We consider the problem of a identification of a T-quasigroups of order 4 based on
corresponding Latin squares. The identification criteria are given in Proposition
4.4. Tt is used for a classification of simple non-T quasigroups of order 4. Note
that simple T-quasigroups were characterized in [11, Theorem 2].

A quasigroup @ is a T-quasigroup if there exists a structure of an abelian group
(Q,+,0,—) in @ such that

zy = a(z) + Hy) +c (7)
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for some automorphisms «, § of the group (@, +, 0, —) and for some element ¢ € Q.
Since any quasigroup has Malcev term operation, by Proposition 2.7 a quasigroup
is affine if and only if it is a T-quasigroup. It follows that the class of affine
quasigroups coincides with the class of T-quasigroups.

Proposition 4.1. [10] For a quasigroup with multiplication (7) the following are
equivalent:

(i) Q has a left (right) unit element e,
(i) B=1(a=1)ande=—a"tc (e=—p"1c). O

Suppose that T-quasigroup @ is defined on a cyclic group (Q,+) of order n.
Then each automorphisms has the form = +— ax, where a is an invertible element
of the ring Z/n. Thus (7) has the form

xy = ax + by + ¢, (8)

where a,b are invertible in Z/n and ¢ € Q.

Proposition 4.2. Let Q be a T-quasigroup with multiplication form (8). Let
n = pq. Then the relation x ~ y <= x = y (mod q) is a congruence. In
particular, if n is not a prime, then Q is not simple.

Proof. Let x,y,r,s € Z/n. Then
(x+qr)(y+qs) =alx+qr) + by +7s) +c=ax+ by + c+ qlar + bs) = zxy.
Hence the relation ~ is congruence relation. O

We are interested in the case of simple non T-quasigroups of order 4. So by
Proposition 4.2 we can exclude the case when @ = Z/4 and consider the case when
(Q,+)=Z/287Z)2.

Then (7) holds for some «, 5 € SL(2,7Z/2). The group SL(2,Z/2) is isomorphic
to the symmetric group S3. Then «, 5 are one of 6 matrices

(o 1) o
(o) (o1) GO ()
((1) 1) G (1)> (11)

Here the matrix (9) is the unit, matrices from (10) have order 2, and matrices
from (11) have order 3.

Proposition 4.3. Let (Q,+) = Z/2 ® Z/2. If xy has the from (7), then 2% =
(a + B)x + c. Hence the following are equivalent:
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(i) a=5,
(ii

(iii

Q@ is commutative,

22 = c for all ,

)
)
)
(iv) the diagonal entries of the Latin square are equal to c. O
It is easy to check that for any positive integer m we have
LTy =pB"y)+ (B '+ 8™+ +1) (ax +c).
In particular,
L3y = 3%+ (B* + B+ 1)(ax +c).

Hence if 8 has order 3, then 32 +3+1 =0and 3° = 1. So L2 = 1 and since L, is
not identical it determines 3-cycles in each row of the Latin square (2). Similarly
if a has order 3, then the operator of right multiplication R, determines 3-cycles
in each column of the Latin square (2).

Suppose that 8 has order 2 and therefore (3 is one of the matrices (10).

Then

L2y =03%%+B+1)(ax+c)=y+ (B+1)(ax+c)

because 32 = 1.
Suppose L2y = y for some x. Then ax + ¢ is annihilated by 3 + 1, where 3 is
from (10). Thus § + 1 is one of the matrices

(1) (o) (0 0)

So z = ax + ¢ is equal up to a scalar 0,1 to one of vectors
1 1 0
1)’ 0/’ 1)

r=X"tz4+ate, A=0,1. (12)

Thus

Moreover for each of x form (12) there exists an element yo such that (14 3)yo =
z = ax +c. Then L,yy = ax + Byo + ¢ = yo. Thus taking different A we obtain
two rows which are 2-cycles having fixed elements yo. If « is different from (12)
then L, is a cyclic of order 4 in the corresponding row because

Liy:54y+(53+ﬁ2+5+1)(am+c):y

for all y € Q since f* =1and B3+ 2 +3+1=0.

Finally let 3 = 1. Then L, = 1 if ax 4+ ¢ = 0. Suppose that L, # 1. Then
L2y =y for all y. So in this case L, is of the type 2 x 2.

Hence we have
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Proposition 4.4. Let Q be a quasigroup of oder 4. Suppose that (Q,+) = Z/2 ®
Z)2 and xy is defined by (7). Then Q is a T-quasigroup if and only if either of
the following conditions holds:

1. If B is from (11), then rows of the Latin square of Q are 3-cycles.

2. If B is from (10), then there exists two rows which are 2-cycles. Other two
rows are 4-cycles.

3. If B is from (9), then one row is identical the other three rows are of type
2 x 2. In particular Q has a left unit element.

Consider similar cases for a we obtain the same possible combinations for column
cycle structure as for rows. O

For example the simple quasigroup @ with the Latin square (6) is not a T-
quasigroup, since as it was already mentioned its row have cycles of lengths 4, 4,
2 x 2, 3. Hence it is polynomially complete.

Also cycle structures of rows of simple quasigroups from Example 3.11 are not
included into Proposition 4.4. So we can conclude that all these quasigroups are
polynomially complete.

5. Quasigroups generated by right and left shifts

A finite quasigroup Q = {x1,...,z,} is generated by a right shift |5] if the following
property is satisfied: for all 1 <i,k,j < n we have

Titk (mod n)Tj = TiTj_k (mod n)- (13)
It means that a,q = a,s, provided p — r = s — ¢ (mod n). Similarly a quasigroup
Q is generated by a left shift if
Titk (mod n)Tj = TiTjtk (mod n)
for any indices 1 < 4,j,k < n.

Proposition 5.1. Let Q be a quasigroup of order n = pq for some positive integers
p,q. Assume that Q it generated by the right shift and it has a left unit element.
Then the Latin square of Q has q cycles of length p.

Proof. Let Q = {z1,...,z,} and z; a left unit element of Q). Then z;x; = z; for
all j =1,...,n. Since @ is generated by a right shift zpz, = z121 = x; for all k.
Also for all k,j > 1 we have

TR = Tp_1Tp, TpTj = Th—1Tj—1-
Since z; is the left unit element for all 1 < k < ¢ we have

Zitq(mod n)Tk = Litq—Fk (mod n)Tn = LiLn—q+k (mod n) = Ln—qg+k (mod n)>
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Titq(mod n)Tn—q+k (mod n) = LiTn—g+k—q (mod n) = Ln—2q+k (mod n)>
Titq(mod n)Tn—2q+k (mod n) = TiTn—2¢+k—q (mod n) = Ln—3q+k (mod n)>

Zitq(mod n)Tn—(p—1)qg+k (mod n) = LiLn—pg+k (mod n) = Lk-

It means that the permutation of the (i + ¢(mod n))th row of the Latin square
has ¢ disjoint p-cycles. Recall that here z; is the left unit, i.e. ith row of the Latin
square is the identity permutation. O

Proposition 5.2. Let QQ be a finite quasigroup generated by the left shift and with
a left or a right unit element. Then Q is commutative. In particular left and right
units coincide.

Proof. Let x; be a left unit. Then for any z,,x, € @ we have
Lrls = TiLsyr—i = Trts—i = LiLlsyr—i = Tslp.
The proof for the right unit x; is the same. O

Similarly one can prove

Proposition 5.3. Let Q be a quasigroup of order n = pq for some positive integers
p,q. Assume that Q) is generated by the left shift and it has a unit element. Then
the Latin square of Q has q cycles of length p. O

Proposition 5.4. Let Q) be generated by a right shift and Q has a left unit.
Suppose that |Q| = n = pq. Then the relation x, ~ x, <= a =0b (mod q) is a
congruence in Q. Any congruence relation on @Q can be obtained in this way.

Proof. Let x; be a left unit element of Q. By (13) for any integers k, s,u,v (mod n)
we have

Tit+quls+quv = Lils4qu—k—qu+i(mod n) = Ls+q(v—u)—k+i (mod n)-

So if we take elements Ty qu/, Ts4qv €quivalent to Ty qu, Tstqv then their product
Thtqu' Ls+qv’ = Ls4q(v' —u')—k-+i (mod n)
is equivalent t0 T4 q(v—u)—k+i(mod n), Decause
s+qv—u)—k+i=s+q{ +u)—k+i(mod q).

Now suppose that g is a congruence relation in (). By Proposition 3.3 the class
p(x;) of a left unit element x; is a subquasigroup in (. Suppose that this class
has order greater then 1. Take the smallest integer ¢ > 0 such that ;14 € p(z;).
If ; € p(x;), then x4 qx; = z30_g = xj_q € p(z;). Hence it is easy to deduce
that @(x;) consists of all elements ;44 for all [ € Z/n.
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We claim that (z,,,z,) € pif and only if m = s (mod ¢). In fact by Proposition
3.3 we have z,, = z,xs, where x, € @(z;). Hence v = i + lg and therefore
Tyls = Tiplgls = TiTs—1qg = Ts—1g- 30 M = s —lg = s (mod ¢). Conversely let
Timtlg = TiTmtlg = TimlgTm € P(T;)Tm. Hence (Tpmtig, Tm) € p- O

Corollary 5.5. Fach of cycles from Proposition 5.1 form a congruence class of
Q. Thus Q is not simple.

Proof. Each of p-cycles from Proposition 5.1 coincides with a class from Proposi-
tion 5.4. O

Corollary 5.6. If the Latin square of the quasigroup Q of order n = 4 = 22 which
are of the above type, then Q has 2 disjoint 2-cycles.

Proposition 5.7. Let Q be a quasigroup of order n and it is generated by the
right shift then the operations xy, x,/y are equal if and only if there exists a left
identity.

Proof. Let Q = {x1,...,z,} and x; a left unit element. It means that z;z; = z;
for all 7 =1,...,n. In particular we have z1x1 = 2.
We need to prove that xpx; = x, x;. It suffices to show that

(xrxj) zj = (2, 25) ;.

In fact by the right shift property

(@k25) 5 = (Th—(h—i)Tj— (k=) (mod n)) Tj = (Ti%j— (k—i) (mod n)) T
= Tj—(k—i) (mod n)Tj = Lj—(k—i)+(k—i) (mod n)Tj+(k—i) (mod n)
= TjTjt(k—i) (mod n) = Tit(j—i)Lhk+(j—i) (mod n) = Tilk
=z = (zx,/25) ;.

Conversely assume that zpx; = =z, x; for all indices k,j = 1,...,n. Put
z; = a2 for all k =1,...,n by the right shift property.

We claim that z; is a left unit element in Q.

By the assumption (z;z;) x; = (;,/2;) ; = =; and therefore z;x; = x; for all
j=1,...,n. Hence z; is the left unit element. O

Corollary 5.8. Let Q be a quasigroup of order n and it is generated by the left
shift. The operations xy,x\y are equal if and only if there exists a unit. In this
case by Propsition 3.5 we have x /'y = y\x for all x,y and x /x is the unit element
for all . O
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