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On regular medial division algebras

Sergey S. Davidov

Abstract. We prove a Toyoda's type theorem for regular medial division n-ary groupoids and

regular medial division algebras without unary operations.

1. Introduction

We recall that the algebra (Q,Σ) is said to be medial (entropic), if it satis�es the
mediality hyperidentity (for hyperidentities see [13]), i.e., for any f, g ∈ Σ:

f(g(x11, ..., x1n), ..., g(xm1, ..., xmn)) = g(f(x11, ..., xm1), ..., f(x1n, ..., xmn)). (1)

In particular, the n-ary groupoid Q(f) is said to be medial, if it satis�es the
identity:

f(f(x11, ..., x1n), ..., f(xn1, ..., xnn)) = f(f(x11, ..., xn1), ..., f(x1n, ..., xnn)).

It should be noted here that medial identity studies have been made under
various names: abelian, alternation, bi-commutative, bisymmetric, entropic, sur-
commutative.

Medial systems were studied by many authors (Sade, Stein, Toyoda, Bruck, Be-
lousov, Kurosh, Smith, Romanowska, Dudek, Ježek, Kepka, Movsisyan, Shcherba-
cov and others). Medial systems are connected with the notion of entropy in
information theory [18], and have some applications in cybernetics, economics,
physics and biology.

In [16], multiplicative semigroups of a �eld are characterized by the Cayley
type theorem, using the transitive mode (i.e., an idempotent and medial algebra
[17]).

Some special types of medial n-ary groupoids are described in [4] and [5]. Some
aspects of binary medial algebras are considered in [3].

The n-ary groupoid Q(f) is called an n-ary quasigroup or in short, an n-quasi-
group, if in the equation f(x1, ..., xn) = xn+1 any n elements of x1, x2, ..., xn, xn+1

uniquely determine the remaining one.
In [2] V.D. Belousov proved the following theorem. (This theorem follows from

results of T. Evans ([7], Theorem 6.2), too.)
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Theorem 1.1. Let Q(f) be a medial n-ary quasigroup. Then there exist an abelian

group Q(+), its pairwise commuting automorphisms α1, . . . , αn, and an element a
of the set Q such that

f(x1, x2, . . . , xn) = α1x1 + α2x2 + . . .+ αnxn + a

for all xi ∈ Q, i = 1, . . . , n.

The classical Toyoda theorem (see [1]) follows from Theorem 1.1.
Let G(·) be a groupoid and a ∈ G. Denote by La (Ra) the map of G to G such

that La(x) = ax (Ra(x) = xa) for all x ∈ G .
A groupoid G(·) is said to be a division groupoid if La and Ra are surjective

for every a ∈ G.
A groupoid G(·) is called left regular if Ra = Rb whenever a, b ∈ G and ca = cb

for some c ∈ G. Right regular groupoids are de�ned dually. A groupoid is regular

if it is both left and right regular.
The following characterization of medial regular division binary groupoids was

obtained by Kepka ([10]).

Theorem 1.2. A groupoid G(·) is a regular medial division groupoid if and only

if there exist an abelian group G(+), two surjective endomorphisms f, g of G(+),
and an element a ∈ G such that fg = gf and x · y = f(x) + g(y) + a, for all

x, y ∈ G.

In this paper we generalized the Kepka theorem for medial regular division
n-ary groupoids and medial regular division algebras without unary operations.

2. Preliminary notions and results

First we introduce some notations. The sequence xn, xn+1, . . . , xm is denoted by
xmn or {xi}mn , where n,m are natural numbers, n ≤ m. If n = m, then xmn is an
element xn. The sequence a, a, . . . , a (m times) is denoted by am. The operations
on the set Q are denoted by A,B,C or (an1 ) = b and [an1 ] = b. The nonempty set
Q with an n-ary operation A is called an n-ary groupoid or in short, an n-groupoid.

Let Q(A) be an m-groupoid and A(xm1 ) = y. If we replace xk1 , xk2 , . . . , xkn
(n < m) by �xed elements a1, a2, . . . , an in A(xn1 ), then we obtain

A(xk1−11 , a1, x
k2−1
k1+1, a2, . . . , x

kn−1
kn−1+1, an, x

m
kn+1).

Thus we get a new operation B(xk1−11 , xk2−1k1+1, . . . , x
m
kn+1) with the arity, m − n.

The (m− n)-groupoid, Q(B), is called the retract of the m-groupoid Q(A).
Let Q( ) be an n-groupoid. Denote by a the sequence an1 ∈ Q and by Li(a) the

map from Q to Q such that

Li(a)x = (a1 . . . ai−1xai+1 . . . an) = (ai−11 xani+1)
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for all x ∈ Q. The map Li(a) is called the i-translation with respect to a.

An n-groupoid Q( ) is called a division n-groupoid if every Li(a) is a surjection
for all a ∈ Q and all i = 1, . . . , n. Note that every retract of the medial division
n-groupoid also is medial.

An n-groupoid Q( ) is i-regular if Li(a) = Li(b), whenever a, b ∈ Q and
Li(a)c = Li(b)c, for some c ∈ Q. An n-groupoid Q( ) is regular if it is i-regular,
for every i = 1, . . . , n. Note that our i-regularity is di�erent from the regularity
proposed bt Sioson (see for example [6]).

It is clear that every retract of the regular n-groupoid also is regular.

The triplet T = (α, β, γ) of maps of Q(·) into itself is called an endotopy of
Q(·) if the identity γ(x · y) = αx ·βy is true for all x, y ∈ Q. The third component
γ of this endotopy is called a quasiendomorphism. In the case α = β = γ the
triplet T = (γ, γ, γ) is called an endomorphism.

The following two lemmas are proved in [19].

Lemma 2.1. Any quasiendomorphism γ of a group, Q(+) has the form:

γ = R̃sγ0, (2)

where γ0 is an endomorphism of the group Q(+), R̃s(x) = x + s, s ∈ Q, and,

conversely, the map γ de�ned by (2) is a quasiendomorphism of the group Q(+).

Lemma 2.2. Let γ be a quasiendomorphism of the group, Q(+). Then γ is

endomorphism if and only if γ(0) = 0, where 0 is the identity element of the group

Q(+).

The groupoid Q(·) is homotopic to the groupoid Q(∗) if there exist three maps
α, β, γ of Q to Q such that γ(x ∗ y) = αx · βy for all x, y ∈ Q. The homotopy of
the form T = (α, β, ε), where ε is the identity map, is called principal.

Lemma 2.3. If the group Q(∗) is principally homotopic to the group Q(·), then
x ∗ y = x · k · y for some k ∈ Q and all x, y ∈ Q.

Proof. We have x ∗ y = αx · βy, where α, β are the maps of Q to Q. Putting in
this equality: y = e and x = e, where e is the identity element of the group Q(∗),
we obtain:

x = αx · βe, y = αe · βy,

i.e.,

αx = x(βe)−1, βy = (αe)−1 · y.

Therefore, we get: x ∗ y = (x · (βe)−1) · ((αe)−1 · y) = x · k · y.
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3. Main results

Theorem 3.1. Let Q( ) be a regular medial division n-groupoid. Then there

exist an abelian group Q(+), its pairwise commuting surjective endomorphisms

α1, . . . , αn, and a �xed element b ∈ Q such that

(x1x2 . . . xn) = (xn1 ) = α1x1 + α2x2 + . . .+ αnxn + b

for all xi ∈ Q, i = 1, . . . , n.

Proof. The proof is by induction on n. For n = 2, the assumption follows from
Theorem 1.2. Suppose the theorem is true for all natural numbers which are less
than n. Let us write the medial identity as a matrix:

x11 x12 ... x1n
x21 x22 ... x2n
... ... ... ...
xn1 xn2 ... xnn

 , (3)

(
{xij}nj=1

)
= yi,

(
{xij}ni=1

)
= zj .

Then, the medial identity can be represented as:

(yn1 ) = (zn1 ). (4)

Consider the following matrix:
a a a a ... a
x1 a a a ... a
a x2 x3 x4 ... xn
a a a a ... a
... ... ... ... ... ...
a a a a ... a

 .

For yi and zj from (4), we have:
yi = (an) = b, i 6= 2, 3,

y2 = (x1a
n−1) = αx1,

y3 = (axn2 ),

{
z1 = (ax1a

n−2) = βx1,

zi = (a2xia
n−3) = µxi, i 6= 1,

where α, β, µ are some surjections from Q to Q. Thus, from (4), we obtain:

(b, αx1, (ax
n
2 ), bn−3) = (βx1, {µxi}ni=2).

Let A(u, v) = (b, u, v, bn−3). Then Q(A) is a regular, medial and division
groupoid.
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Let

B(xn2 ) = (axn2 ). (5)

Then B is a regular, medial and division (n− 1)-ary operation.
By the assumption, there exist abelian groups Q(⊕) and Q(+̇) such that:

A(u, v) = γu⊕ δv ⊕ d,

B(un2 ) = λ2u2+̇λ3u3+̇ . . . +̇λnun+̇c,

where d, c ∈ Q, γ, δ are commuting surjective endomorphisms of the group Q(⊕)
and λi i = 2, . . . , n, are pairwise commuting surjective endomorphisms of the group
Q(+̇).

Thus, (5) has the form A(αx1, B(xn2 )) = (βx1, {µxi}n2 ), i.e.,

γαx1 ⊕ δ(λ2x2+̇λ3x3+̇ . . . +̇λnxn+̇c)⊕ d = (βx1, {µxi}n2 ). (6)

Let hµ be the map of Q to Q such that µhµ = ε (ε is the identity map of Q to Q);
then, from (6), we obtain:

γαx1 ⊕ δ(λ2hµx2+̇λ3hµx3+̇ . . . +̇λnhµxn+̇c)⊕ d = (βx1, x
n
2 ).

There exists an element a1 ∈ Q such that γαa1⊕ d = 0⊕, where 0⊕ is the identity
of the group Q(⊕). Hence, we get:

δ(λ2hµx2+̇ . . . +̇λnhµxn+̇c) = (βa1, x
n
2 ).

The retract (βa1, x
n
2 ) is an (n−1)-ary regular, medial, division groupoid; there-

fore, there exist: an abelian group Q(+) and its commuting surjective endomor-
phisms ϕi (i = 2, . . . , n), such that:

δ(λ2hµx2+̇ . . . +̇λnhµxn+̇c) = ϕ2x2 + . . .+ ϕnxn + l = ϕ2x2 + . . .+ ϕ′nxn, (7)

where ϕ′nxn = ϕnxn + l and l ∈ Q. Let us rewrite (6) in the form:

γαhβx1 ⊕ δ(λ2hµx2+̇ . . . +̇λnhµxn+̇c)⊕ d = (xn1 )

where βhβ = ε. Using (7), we get (xn1 ) = γαhβx1 ⊕ (ϕ2x2 + . . .+ ϕ′nxn)⊕ d, i.e.,

(xn1 ) = π1x1 ⊕ (ϕ2x2 + . . .+ ϕ′nxn), (8)

where π1x1 = γαhβx1. It follows from (8), that π1 is a surjection.
Now we consider the retract, (xn−11 a). By the inductive assumption, there

exists an abelian group Q(∗) such that:

(xn−11 a) = µ1x1 ∗ µ2x2 ∗ . . . ∗ µn−1xn−1 ∗ h, (9)
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where µi (i = 1, . . . , n− 1) are commuting surjective endomorphisms of the group
Q(∗) and h ∈ Q.

Substituting a for xn in (8) and taking into account (9), we obtain:

π1x1 ⊕ (ϕ2x2 + . . .+ ϕ′n−1xn−1) = µ1x1 ∗ µ2x2 ∗ . . . ∗ µ′n−1xn−1, (10)

where ϕ′n−1xn−1 = ϕn−1xn−1 + ϕ′na, µ
′
n−1xn−1 = µn−1xn−1 ∗ h.

Choose the elements an−13 such that ϕ3a3 + . . .+ϕ′n−1an−1 = 0, where 0 is the
identity of the group Q(+); then from (5) we get:

π1x1 ⊕ ϕ2x2 = µ1x1 ∗ µ′2x2,

where µ′2x2 = µ2x2 ∗ µ3a3 ∗ . . . ∗ µ∗n−1an−1; therefore µ′2 is a surjection.
Hence, x1 ∗ x2 = π1hµ1

x1 ⊕ ϕ2hµ′2x2, where µ1hµ1
= ε and µ′2hµ′2 = ε. Thus,

the groups Q(∗) and Q(⊕) are principally homotopic and, by Lemma 2.3, we get:

u⊕ v = u ∗ v ∗ l. (11)

Now we choose the elements a1, a
n−1
4 such that π1a1 = 0⊕ and ϕ4a4 + . . . +

ϕ′n−1an−1 = 0. Then, from (10), we obtain:

ϕ2a2 + ϕ3a3 = µ2x2 ∗ µ′3x3,

where µ′3 is a surjection. By Lemma 2.3, we have:

u+ v = u ∗ v ∗ l′. (12)

Combining (11) and (12), we obtain:

u⊕ v = u+ v + l′′. (13)

According to (13), we get from (8):

(xn1 ) = π1x1 + ϕ2x2 + . . .+ ϕ′nxn + l′′′ = ψ1x1 + . . .+ ψnxn + r, (14)

where ψ1, . . . , ψn are surjections.
Note that we can assume in (14) that ψi0 = 0, i = 1, . . . , n.
Now, we prove that ψi (i = 1, . . . , n) are endomorphisms of the group Q(+),

and ψiψj = ψjψi for all i, j ∈ {1, . . . , n}. Let us consider the following retract of
matrix (3).

j k

i


...

...
. . . u . . . v . . .

...
...

 ,
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where xij = u, xik = v and other elements are equal to 0. For yi and zi, we have:{
yi = ψju+ ψkv + r,

ys = r, if s 6= i,


zj = ψiu+ r,

zk = ψiv + r,

zs = r, if s 6= j, k.

Thus,

(yn1 ) = (ri−1, ψju+ ψkv + r, rn−i),

(zn1 ) = (rj−1, ψiu+ r, rk−j−1, ψiv + r, rn−k).

Hence,

(ri−1, ψju+ ψkv + r, rn−i) = (rj−1, ψiu+ r, rk−j−1, ψiv + r, rn−k).

From the last equality, by (14), we obtain:

i−1∑
s=1

ψsr + ψi(ψju+ ψkv + r) +

n∑
s=i+1

ψsr + r =

j−1∑
s=1

ψsr + ψj(ψiu+ r) +

k−1∑
s=j+1

ψsr + ψk(ψiv + r) +

n∑
s=k+1

ψsr + r.

From this equality we get:

ψi(ψju+ ψkv + r) = ψj(ψiu+ r) + ψk(ψiv + r) + t, (15)

where t is some element of Q. Substituting hψj
u and hψk

(v − r) for u and v in
(15), respectively, we obtain:

ψi(u+ v) = ψj(ψihψj
u+ r) + ψk(ψihψk

(v − r) + r) + t,

i.e.,

ψi(u+ v) = σu+ τv,

where σ and τ are some maps of Q to Q. Thus, ψi is a quasiendomorphism of
the group Q(+). Since, ψi0 = 0, it follows from Lemma 2.2 that each ψi is an
endomorphism of the group Q(+).

If we take v = 0 in (15) and since ψi is an endomorphism of the group Q(+),
we have:

ψiψju+ ψir = ψjψiu+ ψjr + ψkr + t. (16)

Now, if we take u = 0 in (16), we obtain: ψir = ψjr + ψkr + t. Substituting
ψjr + ψkr + t for ψir in (16), we get: ψiψju = ψjψiu. To conclude the proof, it
remains to note that i, j are arbitrary.
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Denote by LAi (a) the i-translation of the algebra (Q,Σ) with respect to a ∈ Q|A|
(|A| is the arity of the operation A) and the operation A ∈ Σ, namely:

LAi (a)x = A(a1, . . . , ai−1, x, ai+1, . . . , a|A|).

The algebra (Q,Σ) is a division (invertible) algebra, if every LAi (a) is a surjec-
tion (bijection), for all a ∈ Q|A|, A ∈ Σ and i = 1, . . . , |A|.

(Q,Σ) is i-regular if LAi (a) = LAi (b), whenever a, b ∈ Q|A|, A ∈ Σ and LAi (a)c =
LAi (b)c, for some c ∈ Q. If (Q,Σ) is is i-regular for all i = 1, . . . , |A|, then it is
called regular.

Theorem 3.2. Let (Q,Σ) be a regular medial division algebra. Then there exists

an abelian group Q(+) such that every operation A ∈ Σ has the representation:

A(x1, . . . , x|A|) = ϕA1 x1 + . . .+ ϕA|A|x|A| + tA, (17)

where ϕA1 , . . . , ϕ
A
|A| are pairwise commuting surjective endomorphisms of the group

Q(+) and tA is a �xed element of Q.

Proof. According to Theorem 3.1, every operation A ∈ Σ (|A| = m) has the form:

A(x1, . . . , am) = ϕn1x1 +A . . .+A ϕ
A
mxm +A t

′
A, (18)

where the abelian group Q(+A) corresponds to the operation: A ∈ Σ. Let us
rewrite medial hyperidentity (1) (in terms of the operations, +A and +B) in the
following way:

ϕA1 (ϕB1 x11 +B . . .+B ϕ
B
n x1n +B tB) +A . . .+A ϕ

A
m(ϕB1 xm1 +B . . .+B ϕ

B
n xmn+

BtB) +A tA = ϕB1 (ϕA1 x11 +A . . .+A ϕ
A
mxm1 +A tA) +B . . .+B ϕ

B
n (ϕA1 x1n+

+A . . .+A ϕ
A
mxmn +A tA) +B tB .

If we take each of xij equal to 0B , (where 0B is the identity of the group
Q(+B)), besides x11 and xmn in the last equality, then we obtain:

ϕA1 (ϕB1 x11 +B tB) +A +ϕAm(ϕBn xmn +B tB) +A cA

= ϕB1 (ϕA1 x11 +A k1) +B +ϕBn (ϕAmxmn +A k2) +B cB ,

where cA, cB , k1 and k2 are some elements of the set Q.
From the last equality we get:

αx11 +A +βxmn = γx11 +B δxmn,

where α, β, γ, δ are surjective maps of Q to Q.
Thus, the groups Q(+A) and Q(+B) are homotopic and, by Lemma 2.3, we

obtain:

x+A y = x+B y +B k, (19)
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x+B y = x+A y +A t, (20)

for some k, t ∈ Q.
We �x the operation +B and further we denote it by +. According to (18) and

(19), for the operation A ∈ Σ we have:

A(x1, . . . , xm) = ϕA1 x1 +A . . .+A ϕ
A
mxm +A tA = ϕB1 x1 +B . . .+B ϕ

B
n xn +B uA =

ϕA1 x1 + . . .+ ϕAmxm + uA.

Since the operation A is arbitrary, we have proved that every operation A ∈ Σ
has the form:

A(x1, . . . , xm) = ϕA1 x1 + . . .+ ϕAmxm + uA. (21)

Let us prove that ϕAi (i = 1, . . . ,m) are quasiendomorphisms of the group
Q(+). According to (19) and (20), we have:

ϕAi (x+ y) = ϕAi (x+A y +A t) = ϕAi x+A +ϕAi y +A ϕ
t
i = ϕAi x+ αy,

where α is a map of Q to Q. Thus, ϕAi is a quasiendomorphism of the group Q(+)
and, by Lemma 2.1, we have:

ϕAi = R̃sγ
A
i ,

where γAi ∈ EndQ(+). Hence, from (21), it follows that:

A(x1, . . . , xm) = γA1 x1 + . . .+ γAmxm + dA,

where dA ∈ Q.
Similar to the proof of Theorem 3.1, we can show that the endomorphisms γAi

are pairwise commuting for all i = 1, . . . , |A| and A ∈ Σ.

Analogously we can prove the following theorem.

Theorem 3.3. Let (Q,Σ) be a medial invertible algebra. Then there exists an

abelian group Q(+) such that every operation A ∈ Σ has the representation:

A(x1, . . . , x|A|) = ϕA1 x1 + . . .+ ϕA|A|x|A| + tA,

where ϕA1 , . . . , ϕ
A
|A| are pairwise commuting automorphisms of the group Q(+) and

tA is a �xed element of Q.
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