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Contractions of quasigroups and Latin squares

Ivan I. Deriyenko and Wieslaw A. Dudek

Abstract. By a contraction (compression) we mean a method of reduction of the multiplica-
tion table of a quasigroup having n elements to the multiplication table of a quasigroup having
n − 1 elements. We describe such method and characterize quasigroups allowing a contraction.

1. Introduction

By a prolongation of a quasigroup we mean a process which shows how from a
given quasigroup Q(·) of order n we can obtain a new quasigroup Q′(◦) of order
n+1. In other words, it is a process which shows how a given Latin square can be
extended to a new Latin square containing one more column and row. The �rst
method of a prolongation was given by R. H. Bruck [5] for Steiner quasigroups.
More general method was proposed V. D. Belousov in [1] (see also [2]).

G. B. Belyavskaya studied this problem in [3] together with the inverse problem,
called contraction or compression of quasigroups, i.e., how from a given Latin
square of order n we can obtain a Latin square of order n − 1. Her method of
prolongation is based on the existence of a complete map. In [7] we extend this
metod to a quasicomplete map. The method of contractions proposed by G. B.
Belyavskaya is based on the identity (3), where a · b = c. In our two methods,
presented below, the condition a · b = c is omitted. In the second our method we
also replace the identity (3) by a weaker identity (5).

2. Preliminaries

The composition of permutations is de�ned in the usual way as ϕψ(x) = ϕ(ψ(x)).
Permutations are written in the form of cycles, cycles are separated by points:

ϕ =
(

1 2 3 4 5 6
3 1 2 5 4 6

)
= (132.45.6.) .

Each quasigroup Q(·) admits several special permutations. The left multiplica-
tion by a ∈ Q, i.e., the map La(x) = a ·x is called a left translation of Q. The right
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multiplication by a ∈ Q, i.e., the map Ra(x) = x · a is called a right translation of
Q. A permutation ϕi de�ned by

x · ϕi(x) = i, i ∈ Q (1)

is called the middle translation by i or a track of an element i ∈ Q.

3. D-contractions

Consider a quasigroup Q(·) in which one can �nd three elements a, b, c ∈ Q such
that for all x, y ∈ Q− {c}, x 6= a, y 6= b we have

x · y = c⇐⇒ x · b = a · y. (2)

This condition means that in the multiplication table of Q(·) the element c has
the same projection onto the row a and the column b except the case when c is in
the row a or in the column b.

Comparing x ·y = c with (1) we see that y = ϕc(x). Thus, the right side of (2)
can be written in the form x · b = a · ϕc(x). Therefore for x ∈ Q − {a, c, ϕ−1

c (b)}
we have

Rb(x) = Laϕc(x). (3)

In a similar way we can see that (3) implies (2). Hence for x, y ∈ Q− {c}, x 6= a,
y 6= b, the above two conditions are equivalent. Since x 6= a they do not imply
a · b = c.

It is not di�cult to verify that the construction presented in the following
theorem gives a quasigroup.

Theorem 3.1. Any quasigroup Q(·) containing three elements a, b, c ∈ Q satis-

fying (3) allows a contraction to a quasigroup Q′(◦), where Q′ = Q− {c} and

x ◦ y =



x · y if x · y 6= c, x 6= a, y 6= b,
x · b if x · y = c, x 6= a, y 6= b,
c · y if c · y 6= c, x = a, y 6= b,
x · c if x · c 6= c, x 6= a, y = b,
a · y if c · y = c, x = a, y 6= b,
x · b if x · c = c, x 6= a, y = b,
c · c if x = a, y = b.

(4)

In the sequel, for simplicity, this contraction will be called the D-contraction.
It can be described by the following four steps:

1. all elements c are replaced by elements of the b-column located in the same
row as c,

2. elements of the b-column are replaced by elements of the c-column,

3. elements of the a-row are replaced by elements of the c-row,

4. the c-row and the c-column are deleted.



Contractions of quasigroups and Latin squares 167

Example 3.2. Consider the quasigroup Q(·) de�ned by the following table:

· 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7
2 2 3 1 7 4 5 6
3 3 4 2 6 7 1 5
4 4 5 6 3 2 7 1
5 5 6 7 1 3 4 2
6 6 7 5 2 1 3 4
7 7 1 4 5 6 2 3

In this table the element 3 has the same projections onto the 5th row and the
7th column except the case where 3 occurs in the 5th row or in the 7th column. So,
(3) is satis�ed for a = 5, b = 7 and c = 3. This means that the quasigroup Q(·) can
be contracted to the quasigroup Q′ = Q − {3} with the following multiplication
table:

◦ 1 2 4 5 6 7

1 1 2 4 5 6 7

2 2 6 7 4 5 1
4 4 5 1 2 7 6
5 5 4 6 7 1 2
6 6 7 2 1 4 5
7 7 1 5 6 2 4

∼

◦ 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 5 6 3 4 1
3 3 4 1 2 6 5
4 4 3 5 6 1 2
5 5 6 2 1 3 4
6 6 1 4 5 2 3

where entries in the box are calculated according to the above procedure.

Example 3.3. The quasigroup Q(·) from the previous example allows also three
other contractions. Namely, it allows contractions determined by elements

(i) a = 3, b = 7, c = 7,
(ii) a = 6, b = 7, c = 2,

(iii) a = 1, b = 1, c = 3.
In the case (i) we obtain the quasigroup

◦ 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 3 1 6 4 5
3 3 1 4 5 6 2
4 4 5 6 3 2 1
5 5 6 2 1 3 4
6 6 4 5 2 1 3

which is not isotopic to the quasigroup obtained in Example 3.2. Indeed, as is not
di�cult to see, these two quasigroups have di�erent indicators (cf. [6]). Hence
they cannot be isotopic.

The quasigroup obtained in the case (ii) is isotopic to the quasigroup from the
case (i). In the case (iii) we obtain a quasigroup which is not isotopic to any of
the previous. So, the quasigroup Q(·) allows contractions to three non-isotopic
quasigroups.
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Proposition 3.4. A quasigroup isotopic to a quasigroup having a D-contraction

also has a D-contraction.

Proof. Indeed, in a quasigroup Q(·) possessing D-contraction there are a, b, c ∈ Q
satisfying (2). In a quasigroup Q(◦) isotopic to Q(·) elements α(a), β(b), γ(c),
where γ(x · y) = α(x) ◦ β(y), satisfy (2). Thus a quasigroup Q(·) also has the
D-contraction.

Proposition 3.5. If a quasigroup Q(·) has elements a, b, c satisfying (2), then it

is isotopic to a loop Q(∗) with the identity e = a · b in which z ∗ z = c holds for all

z ∈ Q− {a · b, c}.

Proof. Let a, b, c satisfy (2). Then Q(∗), where x ∗ y = R−1
b (x) · L−1

a (y), is a
loop with the identity e = a · b. Since for z ∈ Q there are x, y ∈ Q such that
z = x · b = a · y, so, according to (2), for z 6= c, x 6= a, y 6= b, we have x · y = c.
Thus z ∗ z = Rb(x) ∗ La(y) = R−1

b Rb(x) · L−1
a La(y) = x · y = c for z 6= c and

z 6= a ◦ b. In the case z = a · b we have z ∗ z = z since z is the identity of Q(∗).

For z = c = x · b = a · y we obtain c ∗ c = x · y. Hence, c ∗ c = c for x = a, y = b
(in this case c is the identity of Q(∗)) or c ∗ c 6= c.

Proposition 3.6. If in a loop Q(∗) with the identity e there exists c such that

z ∗ z = c for all z ∈ Q− {e, c}, then Q(∗) has a D-contraction.

Proof. Indeed, in this loop (2) is satis�ed for a = b = e.

As a consequence of the above two propositions we obtain

Theorem 3.7. A quasigroup Q(·) has a D-contraction if and only if it is isotopic

to a loop Q(∗) with the identity e in which there exists an element c such that

z ∗ z = c for all x ∈ Q− {e, c}.

Corollary 3.8. A quasigroup isotopic to a Boolean group has a D-contraction.

Proof. For all elements of a Boolean group we have x2 = e, hence in such group
(2) is satis�ed for a = b = c = e. Consequently, each quasigroup isotopic to this
group has a D-contraction.

Also it is not di�cult to see that the cyclic group Z3 has a D-contraction. For
groups we have the following results.

Theorem 3.9. A group G allows a D-contraction if and only if it has an element

c such that c2 = e and x2 = c for all x ∈ G− {e, c}.

Proof. Suppose that a group G allows a D-contraction. Then, by Theorem 3.7,
there exist c ∈ G such that x2 = c for all x ∈ G− {e, c}. If c = e, then obviously
c2 = e. If c 6= e, then for x ∈ G − {e, c} we have c = (x−1)2 = (x2)−1 = c−1.
Hence c2 = e.

Conversely, if in a group G there is an element c such that x2 = c for all
x ∈ G− {e, c}, then G satis�es (2) with a = b = e, so it has a D-contraction.
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Corollary 3.10. If a group G of order n > 4 has a D-contraction, then its

exponent is a divisor of 4.

Proof. In fact, in such group x4 = c2 = e for each x ∈ G.

The converse statement is not true. The exponent of the group G = Z2 × Z4

is equal to 4 but this group has no c such that x2 = c for all x ∈ G− {e, c}. Thus
it has no D-contraction.

4. Special cases

1. Our D-contraction for c = a · b gives the contraction proposed by Belyavskaya
(see [3] and [4]). In particular, as a simple consequence of our results we obtain
the following characterizations of quasigroups allowing the contraction proposed
by Belyavskaya.

Proposition 4.1. A quasigroup Q(·) allows a contraction proposed by Belyavskaya

if and only if it is isotopic to a loop of exponent 2.

2. In another special case when a = b = c from (2) we obtain

x · y = c⇐⇒ x · c = c · y,

i.e., Rc = Lcϕc for all x, y ∈ Q− {c}. In this case Theorem 3.1 has the form

Theorem 4.2. If in a quasigroup Q(·) there exists an element c ∈ Q such that

Rc = Lcϕc, then Q(·) allows a contraction to a quasigroup Q′(◦), where Q′ =
Q− {c} and

x ◦ y =
{
x · y if x · y 6= c,
x · c if x · y = c.

The last formula may be written in the form

x ◦ y =
{
x · y if y 6= ϕc(x),
x · c if y = ϕc(x).

Example 4.3. Consider the quasigroup Q(·) de�ned by the table:

· 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7
2 2 1 7 3 6 5 4
3 3 4 1 5 2 7 6
4 4 5 2 6 7 1 3
5 5 3 6 7 4 2 1
6 6 7 5 1 3 4 2
7 7 6 4 2 1 3 5
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In this quasigroup the element c = 4 has the same projection onto the fourth
row and the fourth column, except the case when it is located in the fourth row and
in the fourth column. Hence from the multiplication table of Q(·) we can delete
the fourth row and the fourth column. Replacing in the reduced table all c = 4
by the corresponding elements of the deleted column we obtain the multiplication
table of a quasigroup Q′(◦), where Q′ = Q− {4} and

◦ 1 2 3 5 6 7

1 1 2 3 5 6 7
2 2 1 7 6 5 3
3 3 5 1 2 7 6
5 5 3 6 7 2 1
6 6 7 5 3 1 2
7 7 6 2 1 3 5

∼

◦ 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 1 6 5 4 3
3 3 4 1 2 6 5
4 4 3 5 6 2 1
5 5 6 4 3 1 2
6 6 5 2 1 3 4

By the converse procedure we can reconstruct Q(·) from Q′(◦).

Obviously, the reconstruction of Q(·) from Q′(◦) is a prolongation of Q′(◦) but
it is not a prolongation by the method proposed by Belyavskaya (see the formula
(6) in [7]). According to this formula in the above case should be q = c = 4, a = 6,
xa · q = q and 6 = xa ◦ σ(xa). Hence xa = 1 and σ(1) = 6. But using this method
it should be q · σ(xa) = q, i.e., 4 · 6 = 4 which is not true.

Q(·) can be reconstructed from Q′(◦) as a prolongation of Q′(◦) obtained by
the formula (9) in [7], where x1 = 1, x2 = 6, a = 1, d = 6 and σ = (1.273.5.6.).

Example 4.4. Consider a quasigroup Q(·) de�ned by the table:

· 1 2 3 4 5 6

1 1 2 4 3 5 6
2 4 3 6 5 2 1
3 2 6 3 4 1 5
4 5 4 1 6 3 2
5 6 1 5 2 4 3
6 3 5 2 1 6 4

In this quasigroup 3 is an idempotent and x ◦ y = 3 only in the case when
x◦3 = 3◦y. So, 3 can be deleted. Hence Q′ = Q−{3} and Q′(◦) has the following
multiplication table:

◦ 1 2 4 5 6

1 1 2 4 5 6
2 4 6 5 2 1
4 5 4 6 1 2
5 6 1 2 4 5
6 2 5 1 6 4

∼

◦ 1 2 3 4 5

1 1 2 3 4 5
2 3 5 4 2 1
3 4 3 5 1 2
4 5 1 2 3 4
5 2 4 1 5 3

In this case Q(·) can be reconstructed from Q′(◦) by the Belousov's method
(the formula (3) in [7]), where σ(x) = x · 3 = (14.26.5.) and σ = (1456.2.).



Contractions of quasigroups and Latin squares 171

3. Cyclic group have a D-contraction only in the case when they have 2, 3 or
4 elements. But if the multiplication table of a cyclic group has a special form
another type of contraction is possible. It is presented below where the cyclic
group Z6 is contracted to the group Z5.

+6 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

=⇒

0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

=⇒

+5 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

In a similar way we can reduce any group Zn to the group Zn−1. The converse
procedure gives a prolongation of Zn−1 to Zn.

5. Isotopic contractions

Consider a quasigroup Q(·) in which for some a, b, c ∈ Q the following identity

ϕ−1
c L−1

a Rb = (a, p), (5)

where (a, p) is a transposition of a and p = R−1
b (c), is satis�ed.

Let Q(◦) be a quasigroup isotopic to Q(·). Then

γ(x ◦ y) = α(x) · β(y) (6)

for some permutations α, β, γ of the set Q.
Since a = α(a1), b = β(b1), c = γ(c1), p = α(p1) for some a1, b1, c1, p1 ∈ Q,

we have γ(c1) = c = p · b = α(p1) · β(b1) = γ(p1 ◦ b1), which gives c1 = p1 ◦ b1.
So, p · b = c in Q(·) implies p1 ◦ b1 = c1 in Q(◦). Also, as it is not di�cult to see,
α−1(a, p)α = (a1, p1).

Moreover, according to [6], for all i ∈ Q we have

◦
ϕi= β−1ϕγ(i)α,

◦
Li= γ−1Lα(i)β,

◦
Ri= γ−1Rβ(i)α,

where
◦
ϕi,

◦
Li,

◦
Ri are de�ned on a quasigroup Q(◦). Thus

◦
ϕ
−1

c1
= α−1ϕ−1

c β,
◦
L
−1

a1
= β−1L−1

a γ,
◦
Rb1= γ−1Rbα.

Consequently,

◦
ϕ
−1

c1

◦
L
−1

a1

◦
Rb1= α−1(ϕ−1

c L−1
a Rb)α

(5)
= α−1(a, p)α = (a1, p1).
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This proves that an isotopy saves (5). Hence this identity is universal.

Moreover, for x ∈ Q − {a, p} it has the form ϕ−1
c L−1

a Rb(x) = x. Hence, any
quasigroup satisfying (5) also satis�es (3). Thus, a quasigroup satisfying (5) allows
a contraction.

Suppose that a quasigroup Q(·), Q = {1, 2, . . . , n}, satis�es (5). Let Q(◦) be
a quasigroup connected with Q(·) by (6), where γ = (c, n), α = (a, n), β = (b, n).

Then
◦
ϕ
−1

n

◦
L
−1

n

◦
Rn= (n, p1), where p1 ◦ n = n. In the case a · b = c we have

p1 ◦ n = n = γ(c) = γ(a · b) = α(a) · β(b) = n ◦ n, which implies p1 = n.

Consequently
◦
ϕ
−1

n

◦
L
−1

n

◦
Rn= ε, i.e.,

◦
Rn=

◦
Ln

◦
ϕn. So, in the multiplication table of

Q(◦) the element n has the same projection onto the last row and onto the last
column. If a · b 6= c, then n ◦ n 6= n, and consequently, p1 6= n. In this case in the
multiplication table of Q(◦) the element n has the same projection onto the last
column and the last row except when it is in the p or in the last row.

Hence from the multiplication table of Q(◦) the last row and the last column
can be deleted and all others elements n should be replaced by the corresponding
elements of the last column (or the last row).

Example 5.1. Consider the quasigroup Q(·) de�ned in Example 4.4. From this
quasigroup we can delete 3. Since a = b = c = 3, a · b = c and α = β = γ = (3, 6),
according to the above procedure, in the multiplication table of Q(·) we must
exchange the third row on the sixth, next we exchange the third column on the
sixth column. As a result we obtain the multiplication table of Q(◦). Now in this
table we replace all c = 3 by the elements of the new sixth column (located in the
same row) and delete the last row and the last column.

◦ 1 2 6 4 5 3

1 1 2 6 3 5 4
2 4 3 1 5 2 6
3 3 5 4 1 6 2
4 5 4 2 6 3 1
5 6 1 3 2 4 5
6 2 6 5 4 1 3

=⇒

∗ 1 2 6 4 5

1 1 2 6 4 5
2 4 6 1 5 2
4 2 5 4 1 6
5 5 4 2 6 1
6 6 1 5 2 4

∼

∗ 1 2 3 4 5

1 1 2 3 4 5
2 4 3 1 5 2
3 3 1 5 2 4
4 2 5 4 1 3
5 5 4 2 3 1

Obtained quasigroup Q′(∗) is isotopic to the quasigroup Q′(◦) constructed in
Example 4.4.

Example 5.2. The quasigroup Q(·) de�ned in Example 3.2 allows the contraction
for a = 5, b = 7, c = 3. For this quasigroup we have a · b 6= c and

ϕ−1
3 L−1

5 R7 = (1, 3)(1462735.)(1735264.) = (5, 7) = (a, p).

Hence this quasigroup satis�es (5). Putting α = (a, 7) = (5, 7), β = (b, 7) = (7, 7),
γ = (c, 7) = (3, 7) in (6) we construct the quasigroup Q(◦) with the multiplication
table
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◦ 1 2 3 4 5 6 7

1 1 2 7 4 5 6 3
2 2 7 1 3 4 5 6
3 7 4 2 6 3 1 5
4 4 5 6 7 2 3 1
5 3 1 4 5 6 2 7
6 6 3 5 2 1 7 4
7 5 6 3 1 7 4 2

Deleting the last row and the last column and replacing all elements 7 by their
projection on the last column, we obtain the table

∗ 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 6 1 3 4 5
3 5 4 2 6 3 1
4 4 5 6 1 2 3
5 3 1 4 5 6 2
6 6 3 5 2 1 4

∼

∗ 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 6 1 3 4 5
3 3 1 4 5 6 2
4 4 5 6 1 2 3
5 5 4 2 6 3 1
6 6 3 5 2 1 4

Such constructed quasigroup Q′(∗) is isotopic to the quasigroup Q′(◦) obtained
in Example 3.2.

Example 5.3. As was mentioned in Example 3.3 the quasigroup Q(·) de�ned in
Example 3.2 allows also three other contractions induced by:

(i) a = 3, b = 7, c = 7,
(ii) a = 6, b = 7, c = 2,

(iii) a = 1, b = 1, c = 3.
In the case (i) we have ϕ−1

7 L−1
3 R7 = (3, 1). So, in the above procedure we put

α = (3, 7), β = (7, 7), γ = (7, 7). Consequently,

◦ 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7
2 2 3 1 7 4 5 6
3 7 1 4 5 6 2 3
4 4 5 6 3 2 7 1
5 5 6 7 1 3 4 2
6 6 7 5 2 1 3 4
7 3 4 2 6 7 1 5

=⇒

∗ 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 3 1 6 4 5
3 3 1 4 5 6 2
4 4 5 6 3 2 1
5 5 6 2 1 3 4
6 6 4 5 2 1 3

Obtained quasigroup Q′(∗) is isotopic to the quasigroup Q′(◦) constructed in
Example 3.3 (i).

In the case (ii) we have ϕ−1
2 L−1

6 R7 = (6, 5), which leads to the quasigroup
isotopic to the quasigroup from the case (i). In the case (iii) we obtain the
quasigroup which is not isotopic to any of the previous.
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In any case we can reconstruct the initial quasigroup Q(·) from each of its
contractions. The method of reconstruction depends on the method of contraction.
This reconstruction is a prolongation of the obtained contraction. In our method
the map ϕc (calculated in the initial quasigroup) de�nes on the �nal quasigroup
the complete or quasicomplete map. Indeed, as it is not di�cult to see, if in the
initial quasigroup a · b 6= c but a · b = p · q, where p · b = a · q = c, then ϕc de�nes
on a contracted quasigroup the complete map. If a · b 6= p · q, then ϕc de�nes
the quasicomplete map. In the �rst case we can use the method of prolongation
proposed by Belyavskaya (see [4]); in the second � our method described in [7].
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