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On 2-absorbing semimodules

Manish Kant Dubey and Poonam Sarohe

Abstract. In this paper, we introduce the concept of 2-absorbing semimodules over a commu-
tative semiring with non-zero identity which is a generalization of prime semimodules and give
some characterizations related to the same. We also prove the 2-absorbing avoidance theorem
for semimodules and give an application of them.

1. Introduction

Badawi [2], has introduced the concept of 2-absorbing ideals in a commutative
ring with a non-zero identity element, which is a generalization of prime ideals and
investigated some properties. Darani and Soheilnia [3], Payrovi and Babaei [6] have
studied the notion of 2-absorbing submodules and gave some characterizations. In
[1], R. Ameri have studied the concept of prime submodules of multiplication
modules over rings.

By a semiring we mean a semigroup (S, ·) and a commutative monoid (S, +, 0S)
in which 0S is the additive identity and 0S ·x = x · 0S = 0S for all x ∈ S, both are
connected by the ring like distributivity. A subset I of a semiring S is called an
ideal of S if a, b ∈ I and r ∈ S, a + b ∈ I and ra, ar ∈ I. An ideal I of a semiring
S is called subtractive if a, a + b ∈ I, b ∈ S implies b ∈ I. Let S be a semiring. A
left S-semimodule M is a commutative monoid (M,+) which has a zero element
0M , together with an operation S × M → M , denoted by (a, x) → ax such that
for all a, b ∈ S and x, y ∈ M ,

(i) a(x + y) = ax + ay,

(ii) (a + b)x = ax + bx,

(iii) (ab)x = a(bx),

(iv) 0S · x = 0M = a · 0M .

A non-empty subset N of an S-semimodule M is a subsemimodule of M if
N is closed under addition and scalar multiplication. A proper subsemimodule
N of an S-semimodule M is called subtractive if a, a + b ∈ N , b ∈ M implies
b ∈ N . A left S-semimodule M is called cyclic if M can be generated by a single
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element, that is, M = (m) = Sm = {sm | s ∈ S} for some m ∈ M. Let M be
an S-semimodule. Then M is said to be a multiplication semimodule if for all
subsemimodules N of M there exists an ideal I of S such that N = IM . For
example, every cyclic semimodule M is a multiplication semimodule. From this
de�nition, it is clear that I ⊆ (N : M) and also N = IM ⊆ (N : M)M ⊆ N and
therefore N = (N : M)M . Let M be a multiplication S-semimodule and N,K are
subsemimodules of M . Then there exist ideals I, J of S such that N = IM and
K = JM . De�ne the multiplication of two subsemimodules N and K, denoted by
NK, as NK = (IM)(JM) = (IJ)M .

A non-zero proper ideal I of S is called a 2-absorbing ideal if whenever a, b, c ∈ S
and abc ∈ I then ab ∈ I or ac ∈ I or bc ∈ I. It is proved that a non-zero proper
ideal I of S is a 2-absorbing ideal if and only if whenever I1I2I3 ⊆ I for some
ideals I1, I2, I3 of S then I1I2 ⊆ I or I2I3 ⊆ I or I1I3 ⊆ I. It is easy to proved that
every prime ideal of a semiring S is a 2-absorbing ideal of S but converse need
not be true. For example it is easy to see that every ideal generated by 〈4〉 of a
semiring E of even integers is 2-absorbing but not a prime ideal of E.

Throughout this paper, S will always denote a commutative semiring with
identity 1 6= 0 and left S-semimodules means semimodules.

2. 2-absorbing subsemimodules

De�nition 2.1. Let M be an S-semimodule and N be a proper subsemimodule
of M . An associated ideal of N is de�ned as

(N : M) = {a ∈ S : aM ⊆ N}.

Result 2.2. Let M be an S-semimodule and N be a proper subsemimodule of M .
If N is a subtractive subsemimodule of M , and let m ∈ M . Then the following
hold:

(i) (N : M) is a subtractive ideal of S.

(ii) (0 : M) and (N : m) are subtractive ideals of S.

Proof. Proof is straightforward.

De�nition 2.3. A proper subsemimodule N of M is called prime if ax ∈ N ,
a ∈ S, x ∈ M then either x ∈ N or a ∈ (N : M).

De�nition 2.4. Let S be a semiring. Let M be an S-semimodule and N be a
proper subsemimodule of M . Then N is called a 2-absorbing subsemimodule of
M , if for a, b ∈ S and x ∈ M , abx ∈ N implies that ab ∈ (N : M) or ax ∈ N or
bx ∈ N .
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It is easy to verify that every prime subsemimodule of M is a 2-absorbing
subsemimodule of M but converse need not be true. This can be illustrated as
follows

Example 2.5. Let S be Z∗ = Z+∪{0}. Then M = Z∗×Z∗ is an S-semimodule.
If we take the subsemimodule N = {0} × 4Z∗ of M then the associated ideal
of N is {0}. Here, N is a 2-absorbing subsemimodule of M but N is not prime
subsemimodule of M because 2 · (0, 2) ∈ N but 2 6∈ (N : M) and (0, 2) 6∈ N .

De�nition 2.6. If I is an ideal of S, then a radical of I is de�ned as

Rad(I) =
√

I = {a ∈ S : a2 ∈ I}.

It is easy to prove that if I is a 2-absorbing ideal of S, then J =
√

I is a 2-absorbing
ideal of S with J2 ⊆ I ⊆ J .

Proposition 2.7. Let M be an S-semimodule and let N be a 2-absorbing subtrac-
tive subsemimodule of M with

√
N : M = J . Then (N : M) and J are 2-absorbing

ideals of S with J2 ⊆ (N : M) ⊆ J , where

J =
√

N : M = {r ∈ S : r2 ∈ (N : M)}.

Proof. Clearly, (N : M) is a subtractive ideal of S. Now, we show that (N : M)
is a 2-absorbing ideal of S. Let u, v, w ∈ S be such that uvw ∈ (N : M). Suppose
uw, vw 6∈ (N : M). Then there exist x, y ∈ M \N such that uwx, vwy 6∈ N . Also,
uv(w(x + y)) ∈ N gives uw(x + y) ∈ N or vw(x + y) ∈ N or uv ∈ (N : M). If
uw(x + y) ∈ N and since uwx 6∈ N then we have uwy 6∈ N(as N is a subtractive
subsemimodule of M). Since uv(wy) ∈ N and N is a 2-absorbing subsemimodule
of M , therefore, either uv ∈ (N : M) or vwy ∈ N or uwy ∈ N . Thus uv ∈ (N : M).
Similarly, if vw(x + y) ∈ N , then we have uv ∈ (N : M). Hence (N : M) is a
2-absorbing ideal of S. Next, since (N : M) is a 2-absorbing ideal of S, therefore,
we have J =

√
N : M is also a 2-absorbing ideal with J2 ⊆ (N : M) ⊆ J .

Remark 2.8. In general, suppose M be an S-semimodule and let N be a sub-
tractive subsemimodule of M . If (N : M) is a 2-absorbing ideal of S, then N need
not be a 2-absorbing subsemimodule of M .

Example 2.9. Let S be Z∗ = Z+ ∪ {0} then M = Z∗ × Z∗ is an S-semimodule.
Consider the subsemimodule N = {0}×8Z∗ of M. Then the associated ideal of N
is {0}, which is a 2-absorbing ideal of S but N is not 2-absorbing subsemimodule
of M because 2 · 2 · (0, 2) ∈ N but 2 · 2 6∈ (N : M) and 2 · (0, 2) 6∈ N .

Note: The converse of the above remark is true in the case of cyclic semimodules.

Proposition 2.10. Let M be a cyclic S-semimodule and let N be a 2-absorbing
subsemimodule of M . Then N is 2-absorbing subsemimodule of M if and only if
(N : M) is a 2-absorbing ideal of S.



178 M. K. Dubey and P. Sarohe

Proof. The proof is similar to the proof of Proposition 2.9 in [3].

Proposition 2.11. Let N be a 2-absorbing subtractive subsemimodule of M with√
(N : M) = J . If (N : M) 6= J , for every r ∈ J \ (N : M), then

Nr = {x ∈ M : rx ∈ N}

is a prime subsemimodule of M containing N with J ⊆ (Nr : M).

Proof. Let ux ∈ Nr, where u ∈ S \ (Nr : M) and x ∈ M . Then rux ∈ N and
N is a 2-absorbing subsemimodule of M . Therefore, ru ∈ (N : M) or rx ∈ N
or ux ∈ N . If ru ∈ (N : M), then u ∈ (Nr : M), which is a contradiction. If
rx ∈ N , by the de�nition of Nr, x ∈ Nr, then nothing to prove. If ux ∈ N and
also, r2 ∈ J2 ⊆ (N : M). This gives rx ∈ Nr for particular x ∈ M . Now, we have
(r +u)x ∈ Nr, that is, r(r +u)x ∈ N and since N is a 2-absorbing subsemimodule
of M , therefore rx ∈ N or (r + u)x ∈ N or r(r + u) ∈ (N : M).

Again, if rx ∈ N , then x ∈ Nr, which is required. If (r + u)x ∈ N and ux ∈ N
and as N is a subtractive, therefore, rx ∈ N . This gives x ∈ Nr, which is required.

If r(r + u) ∈ (N : M) and since r2 ∈ J2 ⊆ (N : M), this gives ru ∈ (N : M)
that is, u ∈ (Nr : M), a contradiction. Hence, Nr is a prime subsemimodule of
M .

Corollary 2.12. Let N be a 2-absorbing subtractive subsemimodule of M with√
N : M = J . If (N : M) 6= J , for every r ∈ J \ (N : M), then Nr is a 2-absorbing

subsemimodule of M containing N with J ⊆ (Nr : M).

Proposition 2.13. If N is a subtractive subsemimodule of M , then Nr is a sub-
tractive subsemimodule of M and hence (Nr : M) is a subtractive ideal of S.

Proof. Let a, (a + b) ∈ Nr and b ∈ M . Then we have ra, (ra + rb) ∈ N and
N is a subtractive subsemimodule of M . Therefore, we have rb ∈ N , this gives
b ∈ Nr. Hence, Nr is a subtractive subsemimodule of M . It can easily be prove
that (Nr : M) is a subtractive ideal of S.

Proposition 2.14. If N is a 2-absorbing subsemimodule of M and K is any
subsemimodule of M , then K ∩N is a 2-absorbing subsemimodule of K.

Proof. Proof is straightforward.

Theorem 2.15. If N is an intersection of two prime subsemimodules of M, then
N is 2-absorbing.

Proof. Let N1 and N2 be two prime subsemimodules of M . Then to show that
N1 ∩ N2 is a 2-absorbing subsemimodule of M. Let abm ∈ N1 ∩ N2 for a, b ∈ S,
m ∈ M . Then abm ∈ N1 and abm ∈ N2. Now abm ∈ N1 implies a ∈ (N1 : M) or
b ∈ (N1 : M) or m ∈ N1. Similarly, abm ∈ N2 gives a ∈ (N2 : M) or b ∈ (N2 : M)
or m ∈ N2. If a ∈ (N1 : M) and a ∈ (N2 : M), then a ∈ (N1 ∩ N2 : M) and so
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ab ∈ (N1 ∩ N2 : M). Again, if a ∈ (N1 : M) and m ∈ N2, then am ∈ N1 ∩ N2.
Similarly, we can prove the other cases.

It is easy to see that the intersection of two distinct nonzero 2-absorbing
subsemimodules need not be a 2-absorbing subsemimodule of M . For example
{0} × 4Z and {0} × 3Z are 2-absorbing subsemimodules of Z ×Z but their inter-
section ({0}×4Z)∩ ({0}×3Z) = ({0}×12Z) is not a 2-absorbing subsemimodule
of Z × Z. Similarly, we can �nd that an intersection of a prime semimodule and
a 2-absorbing semimodule need not be a 2-absorbing semimodule of Z ×Z, where
Z is the set of positive integers with zero.

Theorem 2.16. Let M be a cyclic S-semimodule and N be a subsemimodule of M .
Then N is a 2-absorbing subsemimodule of M if and only if for any subsemimodules
U , V and W of M , UV W ⊆ N implies UV ⊆ N or V W ⊆ N or UW ⊆ N .

Proof. Suppose N is a 2-absorbing subsemimodule of M . Let UV W ⊆ N for
some subsemimodules U, V,W of M . Since M is cyclic therefore the multiplication
semimodule over S, therefore, there exist ideals I, J and K of S such that U = IM ,
V = JM and W = KM . Then, we have UV W = (IJK)M ⊆ N . This implies
IJK ⊆ (N : M). Since N is a 2-absorbing subsemimodule of M therefore (N : M)
is a 2-absorbing ideal of S, by Proposition 2.10. Therefore, either IJ ⊆ (N : M)
or JK ⊆ (N : M) or IK ⊆ (N : M). This gives IJM ⊆ N or JKM ⊆ N or
IKM ⊆ N . That is, (IM)(JM) ⊆ N or (JM)(KM) ⊆ N or (IM)(KM) ⊆ N ,
Hence, we have either UV ⊆ N or V W ⊆ N or UW ⊆ N .

Conversely, suppose that IJK ⊆ (N : M), where I, J,K are ideals of S. Then
IJKM ⊆ N. Since M is a cyclic therefore it is a multiplication semimodule.
Therefore (IJK)M ⊆ N implies (IM)(JM)(KM) ⊆ N . Therefore (IM)(JM) ⊆
N or (JM)(KM) ⊆ N or (IM)(KM) ⊆ N , that is, IJ ⊆ (N : M) or JK ⊆ (N :
M) or IK ⊆ (N : M). Therefore (N : M) is a 2-absorbing ideal of S. Hence, by
Proposition 2.10, N is a 2-absorbing subsemimodule of M .

Proposition 2.17. Let M be a cyclic S-semimodule. Then the following state-
ments are equivalent:

(i) N is a 2-absorbing subsemimodule;

(ii) (N : M) is a 2-absorbing ideal of S;

(iii) N = PM, where P is a 2-absorbing ideal of S which is maximal with respect
to the property, that is, IM ⊆ N implies that I ⊆ P.

Proof. (i) and (ii) are equivalent by Proposition 2.10.
(ii) ⇒ (iii). Since M is a cyclic therefore M is a multiplicative semimodule.

Now since N is a subsemimodule of a multiplicative semimodule M , then there
exists an ideal P of S such that N = PM . This implies P = (N : M) which is a
2-absorbing by (ii). Suppose there exists an ideal I of S such that IM ⊆ N. This
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implies I ⊆ (N : M) = P. So P is maximal with respect to the property, that is,
if IM ⊆ N , then I ⊆ P.

(iii) ⇒ (i). To show that N is a 2-absorbing subsemimodule we show that
(N : M) is a 2-absorbing ideal in S. Suppose that IJK ⊆ (N : M), where ideals
I, J,K ⊆ S. Then IJKM ⊆ N. Since M is a cyclic therefore M is a multiplicative
semimodule. Therefore (IJK)M ⊆ N = PM , where P is a 2-absorbing ideal of
S. This implies IJK ⊆ P (by maximality of ideal P with respect to the property
IM ⊆ N . Hence, I ⊆ P . Since P is a 2-absorbing ideal of S, therefore, IJ ⊆ P
or JK ⊆ P or IK ⊆ P . This gives IJM ⊆ PM = N or JKM ⊆ PM = N
or IKM ⊆ PM = N . Consequently, IJ ⊆ (N : M) or JK ⊆ (N : M) or
IK ⊆ (N : M). Thus (N : M) is a 2-absorbing ideal of S. Therefore N is a
2-absorbing semimodule of M .

De�nition 2.18. Let M be an S-semimodule and N be a subsemimodule of M .
Then N is called pure if aN = N ∩ aM for every a ∈ S.

De�nition 2.19. Let M be an S-semimodule. Then a semimodule M is M -
cancellative semimodule if whenever rm = rn for elements m,n ∈ M and r ∈ S
then m = n.

Theorem 2.20. Let M be an M -cancellative S-semimodule and N be a proper
subsemimodule of M . Then N is a pure subsemimodule of M if and only if N is
a 2-absorbing subsemimodule of M with (N : M) = {0}.

Proof. Suppose that N is a pure subsemimodule of M and abm ∈ N such that
ab 6∈ (N : M), where a, b ∈ S and m ∈ M . Then abm ∈ abM ∩ N = abN , so
abm = abn for some n ∈ N . This implies bm = bn ∈ N (as M is a M -cancellative
semimodule). Thus N is a 2-absorbing subsemimodule of M . Next, suppose that
a ∈ (N : M) with a 6= 0. Since N 6= M there exists x ∈ M \ N such that
ax ∈ aM ∩N = aN , so there exists y ∈ N such that ax = ay. Therefore x = y, a
contradiction. Thus (N : M) = {0}.

Conversely, assume that N is a 2-absorbing subsemimodule of M . Let abz ∈
abM ∩N , where z ∈ M and a, b ∈ S. We may assume that ab 6= 0. Since N is a
2-absorbing subsemimodule of M we have either az ∈ N or bz ∈ N . If bz ∈ N , for
a ∈ S we have abz ∈ abN . Therefore abM ∩N ⊆ abN. Similarly, we can prove the
case for az ∈ N . Converse is obvious. Hence abM ∩N = abN and therefore N is
a pure subsemimodule of M .

3. The 2-absorbing avoidance theorem

In this section, we prove the 2-absorbing avoidance theorem for semimodules.
Before proving this theorem, we �rst de�ne an e�cient covering of subsemimodules.

Let N1, N2, . . . , Nn be subsemimodules of M . De�ne a covering N ⊆ N1 ∪
N2 ∪ . . . ∪ Nn is e�cient if no Ni is super�uous. In other words, we say that
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N = N1 ∪ N2 ∪ . . . ∪ Nn is an e�cient union if none of the Ni may be excluded.
Any cover or union consisting of subsemimodules of M be reduced to an e�cient
one, called an e�cient reduction, by deleting any unnecessary terms.

Theorem 3.1. Let N be a subsemimodule of an S-semimodule M such that N ⊆
N1 ∪N2 for some subtractive subsemimodules N1, N2 of M . Then either N ⊆ N1

or N ⊆ N2.

Proof. Let N ⊆ N1 ∪N2 but N * N1 and N * N2. Then there exist x ∈ N \N1

and y ∈ N \ N2 such that x ∈ N2 and y ∈ N1. Also x + y ∈ N gives either
x + y ∈ N1 or x + y ∈ N2. If x + y ∈ N1 and y ∈ N1 then x ∈ N1 as N1 is a
subtractive subsemimodule of M , a contradiction. Similarly, if x + y ∈ N2 and
x ∈ N2 we get y ∈ N2, a contradiction. Hence, N ⊆ N1 or N ⊆ N2.

Theorem 3.2. Let N ⊆ N1 ∪ N2 ∪ . . . ∪ Nn be an e�cient union of subtractive
subsemimodules of an S-semimodule M . Then for any j ∈ {1, 2, . . . , n} we have

n⋂
i=1

Ni =
n⋂

i=1
i6=j

Ni.

Proof. Clearly, for j = 1 we have N1∩N2∩. . .∩Nn ⊆ N2∩N3∩. . .∩Nn. Therefore
n⋂

i=1

Ni ⊆
n⋂

i=2

Ni. Now, let `1 ∈
n⋂

i=2

Ni and `2 ∈ N \
n⋃

i=2

Ni. Therefore, `1 ∈ N and

`2 ∈ N1. Then `1 + `2 ∈ N , which gives `1 + `2 ∈ Nj for some j ∈ {1, 2, . . . , n}. If
j ∈ {2, . . . , n} and since Nj is a subtractive subsemimodule of M , we have `2 ∈ Nj ,

a contradiction. If j = 1, then `1 + `2 ∈ N1 gives `1 ∈ N1. Hence `1 ∈
n⋂

i=1

Ni.

Lemma 3.3. Let N ⊆ N1 ∪ N2 ∪ . . . ∪ Nn be an e�cient union of subtractive
subsemimodules of an S-semimodule M , where n > 1. If (Nk : m) = (Nk : M) for
all m ∈ M\Nk,

√
(Nk : M) 6= (Nk : M) and there exists r ∈

√
(Nk : M)\(Nk : M)

such that ((Nj)r : M) * ((Nk)r : M) for every j 6= k, then for k ∈ {1, 2, . . . , n}
no Nk is a 2-absorbing subsemimodule of M .

Proof. Suppose that Nk is a 2-absorbing subsemimodule of M for some 1 6 k 6 n.
Since N ⊆ N1 ∪N2 ∪ . . . ∪Nn is an e�cient covering,

N = (N ∩N1) ∪ (N ∩N2) ∪ . . . ∪ (N ∩Nn)

is an e�cient union, otherwise for some i 6= j, N ∩ Ni ⊆ N ∩ Nj and this would
imply

N = (N ∩N1) ∪ . . . ∪ (N ∩Ni−1) ∪ (N ∩Ni+1) ∪ . . . (N ∩Nn)

and thus we would get N ⊆ N1∪. . .∪Ni−1∪Ni+1∪. . .∪Nn, a contradiction. Hence
for every k 6 n there exists an element `k ∈ N \ Nk. Moreover,

⋂
j 6=k

(N ∩ Nj) ⊆

N ∩ Nk by Theorem 3.2. If j 6= k, then ((Nj)r : M) * ((Nk)r : M) so there
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exists an sj ∈ ((Nj)r : M) \ ((Nk)r : M). Now, s =
∏

j 6=k

sj ∈ ((Nj)r : M) but

s =
∏

j 6=k

sj 6∈ ((Nk)r : M) (as ((Nk)r : M) is a prime ideal by Proposition 2.11).

Consequently, rs`k ∈ N ∩Nj for every j 6= k but rs`k 6∈ N ∩Nk, which contradicts
to

⋂
j 6=k

(N ∩ Nj) ⊆ N ∩ Nk. Therefore no Nk is a 2-absorbing subsemimodule of

M .

Theorem 3.4 (The 2-absorbing avoidance theorem). Let N1, N2, . . . , Nn be
�nite number of subtractive subsemimodules of M such that at most two of Ni's
are not 2-absorbing subsemimodule of M and let N be a subsemimodule of M such
that N ⊆ N1 ∪ N2 ∪ . . . ∪ Nn. If (Nk : m) = (Nk : M) for all m ∈ M \ Nk,√

(Nk : M) 6= (Nk : M) and there exists r ∈
√

(Nk : M) \ (Nk : M) such that
((Nj)r : M) * ((Nk)r : M) for every j 6= k. Then N ⊆ Nk for some k.

Proof. Suppose that for given N ⊆ N1 ∪N2 ∪ . . .∪Nn, N ⊆ Ni1 ∪Ni2 ∪ . . .∪Nim

is its e�cient reduction. Then 1 6 m 6 n and m 6= 2. If m > 2, then there exists
at least one Nij to be a 2-absorbing subsemimodule of M . Thus, by Lemma 3.3,
no Nk is a 2-absorbing as ((Nj)r : M) * ((Nk)r : M) for j 6= k. Hence m = 1,
namely N ⊆ Nk for some k.

Now we prove the following result [7, Theorem 3.64] to the semimodule case
by consequence of the 2-absorbing avoidance theorem of semimodules.

Theorem 3.5. Let N1, N2, . . . , N` be �nite number of 2-absorbing subtractive sub-
semimodules of an S-semimodule M . If (Nk : m) = (Nk : M) for all m ∈ M \Nk,√

(Nk : M) 6= (Nk : M) and there exists r ∈
√

(Nk : M) \ (Nk : M) such that
((Nj)r : M) * ((Nk)r : M) for every j 6= k and k = 1, 2, . . . , l. If N is a subsemi-

module of M and m ∈ M be such that mS + N *
⋃̀
i=1

Ni, then m + n /∈
⋃̀
i=1

Ni for

some n ∈ N .

Proof. Assume that m lies in each of N1, . . . , Nk but in none of Nk+1, Nk+2, . . . , N`.

If k = 0 then m = m + 0 /∈
⋃̀
i=1

Ni, and so nothing to prove. Suppose our claim is

true for k > 1.

Now N *
k⋃

i=1

Ni, for otherwise, by the 2-absorbing avoidance theorem of semi-

modules we would get a contradiction. Therefore, there exists d ∈ N \
k⋃

i=1

Ni. Hence

we have Nk+1∩ . . .∩N` * N1∪ . . .∪Nk. Otherwise, by the 2-absorbing avoidance
theorem we get a contradiction. Therefore, there exists

s ∈ (Nk+1 : M) ∩ . . . ∩ (N` : M) \ (N1 : M) ∪ . . . ∪ (Nk : M).
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Hence, we have for r ∈ S,

s ∈ ((Nk+1)r : M) ∩ . . . ∩ ((N`)r : M) \ ((N1)r : M) ∪ . . . ∪ ((Nk)r : M).

Let n = (rs)d ∈ N . Also, n ∈
⋂̀

j=k+1

Nj . Then n = (rs)d /∈ N1 ∪ . . . ∪ Nk.

Otherwise, n = rsd ∈ Ni for 1 6 i 6 k. This implies that either rs ∈ (Ni : M) or
rd ∈ Ni or sd ∈ Ni since Ni is 2-absorbing. Then

n ∈ (Nk+1 ∩ . . . ∩N`) \ (N1 ∪ . . . ∪Nk).

Therefore, since m ∈ (N1 ∪ . . . ∪Nk), it follows that m + n /∈
⋃̀
i=1

Ni.

Proposition 3.6. Let N be a 2-absorbing subsemimodule of M and N1, N2, . . . , Nk

are subtractive subsemimodules of the multiplication semimodule M over the semir-

ing S. Then
k⋂

i=1

Ni ⊆ N if and only if Nj ⊆ N for some 1 6 j 6 k.

Proof. Let Nj ⊆ N for some 1 6 j 6 k. Then
k⋂

i=1

Ni ⊆ Nj ⊆ N. Conversely, let

k⋂
i=1

Ni ⊆ N . Then (
k⋂

i=1

Ni : M) ⊆ (N : M). Since N is a 2-absorbing subsemi-

module of M . Therefore, (N : M) is a 2-absorbing ideal of semiring S. Also,

(
k⋂

i=1

Ni : M) =
k⋂

i=1

(Ni : M). Therefore, we have (Nj : M) ⊆ (N : M). This gives

Nj ⊆ N .
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