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Strong forms of orthogonality

for sets of frequency hypercubes

John T. Ethier and Gary L. Mullen

Abstract. For frequency hypercubes of dimension d > 2, we discuss several generalizations of
the usual notion of pairwise orthogonality. We provide some constructions for complete sets of
orthogonal frequency hypercubes.

1. Strong orthogonality for frequency hypercubes

In this paper we will examine strong forms of orthogonality for frequency hyper-
cubes. The standard de�nition requires that each ordered pair occurs the same
number of times in the superimposition of two hypercubes, but this de�nition says
nothing about the location of the occurrences of these pairs. In [2], the authors
examine several di�erent forms of orthogonality which keep track of the positions
of ordered pairs for orthogonal hypercubes. In this paper, we extend many of the
ideas found in [2] to frequency hypercubes. In [6], the author de�nes a notion
of orthogonality, called equiorthogonality, which requires corresponding subarrays
be either orthogonal or isomorphic. We will modify this concept and de�ne more
precisely which subarrays must be orthogonal and which can be isomorphic.

2. De�nitions

A frequency square F (n;λ1, . . . , λm) of order n is an n × n array consisting of m
distinct symbols with the property that for each i = 1, . . . ,m, the symbol i occurs
exactly λi times in each row and in each column. Clearly n = λ1 + · · ·+λm and an
F (n; 1, . . . , 1) frequency square is a latin square. In particular, we are interested
in the case where λ1 = · · · = λm and we write F (n;λ) where λ = n/m.

Frequency squares can also be generalized to dimensions other than d = 2.
A frequency hypercube of dimension d > 2 and order n, F (d)(n;λ1, · · · , λm) is
an n × · · · × n (repeated d times) array consisting of m distinct symbols with
the property that for each i = 1, . . . ,m, the symbol i occurs exactly λi times
in each 1-subarray. Again, we will focus our attention on only the cases where
λ1 = · · · = λm = λ and denote such hypercubes as F (d)(n;λ).
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Two frequency hypercubes F
(1)
1 (n;n/m) and F

(1)
2 (n;n/m) are isomorphic if

each can be obtained by relabeling the m symbols of the other. Note that iso-
morphism does not allow for the relabeling of coordinates or rearrangement of the
subarrays.

We are now ready to introduce Morgan's de�nition of equiorthogonality for

frequency hypercubes [6]. We say that two frequency hypercubes F
(1)
1 (n;n/m)

and F
(1)
2 (n;n/m) are equiorthogonal, denoted F

(1)
1 (n;n/m) ⊥e F

(1)
2 (n;n/m), if

upon superimposition of the hypercubes, each ordered pair of symbols appears

exactly n/m2 times. Two frequency hypercubes F
(d)
1 (n;n/m) and F

(d)
2 (n;n/m)

with d > 2 are said to be equiorthogonal if:

(a) upon superimposition of the hypercubes, each ordered pair of symbols ap-

pears exactly nd/m2 times;

(b) corresponding t-subarrays for all 1 6 t < d are isomorphic or equiorthogo-

nal; and

(c) if one pair of corresponding t-subarrays is isomorphic (resp. equiorthogo-

nal), then all pairs of corresponding t-subarrays parallel to that pair are

isomorphic (resp. equiorthogonal).

We will now modify the de�nition of equiorthogonality to de�ne orthogonality
of strength s or s-strong orthogonality, denoted by ⊥s. Two frequency hypercubes

F
(1)
1 (n;n/m) and F

(1)
2 (n;n/m) are orthogonal of strength 1 if upon superimposi-

tion of the hypercubes, each ordered pair of symbols appears exactly n/m2 times.

Hypercubes F
(d)
1 (n;n/m) and F

(d)
2 (n;n/m) are said to be orthogonal of strength

s, where 1 6 s 6 d, if

(1) upon superimposition of any corresponding s-subarrays of the hypercubes

each ordered pair appears exactly ns/m2 times;

(2) corresponding t-subarrays for all 1 6 t < d are isomorphic or orthogonal of

strength t;

(3) if one pair of corresponding t-subarrays is isomorphic (resp. strongly or-

thogonal), then all pairs of corresponding t-subarrays parallel to that pair

are isomorphic (resp. strongly orthogonal).

Remark 2.1. Theorem 3.3 will show that condition (2) need only be satis�ed for
all t-subarrays with 1 6 t < s.

Remark 2.2. In the latin case, that is when n = m, orthogonality of strength 1
is not possible.

We say that a set of frequency hypercubes is mutually equiorthogonal if any
pair of hypercubes from the set is equiorthogonal. Similarly, a set of frequency
hypercubes is mutually s-strong orthogonal if any pair of hypercubes from the set
is s-strong orthogonal.
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F1 =


0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

 , F2 =


0 0 1 1
1 1 0 0
1 1 0 0
0 0 1 1

 , F3 =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 (1)

Figure1: Frequency squares illustrating orthogonality of strengths 1 and 2

In Figure 1 we see that F1, F2 and F3 are mutually equiorthogonal. Also, F1 and F2

are orthogonal of strength 2, but are not orthogonal of strength 1, since corresponding
rows are not orthogonal. However F3 is orthogonal of strength 1 with both F1 and F2.

We will make use of the following result, found in [6], for subarrays of hypercubes in
the subsequent sections.

Lemma 2.3. Let 1 6 t 6 d − 2. Suppose S1 and S2 are two parallel t-subarrays of

F (d)(n; n/m). Then there exist d− t− 1, t-subarrays S3, . . . , Sd−t+1 such that:

(1) Si is parallel to S1 and S2 for all i, 3 6 i 6 d− t + 1, and

(2) S1 and S3 lie in a common (t + 1)-subarray, S3 and S4 lie in a common

(t + 1)-subarray, . . ., Sd−t+1 and S2 lie in a common (t + 1)-subarray.

3. Connections between strong orthogonality

and equiorthogonality

In this section we will provide some basic results for strong orthogonality as well as provide
a link between strong orthogonality and Morgan's de�nition of equiorthogonality.

Lemma 3.1. If F
(d)
1 (n; λ) and F

(d)
2 (n; λ) are orthogonal of strength j, then they are also

orthogonal of strength k for all j < k 6 d.

Proof. Let F
(d)
1 (n; λ) and F

(d)
2 (n; λ) be orthogonal of strength j. Let j < k 6 d. We

need only verify that condition (1) for orthogonality of strength k is satis�ed. Notice
that any corresponding k-subarrays are made up of nk−j corresponding j-subarrays each
of which has each ordered pair nj/m2 times. Thus each ordered pair appears exactly
nj/m2 · nk−j or nk/m2 times in each corresponding k-subarray and hence condition (1)
is satis�ed.

Remark 3.2. As shown in Figure 1, the converse to Lemma 3.1 is not true. The squares
F1 and F2 are orthogonal of strength 2, but are not orthogonal of strength 1.

Theorem 3.3. If F
(d)
1 (n; λ) and F

(d)
2 (n; λ) satisfy condition (1) for orthogonality of

strength j, and conditions (2) and (3) are satis�ed for all corresponding t-subarrays with

t < j then F
(d)
1 (n; λ) and F

(d)
2 (n; λ) are orthogonal of strength j.

Proof. If j = d then the result is trivial. Suppose j < d and F
(d)
1 (n; λ) and F

(d)
2 (n; λ)

satisfy condition (1) for orthogonality of strength j, and conditions (2) and (3) are sat-
is�ed for all t-subarrays with t < j. We will show by induction that all k-subarrays with
j 6 k < d are orthogonal of strength j, and hence orthogonal of strength k by Lemma 3.1.
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First let k = j. Consider any corresponding k-subarray S(k)(F
(d)

1/2(n; λ)) and notice that
condition (1) for orthogonality of strength j is satis�ed since F

(d)
1 (n; λ) and F

(d)
2 (n; λ)

satisfy condition (1). Also, conditions (2) and (3) are satis�ed by our hypothesis. Hence
all corresponding j-subarrays are orthogonal of strength j. Now consider k = j + 1.
Once again condition (1) is easily satis�ed. Since we have shown that all corresponding
j-subarrays are orthogonal of strength j then by our hypothesis conditions (2) and (3)
are satis�ed for all t-subarrays with t < j + 1. Hence all corresponding (j + 1)-subarrays
are orthogonal of strength j. We proceed inductively to complete the proof.

Remark 3.4. The preceding proof not only tells us that conditions (2) and (3) of s-
strong orthogonality need only be veri�ed for t-subarrays with t < s, but also that for
all s 6 t 6 d any corresponding t-subarrays will be s-strong orthogonal.

Corollary 3.5. Condition (1) is necessary and su�cient for orthogonality of strength 1.

Corollary 3.6. In the latin case, that is when n = m, condition (1) is necessary and

su�cient for orthogonality of strength 2.

Proof. Follows by Corollary 3.5 and Remark 2.2.

By the previous corollary, we see that for latin squares the de�nition of orthogonality
of strength 2 is equivalent to the standard de�nition of orthogonality.

The following theorem and proof follows from a similar result in [6].

Theorem 3.7. If F
(d)
1 (n; 1) and F

(d)
2 (n; 1) satisfy the �rst two conditions for orthogo-

nality of strength s with 2 6 s 6 d, then they satisfy the third.

Proof. Fix s with 2 6 s 6 d, and suppose the �rst two conditions are satis�ed. Dis-
tinguish an arbitrary (d − 1)-subarray S(d−1)(F

(d)

1/2(n; 1)). By condition (2), this pair of
subarrays is isomorphic or orthogonal of strength d− 1. Suppose the pair is isomorphic.
Then only n distinct ordered pairs are in S(d−1)(F

(d)

1/2(n; 1)) and each one appears nd−2

times. But any ordered pair occurs nd−2 times in all of F
(d)

1/2(n; 1)) so any ordered pair
in S(d−1)(F

(d)

1/2(n; 1)) cannot occur elsewhere. Since strongly orthogonal subarrays would
have occurrences of every ordered pair we conclude by (2) that all (d − 1)-subarrays
parallel to S(d−1)(F

(d)

1/2(n; 1)) are isomorphic.
Now suppose S(d−1)(F

(d)

1/2(n; 1)) consists of a pair of (d − 1)-strong orthogonal sub-
arrays, then each ordered pair occurs n(d−3) times in S(d−1)(F

(d)

1/2(n; 1)). If some pair of
(d − 1)-subarrays parallel to S(d−1)(F

(d)

1/2(n; 1)) were isomorphic then the ordered pairs
in this new subarray would occur nd−2 more times. However, each ordered pair can only
occur a total of nd−2 times in all of F

(d)

1/2(n; 1)); hence all of the parallel subarrays must
be (d− 1)-strong orthogonal.

Next we will verify condition (3) for (d−2)-subarrays. Distinguish an arbitrary (d−2)-
subarray S

(d−2)
1 (F

(d)

1/2(n; 1)). Let S
(d−2)
2 (F

(d)

1/2(n; 1)) be a pair of corresponding (d − 2)

subarrays parallel to S
(d−2)
1 (F

(d)

1/2(n; 1)). If S
(d−2)
1 (F

(d)

1/2(n; 1)) and S
(d−2)
2 (F

(d)

1/2(n; 1)) lie in
a common (d−1)-subarray, then the corresponding (d−1)-subarrays are either isomorphic
or orthogonal of strength d−1. If the (d−1)-subarrays are isomorphic then it is not hard
to see that S

(d−2)
1 (F

(d)
1 (n; 1)) and S

(d−2)
1 (F

(d)
2 (n; 1)) are isomorphic as well. If on the
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other hand, the corresponding (d−1)-subarrays are orthogonal of strength d−1 then we
can use a counting argument similar to that given above to show that S

(d−2)
2 (F

(d)
1 (n; 1))

and S
(d−2)
2 (F

(d)
2 (n; 1)) are orthogonal as well.

If S
(d−2)
1 (F

(d)

1/2(n; 1)) and S
(d−2)
2 (F

(d)

1/2(n; 1)) do not lie in a common (d− 1)-subarray,
then by Lemma 2.3 we can �nd S

(d−2)
3 (F

(d)

1/2(n; 1)) such that
S

(d−2)
1 (F

(d)

1/2(n; 1)) and S
(d−2)
3 (F

(d)

1/2(n; 1)) lie in a common (d− 1)-subarray and
S

(d−2)
3 (F

(d)

1/2(n; 1)) and S
(d−2)
2 (F

(d)

1/2(n; 1)) lie in a common (d− 1)-subarray.
S

(d−2)
1 (F

(d)
1 (n; 1)) and S

(d−2)
1 (F

(d)
2 (n; 1)) are isomorphic (resp. orthogonal of strength

d − 2), therefore by the previous argument S
(d−2)
3 (F

(d)
1 (n; 1)) and S

(d−2)
3 (F

(d)
2 (n; 1))

are isomorphic (resp. orthogonal of strength d − 2), therefore S
(d−2)
2 (F

(d)
1 (n; 1)) and

S
(d−2)
2 (F

(d)
2 (n; 1)) are isomorphic (resp. orthogonal of strength d − 2). Thus all pairs

of corresponding (d − 2)-subarrays parallel to S
(d−2)
1 (F

(d)

1/2(n; 1)) are isomorphic (resp.
orthogonal of strength d − 2). We can now proceed similarly for subarrays of all lower
dimensions.

We will now provide a useful link between strong orthogonality and equiorthogonality.

Theorem 3.8. Two frequency hypercubes F
(d)
1 (n; λ) and F

(d)
2 (n; λ) are equiorthogonal

if and only if they are orthogonal of strength d.

Proof. By induction on d. For d = 1, it is easy to see that equiorthogonality and or-
thogonality of strength 1 are equivalent. Suppose that the result holds for d 6 s. Now,
let d = s + 1. Since d = s + 1, there is only one (s + 1)-subarray, that is the hypercube
itself. Hence conditions (1) and (a) are equivalent since n(s+1)/m2 = nd/m2. Now, if
t < d = s + 1, then t 6 s and hence by our induction hypothesis, for any corresponding
t-subarrays equiorthogonality and orthogonality of strength t are equivalent. Thus con-
ditions (2) and (3) are equivalent to (b) and (c) respectively, and hence equiorthogonality
and orthogonality of strength s + 1 are equivalent.

Corollary 3.9. If two frequency hypercubes F
(d)
1 (n; λ) and F

(d)
2 (n; λ) are orthogonal of

strength s, 1 6 s 6 d, then they are equiorthogonal.

Proof. By Lemma 3.1, orthogonality of strength s implies orthogonality of strength d
which is equivalent to equiorthogonality.

The converse to Corollary 3.9 is not necessarily true. Although Theorem 3.8 yields
that if F

(d)
1 (n; λ) and F

(d)
2 (n; λ) are equiorthogonal, then they are also orthogonal of

strength d, this does not necessarily imply orthogonality of any strength s, for s < d as
stated in Remark 3.2.

In [3], Höhler de�nes two d-dimensional latin hypercubes of order n to be orthogonal
if in the superimposition of the two hypercubes each ordered pair occurs exactly nd−2

times; and furthermore, in any t-subarray, each ordered pair occurs exactly ns times,
0 6 s < t, or not at all.

Theorem 3.10. The de�nition for orthogonality of strength d is equivalent to Höhler's

de�nition of orthogonality for latin hypercubes F (d)(n; 1) for d > 2.
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Proof. Orthogonality of strength d is equivalent to equiorthogonality for latin hypercubes
F (d)(n; 1) which is equivalent to Höhler's de�nition by Theorem 3.1 of [6].

If we let s < d, then orthogonality of strength s satis�es Höhler's de�nition, but
strengthens the second condition. For example, if two d-dimensional latin hypercubes of
order n are orthogonal of strength 2, then in any t-subarray, t > 1, each ordered pair
occurs exactly nt−2 times; whereas if they were Höhler orthogonal then each ordered pair
would occur ns times, where s is some value 0 6 s < t, or not at all.

4. s-Strong orthogonal frequency hypercubes

In this section we will focus on sets of mutually s-strong orthogonal frequency hypercubes
(MSsOFH). We begin by determining a bound for the maximum number of MSsOFH.
The following theorem will be useful to us and can be found in [6].

Theorem 4.1. The maximum number of mutually equiorthogonal frequency hypercubes

F (d)(n; n/m) is at most (n− 1)d/(m− 1).

Using the equivalence found in Theorem 3.8, this immediately leads to the following
corollary.

Corollary 4.2. The maximum possible number of MSdOFH, F (d)(n; n/m) is at most

(n− 1)d/(m− 1).

We will now extend this to �nd a bound when s < d.

Corollary 4.3. Let s 6 d. Then an upper bound for the number of MSsOFH F (d)(n; n/m)
is (n− 1)s/(m− 1).

Proof. Let S be a set of MSsOFH F (d)(n; n/m). Consider the set, R, of any correspond-
ing s-subarrays of all of the members of S. Then R is a set of MSsOFH F (s)(n; n/m)
and thus has maximal size (n− 1)s/(m− 1) by Corollary 4.3. Our result follows since R
and S have the same cardinality.

A set which reaches this bound is called complete. We will denote a complete set of
(n− 1)s/(m− 1), MSsOFH F (d)(n; n/m) by M

(d)
s (n; n/m). In Section , we will see that

if m is a prime power and n is a power of m, then we can construct complete sets for all
d > 1 when s = 1 or when s = d.

Corollary 4.4. The maximum possible number of MS1OFH F (d)(n; n/m) is at most

(n− 1)/(m− 1) for all d > 1.

We will now list some results which follow immediately from Theorem 3.8 and the
known results for sets of mutually equiorthogonal frequency hypercubes given in [4] and
[6].

Corollary 4.5. There are at most m− 1 MS2OFS with isomorphic corresponding rows

and isomorphic corresponding columns.

Corollary 4.6. The maximum possible number of MSjOFH F (d)(n; n/m), j > 1, with
isomorphic corresponding (j − 1)-subarrays is at most n− 1.
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Remark 4.7. By de�nition, there does not exist a pair of MS1OFS with isomorphic
corresponding rows and isomorphic corresponding columns.

Corollary 4.8. For d > 2 the existence of a complete set of (n− 1)d/(m− 1) MSdOFH

F (d)(n;n/m) implies the existence of a complete set of (n−1)t/(m−1) MStOFHF (t)(n; n/m)
for all 1 6 t < d.

Corollary 4.9. Let M
(2)
2 (n; n/m) be a complete set of (n − 1)2/(m − 1) MS2OFS

F (2)(n; n/m).Then every square in the set has isomorphic rows and isomorphic columns.

Remark 4.10. The result of Corollary 4.9 does not extend to orthogonality of strength
1. If S is a complete set of (n−1)/(m−1) MS1OFS F (2)(n; n/m), then it is not necessarily
true that every square in the set has isomorphic rows and isomorphic columns, as seen
in Figure 2.

F1 =


0 1 1 0
0 1 0 1
1 0 1 0
1 0 0 1

 , F2 =


1 0 1 0
0 1 1 0
1 0 0 1
0 1 0 1

 , F3 =


0 0 1 1
1 1 0 0
1 1 0 0
0 0 1 1

 (2)

Figure 2: A complete set of MS1OFS F (2)(4; 2)

Theorem 4.11. For d > s the existence of a complete set of (n− 1)s/(m− 1) MSsOFH

F (d)(n; n/m) implies the existence of a complete set of (n − 1)s/(m − 1) MSsOFH

F (t)(n; n/m) for all d > t > s.

Proof. Suppose we have a complete set of (n−1)s/(m−1) MSsOFH F (d)(n; n/m). Take
any set of corresponding t-subarrays with d > t > s. By Remark 3.4, these subarrays are
also orthogonal of strength s and hence form a complete set of (n−1)s/(m−1) MSsOFH
F (t)(n; n/m).

Lemma 4.12. Let M
(2)
2 (n; n/m) be a complete set of (n−1)2/(m−1)MS2OFS F (2)(n; n/m).

Then M
(2)
2 (n; n/m) can be partitioned into n − 1 classes in which the (n − 1)/(m − 1)

squares in any one class form a complete set of MS1OFS F (2)(n; n/m).

Proof. First, recall that we can partition MS2OFS F (2)(n; n/m) hypercubes into (n −
1)/(m − 1) column classes C1, . . . , C(n−1)/(m−1), each of which contains n − 1 squares
with isomorphic columns. Note that squares from di�erent column classes have 1-strong
orthogonal columns. Similarly we can partition MS2OFS F (2)(n; n/m) into (n−1)/(m−1)
row classes R1, . . . , R(n−1)/(m−1).

Theorem 4.3 of [5] shows that the intersection of a column class and a row class, say
Ci/Rj , contains exactly m−1 squares. For each k with 1 6 k 6 (n−1)/(m−1) take one
square from each of the intersections C1/Rk+1(mod(n−1)/(m−1)), C2/Rk+2(mod(n−1)/(m−1)),
. . . , C(n−1)/(m−1)/Rk(mod(n−1)/(m−1)).

Notice that each square is in a di�erent column and row class and hence have 1-strong
orthogonal columns and 1-strong orthogonal rows making these squares orthogonal of
strength 1. Since there are (n − 1)/(m − 1) squares we have formed a complete set
of MS1OFS F (2)(n; n/m). Since each intersection Ci/Rj contains m − 1 squares we
can form m − 1 complete sets of MS1OFS F (2)(n; n/m) in this manner for each of the
(n− 1)/(m− 1) values of k and hence n− 1 complete sets as desired.
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Theorem 4.13. Let C
(2)
2 (n; n/m) be a complete set of (n − 1)2/(m − 1) MS2OFS

F (2)(n; n/m) hypercubes. Then there exists a complete set of (n − 1)/(m − 1) MS1OFS

F (2)(n; n/m) hypercubes such that every square in the set has isomorphic rows and iso-

morphic columns.

Proof. We know that if a complete set exists then every square in the set has isomorphic
rows and isomorphic columns. From Lemma 4.12, we know that M

(2)
2 (n; n/m) contains

a subset of (n− 1)/(m− 1) MS1OFS F (2)(n; n/m).

Lemma 4.14. Let 1 6 s 6 d and let M
(d)
s (n; n/m) be a complete set of (n−1)s/(m−1)

MSsOFH F (d)(n; n/m). Then there exists a complete set of (n − 1)/(m − 1) MS1OFS

F (2)(n; n/m).

Proof. We know that the existence of M (d)
s (n; n/m) implies the existence of M (s)

s (n; n/m)

which implies the existence of M
(2)
2 (n; n/m). Our result follows from Lemma 4.12.

Theorem 4.15. Suppose d > s > 3. If M
(d)
s (n; n/m) exists then m is a prime power.

Proof. We know that the existence of M (d)
s (n; n/m) implies the existence of M (s)

s (n; n/m)
which is equivalent to a complete set of MEFH. The result follows by Theorem 4.8 of
[5].

We conclude this section by revisiting the bound given in Corollary 4.3. In the next
section, we will see that this bound is attainable in certain cases. Speci�cally, if m is
a prime power and n a power of m, we can construct complete sets of (n − 1)/(m − 1)
MS1OFH F (d)(n; n/m) for any d. Furthermore, in these prime power orders we will also
be able to construct complete sets when s = d. The following results show that when
m = 2 and 1 < s < d then the bound given in Corollary 4.3 is too large.

In the proofs of the following theorems we will use some basic graph theory. A graph

G is comprised of a �nite set of elements called vertices and a set of pairs of distinct
vertices called edges. A graph with n vertices is called complete if each pair of distinct
vertices forms an edge. It is not hard to see that such a graph has

(
n
2

)
edges. A multigraph

is a graph which allows a pair of vertices to form more than one edge.

Theorem 4.16. When d >
(

n
2

)
there are at most n− 1, MS2OFH F (d)(n; n/2).

Proof. First, it is not hard to see that we cannot have more than one MS2OFH F (2)(n; n/2)
with isomorphic rows and columns. Thus if we have two frequency hypercubes with iso-
morphic 1-subarrays in two coordinate directions, say xi and xj , then the corresponding
squares formed by these 1-subarrays could not be 2-strong orthogonal and hence the
frequency hypercubes themselves are not 2-strong orthogonal. Suppose there were n
such frequency hypercubes. By Corollary 4.4 we know that we can have at most n − 1
frequency hypercubes with 1-strong orthogonal corresponding 1-subarrays in any coordi-
nate direction xi with 1 6 i 6 d. Thus by the pigeonhole principle, we have at least two
frequency hypercubes with isomorphic xi 1-subarrays for each i with 1 6 i 6 d.

Next, consider each of the n frequency hypercubes as a vertex of a graph G, and
consider the edges in the graph as representing that two frequency hypercubes have
an isomorphic 1-subarray in a coordinate direction. For each i with 1 6 i 6 d, we
must have at least two frequency hypercubes with an isomorphic 1-subarray in the xi
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direction, and hence we must add an edge to our graph. A complete graph Kn has
exactly

(
n
2

)
edges. Hence if d >

(
n
2

)
, then G has more than

(
n
2

)
edges and thus at least

two frequency hypercubes have isomorphic 1-subarrays in at least 2 coordinate directions,
a contradiction.

Theorem 4.17. When d > n, there exist at most (n − 1)2 − 1, MS2OFH F (d)(n; n/2)
hypercubes.

Proof. Suppose that we have (n−1)2, MS2OFH F (d)(n; n/2). As in the preceding proof,
consider the (n − 1)2 frequency hypercubes to be vertices in a graph G. In order to
obtain this bound, we know that for the corresponding 1-subarrays in each coordinate
direction xi, 1 6 i 6 d, we must have n−1 classes each containing n−1 hypercubes with
isomorphic corresponding 1-subarrays in that direction. Each class represents a complete
graph on n−1 vertices and hence has

(
n−1

2

)
edges. Thus for each coordinate direction xi

we must add (n−1)
(

n−1
2

)
edges to G. As in the preceding proof, G cannot have multiple

edges between vertices and hence the most edges that G can have is
(
(n−1)2

2

)
. Thus, we

have at most ((n−1)2
2 )

(n−1)(n−1
2 )

= n coordinate directions.

We will now generalize Theorem 4.16 to orthogonality of any strength.

Lemma 4.18. If F
(d)
1 (n; n/2) and F

(d)
2 (n; n/2) have isomorphic corresponding 1-subarrays

in each coordinate direction x1, x2, . . . , xd, then F
(d)
1 (n; n/2) and F

(d)
2 (n; n/2) are not

orthogonal of strength d.

Proof. Obvious.

Theorem 4.19. When d >
(

n
2

)
× (s−1) there are at most n−1, MSsOFH F (d)(n; n/2).

Proof. First, notice if two frequency hypercubes F
(d)
1 (n; n/2) and F

(d)
2 (n; n/2) have iso-

morphic corresponding 1-subarrays in s di�erent coordinate directions, then Lemma 4.18
implies that the corresponding s-subarrays formed by those 1-subarrays could not be
orthogonal of strength s and hence F

(d)
1 (n; n/2) and F

(d)
2 (n; n/2) are not orthogonal of

strength s. Suppose, for a contradiction, that we have n, MSsOFH F (d)(n; n/2) with
d >

(
n
2

)
× (s − 1). By Corollary 4.4 we know that we can have at most n − 1 frequency

hypercubes with 1-strong orthogonal corresponding 1-subarrays in any coordinate direc-
tion xi with 1 6 i 6 d. Thus by the pigeonhole principle, we have at least two frequency
hypercubes with isomorphic xi 1-subarrays for each i with 1 6 i 6 d. Now, consider the
n frequency hypercubes as the n vertices in a multi-graph G, and as before consider the
edges in the graphs as representing that two frequency hypercubes have an isomorphic
1-subarray in a coordinate direction. By the above argument, there can be at most s− 1
edges between any two vertices. Thus, at most, G can have

(
n
2

)
× (s− 1) edges. Hence, if

d >
(

n
2

)
× (s− 1), then G has more than

(
n
2

)
× (s− 1) edges and we have a contradiction.

Therefore, there are at most n− 1 MSsOFH F (d)(n; n/2) hypercubes.

Remark 4.20. The bound of n−1 MSsOFH F (d)(n; n/2) in Theorem 4.19 is attainable
if n is a power of 2. This follows by Corollary 5.6, which tells us that there is a complete
set of n− 1 MS1OFH F (d)(n; n/2), and the fact that strength 1 orthogonality implies all
higher strengths.
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We can also generalize Theorem 4.17 to higher strengths by using similar arguments
as found in the proofs of Theorem 4.17 and Theorem 4.19 to obtain the following result:

Theorem 4.21. When d > [(n−1)s−1]×(s−1)

[(n−1)s−1−1]
, there exist at most (n − 1)s − 1 MSsOFH

F (d)(n; n/2).

5. Constructions

If m is a prime power and n a power of m, we can construct complete sets of (n−1)/(m−1)
MS1OFH F (d)(n; n/m). The construction uses techniques similar to those found in [2],
[5] and [7].

From [8], a polynomial f(x1, . . . , xn) ∈ Fq[x1, . . . , xn] is a permutation polynomial if
the equation f(x1, . . . , xn) = α has exactly qn−1 solutions in Fn

q for every α ∈ Fq. Two
permutation polynomials f(x1, . . . , xn) and g(x1, . . . , xn) are orthogonal if the system

f(x1, . . . , xn) = α

g(x1, . . . , xn) = β (3)

has exactly qn−2 solutions for each (α, β) ∈ F2
q. Also it is easy to check that a linear

polynomial is a permutation polynomial over Fq if and only if it has at least one non-zero
coe�cient. Also, we know that two non-constant linear polynomials form an orthogonal
system if and only if neither is a scalar multiple of the other. Finally, addition of a
constant to either or both polynomials does not a�ect orthogonality or the property of
being a permutation polynomial.

We begin by considering the case where d = 1. For m a prime power, we can
construct a F (1)(mi; m(i−1)) hypercube from a1x1 + · · · + aixi over Fm as follows. We
use the elements of Fm as the m symbols and the mi, i-tuples in Fi

m as the coordinate
labels. Then the symbol in entry (x1, . . . , xi) is given by a1x1 + · · ·+ aixi.

Lemma 5.1. Let m be a prime power and suppose that ak ∈ Fm for 1 6 k 6 i and

(a1, . . . , ai) 6= (0, . . . , 0). Then the hypercube constructed from a1x1 + · · · + aixi is a

F (1)(mi; m(i−1)) hypercube.

Proof. It is only necessary to show that each symbol appears mi−1 times in the con-
structed cube. Let α ∈ Fm then according to our construction α appears when a1x1 +
· · · + aixi = α for some i-tuple (x1, . . . , xi). Now, a1x1 + · · · + aixi = α is a linear
polynomial with at least one non-zero coe�cient, hence it is a permutation polynomial.
Thus, we know that there are mi−1 solutions and therefore α appears mi−1 times.

Lemma 5.2. Let m be a prime power and suppose that ak ∈ Fm for 1 6 k 6 i and

(a1, . . . , ai) 6= (0, . . . , 0). Also, let bk ∈ Fm for 1 6 k 6 i and (b1, . . . , bi) 6= (0, . . . , 0)
with (a1, . . . , ai) 6= u(b1, . . . , bi) where u ∈ F∗m. Then the hypercubes constructed from

a1x1 + · · ·+ aixi and b1x1 + · · ·+ bixi are orthogonal of strength 1.

Proof. Since (a1, . . . , ai) 6= u(b1, . . . , bi), we know that a1x1+· · ·+aixi and b1x1+· · ·+bixi

form an orthogonal system. Hence, we have that the system:

a1x1 + · · ·+ aixi = α

b1x1 + · · ·+ bixi = β (4)
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has exactly mi−2 solutions for each (α, β) ∈ F2
m. Thus, upon superimposition of the two

hypercubes each ordered pair (α, β) will appear exactly mi/m2 times and therefore the
two hypercubes are orthogonal of strength 1.

Theorem 5.3. If m is a prime power and n is a power of m, then there exists a complete

set of (n− 1)/(m− 1), MS1OFH F (1)(n; n/m).

Proof. Let n = mi. We need to �nd a set of (n − 1)/(m − 1) linear polynomials a1x1 +
· · · + aixi over Fm such that each polynomial has at least one non-zero coe�cient and
that no two sets of coe�cients are scalar multiples of each other. First, we include the
polynomials, P1, such that a1 = 1 where 1 represents the multiplicative identity of Fm.
Notice that there are m choices for each of the i−1 coe�cients a2, . . . , ai, and hence mi−1

such polynomials overall. Also, no two di�erent polynomials can be scalar multiples of
one another since a1 = 1 is �xed and hence the scalar would have to be 1, making the
polynomials identical. Next, we include the polynomials, P2, where a1 = 0 and a2 = 1.
Here we have mi−2 polynomials, and by the same argument as above the elements of P2

are not scalar multiples of one another. Furthermore, by examining a1 it is easy to see
that no element of P2 is a non-zero scalar multiple of P1. Continuing in this manner,
we obtain a set of polynomials P1, P2, . . . , Pi such that each polynomial has at least one
non-zero coe�cient and that no two sets of coe�cients are scalar multiples of each other.
Furthermore, we have mi−1 + mi−2 + · · · + 1 = (mi − 1)/(m − 1) = (n − 1)/(m − 1)
polynomials which generate our complete set of MS1OFH F (1)(n; n/m) hypercubes.

We can use similar methods to create strongly orthogonal frequency hypercubes of
all dimensions d > 1. For m a prime power, we can construct a F (d)(mi; n/m) from
the polynomial a1x1 + · · · + adixdi over Fm similar to before. Once again, we use the
elements of Fm as symbols and the mi, i-tuples in Fi

m as the coordinate labels. We
now associate each block of variables (x(k−1)i+1, . . . , xki) to the k-th coordinate direction
for 1 6 k 6 d. Then the symbol in cell ((x1, . . . , xi), . . . , (x(d−1)i+1, . . . , xdi)) is given by
a1x1+· · ·+adixdi. The proof of the following lemma is similar to the proof of Lemma 5.1.

Lemma 5.4. Let m be a prime power and suppose that ak ∈ Fm for 1 6 k 6 di and
(a(k−1)i+1, . . . , aki) 6= (0, . . . , 0) for 1 6 k 6 d. Then the hypercube constructed from

a1x1 + · · ·+ adixdi is a F (d)(mi; m(i−1)) hypercube.

Lemma 5.5. Let m be a prime power and suppose that aj ∈ Fm for 1 6 j 6 di and
(a(k−1)i+1, . . . , aki) 6= (0, . . . , 0) for 1 6 k 6 d. Also, let bj ∈ Fm for 1 6 j 6 di
and (b(k−1)i+1, . . . , bki) 6= (0, . . . , 0) for 1 6 k 6 d. Also, let (a(k−1)i+1, . . . , aki) 6=
u(b(k−1)i+1, . . . , bki) for 1 6 k 6 d where u ∈ F∗m. Then the hypercubes constructed from

a1x1+· · ·+adixdi and b1x1+· · ·+bdixdi are orthogonal of strength-1 frequency hypercubes

of dimension d.

Proof. We need to show that in the superimposition of any corresponding 1-subarrays
each ordered pair (α, β) appears exactly mi/m2 times. Consider any subarray which
varies in the k-th coordinate direction. To �nd the symbols of each hypercube in this
subarray, we can substitute the �xed coordinates of the subarray to obtain the polynomi-
als p1 = a(k−1)i+1x(k−1)i+1+· · ·+akixki+c1 and p2 = b(k−1)i+1x(k−1)i+1+· · ·+bkixki+c2.
Since (a(k−1)i+1, . . . , aki) 6= (0, . . . , 0) and (b(k−1)i+1, . . . , bki) 6= (0, . . . , 0) we know that
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p1 and p2 are permutation polynomials. Also, (a(k−1)i+1, . . . , aki) 6= u(b(k−1)i+1, . . . , bki)
implies that p1 and p2 form an orthogonal system. Hence, the system:

a(k−1)i+1x(k−1)i+1 + · · ·+ akixki + c1 = α

b(k−1)i+1x(k−1)i+1 + · · ·+ bkixki + c2 = β (5)

has exactly mi−2 solutions for each (α, β) ∈ F2
m. Thus, upon superimposition of the two

corresponding 1-subarrays each ordered pair (α, β) will appear exactly mi/m2 = mi−2

times.

Theorem 5.6. If m is a prime power and n is a power of m, then there exists a complete

set of (n− 1)/(m− 1), MS1OFH F (d)(n; n/m).

Proof. From Theorem 5.3, we know that we can �nd a set of (n − 1)/(m − 1) linear
polynomials p1, . . . , p(n−1)/(m−1) over Fm such that each polynomial has at least one
non-zero coe�cient and that no two sets of coe�cients are scalar multiples of each other.
Now, for each polynomial pj = a1x1 + · · · + aixi create a new polynomial p′j = a1x1 +
· · · + adixdi by letting (a(k−1)i+1, . . . , aki) = (a1, . . . , ai) for 2 6 k 6 d. Then the
conditions of Lemma 5.5 are met and the d-dimensional frequency hypercubes generated
by the polynomials p′1, . . . , p

′
(n−1)/(m−1) form a complete set of MS1OFH F (d)(n; n/m)

hypercubes.

Theorem 5.7. Fix s, let m be a prime power, and suppose that:

(a) aj ∈ Fm and bj ∈ Fm for 1 6 j 6 di with the property that

(a(k−1)i+1, . . . , aki) 6= (0, . . . , 0) and (b(k−1)i+1, . . . , bki) 6= (0, . . . , 0) for 16k6 d.

(b) For all possible indices k1, k2, . . . , ks, 1 6 k1 < k2 < . . . < ks 6 d
(a(k1−1)i+1, . . . , ak1i, a(k2−1)i+1, . . . , ak2i, . . . , a(ks−1)i+1, . . . , aksi) 6=
u(b(k1−1)i+1, . . . , bk1i, b(k2−1)i+1, . . . , bk2i, . . . , b(ks−1)i+1, . . . , bksi) where u ∈ Fm.

Then the hypercubes constructed from a1x1 + · · · + adixdi and b1x1 + · · · + bdixdi are

s-strong orthogonal frequency hypercubes of order mi and dimension d.

Proof. Sketch. Condition (a) ensures that the construction yields frequency hypercubes.
Condition (b) �rst ensures that the two sets of coe�cients are not scalar multiples and
hence the two hypercubes are at least orthogonal of strength d and therefore conditions
(2) and (3) for strong orthogonality of any type are satis�ed. To see that condition
(1) is satis�ed, consider that any s-subarray is constructed essentially with the coe�-
cients (a(k1−1)i+1, . . . , ak1i, a(k2−1)i+1, . . . , ak2i, . . . , a(ks−1)i+1, . . . , aksi) for some indices
k1, k2, . . . , ks. Condition (b) ensures that these two sets of coe�cients are not scalar mul-
tiples and hence the constructed s-subarrays are orthogonal of strength s. Thus condition
(1) is satis�ed.

If s = d, then the construction in Theorem 5.7 reduces to that given in [5] for the
construction of mutually equiorthogonal frequency hypercubes. In this case, we can
construct a complete set.

Theorem 5.8. If m is a prime power and n is a power of m, then there exists a complete

set of (n− 1)s/(m− 1) MSsOFH F (s)(n; n/m).
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6. Frequency hyperrectangles

In this section we will generalize from hypercubes to hyperrectangles. A Youden F-

hyperrectangle Y F (n1, . . . , nd; m), where m |
∏

j 6=i nj for each 1 6 i 6 d, is an n1×· · ·×nd

array consisting of m > 2 symbols with the property that for each i, 1 6 i 6 d, each
symbol appears exactly (

∏
j 6=i

nj)/m times in each (d − 1)-subarray obtained by �xing

the i-th coordinate. Two such F-hyperrectangles are orthogonal if upon superimposition
every ordered pair appears the same number of times. A set of F-hyperrectangles are
called mutually orthogonal if every pair of distinct F-hyperrectangles from the set is
orthogonal. Cheng [1] proved the following result:

Theorem 6.1. The maximum number of mutually orthogonal F (n1, . . . , nd; m) is at

most (
∏

ni −
∑

(ni − 1)− 1)/(m− 1).

In [9], Suchower was able to construct complete sets of F -hyperrectangles when m is
a prime power and each ni, 1 6 i 6 d, is a power of m.

We would like to turn our attention to a more structured de�nition of frequency
hyperrectangles. Notice that a Youden F-hyperrectangle only requires that the symbols
appear the same number of times in each (d−1)-subarray; whereas much of our previous
work in frequency objects required that each symbol appears the same number of times
in each 1-subarray. In the rest of this work we will de�ne a frequency hyperrectangle

F (n1, . . . , nd; m), where m | ni for each 1 6 i 6 d, as an n1 × · · · × nd array consisting
of m > 2 symbols with the property that each symbol appears the same number of
times in each 1-subarray. Notice that this de�nition of a frequency hyperrectangle is a
generalization of frequency hypercubes, since a frequency hypercube of dimension d is
a frequency hyperrectangle with n1 = n2 = · · · = nd. We will now work to extend the
results for equiorthogonality and strong orthogonality to frequency hyperrectangles.

Two one-dimensional frequency hyperrectangles F1(n; m) and F2(n; m) are
equiorthogonal if upon superimposition of the hyperrectangles, each ordered pair of sym-
bols appears exactly n/m2 times. Two frequency hyperrectangles F1(n1, . . . , nd; m) and
F2(n1, . . . , nd; m) with d > 2 are said to be equiorthogonal if:

(a) upon superimposition of the hyperrectangles, each ordered pair of symbols appears
exactly n1n2 . . . nd/m2 times;

(b) corresponding t-subarrays for all 1 6 t < d are isomorphic or equiorthogonal; and
(c) if one pair of corresponding t-subarrays is isomorphic (resp. equiorthogonal),

then all pairs of corresponding t-subarrays parallel to that pair are isomorphic
(resp. equiorthogonal).

We will begin by �nding an upper bound on the number of mutually equiorthogonal
frequency hyperrectangles F (n1, . . . , nd; m). This will be a generalization of the bound
and proof [6] for equiorthogonal frequency hypercubes.

Lemma 6.2. There are at most m−1 equiorthogonal frequency rectangles, F (n1, n2; m),
with isomorphic corresponding rows and isomorphic corresponding columns.

Proof. If m = 2 the result is trivial. Now, let m > 2, and permute the n1 rows and n2

columns of one rectangle, R1, so that the �rst row and �rst column are 0 . . . 01 . . . 1 . . . (m−
1) . . . (m − 1). By the hypothesis of isomorphic corresponding rows the �rst row of each
rectangle must consist of m blocks, each consisting of the same symbol repeated n2/m
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times; similarly the �rst column of each rectangle must consist of m blocks, each con-
sisting of the same symbol repeated n1/m times. Now, permute the symbols of each
rectangle so that the �rst row of each rectangle is 0 . . . 01 . . . 1 . . . (m− 1) . . . (m− 1).

Notice that for any two rectangles, when corresponding rows are superimposed, since
they are isomorphic, a given ordered pair can either occur 0 or n2/m times. Similarly
when corresponding columns are superimposed a given ordered pair can either occur 0 or
n1/m times. Therefore, by condition (a) for equiorthogonality, a given ordered pair occurs
in exactly n1/m rows and in exactly n2/m columns. Notice that in the superimposition
of any two rectangles the ordered pair (0, 0) must occur in the �rst n1/m rows and the
�rst n2/m columns. Thus every rectangle has an n1/m × n2/m block of zeros in the
upper left corner.

Now, consider that since the �rst row of every rectangle is identical, then for every
0 6 j 6 m − 1, the ordered pair (j, j) occurs in the n2/m columns jn2/m + 1, jn2/m +
2, . . . (j + 1)n2/m and therefore in no other columns. Thus for j 6= 0, the ordered
pair (j, j) cannot occur in the �rst n2/m columns. If we then consider the entry in row
n1/m+1 of the �rst column, we know that the entries for each rectangle must be distinct
by the above argument, and that they are non-zero. Therefore, we have at most m − 1
rectangles.

Lemma 6.3. There are at most (n − 1)/(m − 1) mutually equiorthogonal frequency

hyperrectangles F (n; m).

Proof. This follows from the bound for MEFH and the fact that a hyperrectangle of
dimension 1 and hypercube of dimension 1 are by de�nition equivalent as is the de�nition
of equiorthogonality.

Lemma 6.4. The maximum number of mutually equiorthogonal rectangles with n1 rows,

n2 columns, and based on m symbols with isomorphic corresponding columns is at most

n2 − 1.

Proof. By de�nition of equiorthogonality, the �rst rows of all the rectangles must be
either isomorphic or equiorthogonal. Since isomorphism is an equivalence relation, we
can partition the rectangles into classes with the property that rectangles in the same class
have isomorphic �rst rows and thus rectangles from di�erent classes have equiorthogonal
�rst rows. Therefore, condition (c) implies that rectangles from the same class will have
every pair of corresponding rows isomorphic, and rectangles from distinct classes will
have all corresponding rows equiorthogonal.

Since rectangles from the same class will have isomorphic corresponding rows and
columns, Lemma 6.2 asserts that there are at most m− 1 rectangles in each class. Also,
since rectangles from distinct classes will have equiorthogonal rows, Lemma 6.3 tells us
that there are at most (n2 − 1)/(m − 1) distinct classes. Therefore we have at most
(m− 1)× (n2 − 1)/(m− 1) or n2 − 1 such rectangles.

Proofs of the following lemma and theorem are similar to those found in [6] for
frequency hypercubes.

Lemma 6.5. The maximum number of mutually equiorthogonal frequency hyperrectan-

gles F (n1, . . . , nd; m) with isomorphic corresponding (d − 1)-subarrays with �xed coordi-

nate xi, 1 6 i 6 d, is at most ni − 1.
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Theorem 6.6. The maximum number of mutually equiorthogonal frequency hyperrect-

angles F (n1, . . . , nd; m) is at most (
d∏

i=1

(ni − 1))/(m− 1).

For m a prime power and ni a power of m, for each 1 6 i 6 d we can construct
complete sets of MEFR F (n1, . . . , nd; m) using permutation polynomials over �nite �elds
Fq where q = m. For m a prime power, we can construct a F (mi1 , . . . , mid ; m) from the

polynomial a1x1 + · · · + alxl, where l =
d∑

j=1

ij , over Fm similar to before. Once again,

we use the elements of Fm as symbols. Next we use the mij , ij-tuples in Fij
m as the

coordinate labels for coordinate xij . We now associate the �rst i1 block of variables to
the �rst coordinate, the next i2 variables to the second coordinate, and so forth. Then
the symbol in cell ((x1, . . . , xi1), . . . , (xl−id+1, . . . , xl)) is given by a1x1 + · · ·+ alxl.

Lemma 6.7. Let m be a prime power and suppose that aj ∈ Fm for 1 6 j 6 l, where

l =
d∑

j=1

ij, and (alk−1+1, . . . , alk ) 6= (0, . . . , 0) for 1 6 k 6 d, where lk =
∑
j6k

ij. Also,

let bj ∈ Fm for 1 6 j 6 l, where l =
d∑

j=1

ij, and (blk−1+1, . . . , blk ) 6= (0, . . . , 0) for

1 6 k 6 d, where lk =
∑
j6k

ij. Also, let (a1, . . . , al) 6= u(b1, . . . , bl) where u ∈ F∗m.

Then the hyperrectangles constructed from a1x1 + · · · + alxl and b1x1 + · · · + blxl are

equiorthogonal.

Theorem 6.8. If m is a prime power and ni is a power of m for each 1 6 i 6 d, then

we can construct a complete set of (
d∏

i=1

(ni − 1))/(m− 1) MEFR F (n1, . . . , nd; m).

Proof. Let ni = mji for each 1 6 i 6 d. Then there are exactly ni − 1 non-zero ji-

tuples (a1, . . . , aij ) with ak ∈ Fm. Hence we have (
d∏

i=1

(ni − 1)) polynomials such that

(alk−1+1, . . . , alk ) 6= (0, . . . , 0) for 1 6 k 6 d, where lk =
∑
j6k

ij as in Lemma 6.7. We then

divide by the m−1 non-zero scalar multiples of Fm and obtain a set of (
d∏

i=1

(ni−1))/(m−1)

polynomials which satisfy Lemma 6.7, generating a complete set.

We will now look how strong orthogonality extends from hypercubes to hyperrect-
angles. Two frequency hyperrectangles F1(n; m) and F2(n; m) are strongly orthogonal,
denoted F1(n; m) ⊥s F2(n; m), if upon superimposition of the hyperrectangles, each
ordered pair of symbols appears exactly n/m2 times. Two frequency hyperrectangles
F1(n1, . . . , nd; m) and F2(n1, . . . , nd; m) with d > 2 are said to be orthogonal of strength
s if:

(1) upon superimposition of any corresponding s-subarrays of the hyperrectangles,
each ordered pair of symbols appears exactly ni1ni2 . . . nis/m2 times, where
xi1 , xi2 , . . . , xis are the free coordinates of the s-subarray;

(2) corresponding t-subarrays for all 1 6 t < d are isomorphic or strongly orthogonal;
(3) if one pair of corresponding t-subarrays is isomorphic (resp. strongly orthogonal),

then all pairs of corresponding t-subarrays parallel to that pair are isomorphic
(resp. strongly orthogonal).
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Lemma 6.9. If F1(n1, . . . , nd; m) and F2(n1, . . . , nd; m) are orthogonal of strength j,
then they are also orthogonal of strength k for all j 6 k 6 d.

Proof. Let F1(n1, . . . , nd; m) and F2(n1, . . . , nd; m) be orthogonal of strength j. Let
j 6 k 6 d. We need only verify that condition (1) for orthogonality of strength k is
satis�ed. Consider corresponding k-subarrays, without loss of generality suppose that the
corresponding k-subarrays have free coordinates x1, . . . , xk. Notice that this k-subarray
is made up of corresponding j-subarrays with free coordinates x1, . . . xj each of which

has each ordered pair (
j∏

i=1

(ni))/m2 times. Since these k-subarrays are formed by exactly
k∏

i=j+1

ni such j-subarrays, it follows that each ordered pair appears exactly (
j∏

i=1

(ni))/m2 ·

(
k∏

i=j+1

ni or (
k∏

i=1

(ni))/m2 times in each corresponding k-subarrays and hence condition

(1) is satis�ed.

The proof of the following theorem mirrors the proof of Theorem 3.8.

Theorem 6.10. Two frequency hyperrectangles F1(n1, . . . , nd; m) and F2(n1, . . . , nd; m)
are equiorthogonal if and only if they are orthogonal of strength d.

Corollary 6.11. If F1(n1, . . . , nd; m) and F2(n1, . . . , nd; m) are orthogonal of strength

s, s 6 d, then they are also equiorthogonal.

Proof. Follows by the preceding theorem and Lemma 6.9

Corollary 6.12. The maximum number of mutually d-strong orthogonal frequency hy-

perrectangles F (n1, . . . , nd; m) is at most (
d∏

i=1

(ni − 1))/(m− 1).

Proof. Follows by Corollary 6.11 and Theorem 6.6

The following corollary can be proved in a similar manner as Corollary 4.3

Corollary 6.13. The maximum number of mutually s-strong orthogonal frequency hyper-
rectangles F (n1, . . . , nd; m) is at most min(

∏
i1,...is

(ni−1))/(m−1) where 16 i1 <. . .<is 6 d.

Corollary 6.14. For n = min{n1, . . . , nd} the maximum number of mutually 1-strong
orthogonal frequency hyperrectangles F (n1, . . . , nd; m) is at most (n− 1)/(m− 1).

From Theorems 6.8 and 6.10, we know that the bound found in Corollary 6.12 is
attainable in prime power orders. We will now show that the bound in Corollary 6.14 is
attainable in prime power orders as well.

Lemma 6.15. Let m be a prime power and suppose that aj ∈ Fm for 1 6 j 6 l, where

l =
d∑

j=1

ij, and (alk−1+1, . . . , alk ) 6= (0, . . . , 0) for 1 6 k 6 d, where lk =
∑
j6k

ij. Also, let

bj ∈ Fm for 1 6 j 6 l, where l =
d∑

j=1

ij, and (blk−1+1, . . . , blk ) 6= (0, . . . , 0) for 1 6 k 6 d,

where lk =
∑
j6k

ij. Also, for all 1 6 k 6 d, let (alk−1+1, . . . , alk ) 6= u(blk−1+1, . . . , blk )
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where u ∈ F∗m. Then the hyperrectangles constructed from a1x1 + · · · + alxl and b1x1 +
· · ·+ blxl are orthogonal of strength 1.

Theorem 6.16. Let m be a prime power and ni be a power of m for each 1 6 i 6 d.
Furthermore, for n = min{n1, . . . , nd} we can construct a complete set of (n−1)/(m−1)
mutually 1-strong orthogonal frequency hyperrectangles F (n1, . . . , nd; m).

Proof. Let ni = mji for each 1 6 i 6 d and n = min{n1, . . . , nd}. Then there are at least
n − 1 non-zero ji-tuples (a1, . . . , aij ) with ak ∈ Fm for each i. Dividing by the m − 1
non-zero scalar multiples of Fm, we have that there are at least (n− 1)/(m− 1) ji-tuples
for each coordinate direction which are not scalar multiples. Hence, we can construct
(n− 1)/(m− 1) polynomials which satisfy the conditions of Lemma 6.15.

As with s-strongly orthogonal hypercubes, if 1 < s < d, then constructing complete
sets of s-strongly orthogonal hyperrectangles becomes much more di�cult. Although,
we will not provide results at this time, it should be feasible to use the methods similar
to those found in Theorems 4.17, 4.19, and 5.7 to generate an equivalent re�nement of
Corollary 6.13.
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