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Clifford congruences on perfect semigroups

Roman S. Gigo«

Abstract. A congruence ρ on a semigroup S is called perfect if (aρ)(bρ) = (ab)ρ for all a, b ∈ S, as
sets, and a semigroup S is said to be η-idempotent-surjective (respectively perfect) if every η-class

of S contains an idempotent of S, where η is the least semilattice congruence on S (respectively if

each congruence on S is perfect). We describe the least Clifford congruence ξ on an η-idempotent-

surjective perfect semigroup S. In addition, a characterization of all Clifford congruences on

such a semigroup is given. Furthermore, we find necessary and sufficient conditions for ξ to be

idempotent pure or E-unitary. Moreover, we give a full description of all USG-congruences on an

η-idempotent-surjective perfect semigroup S. In fact, we show that each USG-congruence ϑ on S

is the intersection of a semilattice congruence ε and a group congruence υ (and vice versa), and

this expression is unique. Also, S/ϑ ∼= S/ε × S/υ. Finally, we investigate the lattice of Clifford

congruences on a semigroup S which is a semilattice S/η of E-inversive semigroups eη (e ∈ ES).

1. Introduction and preliminaries

The concept of a perfect semigroup was introduced by Vagner [40]. Groups are very
well-known examples of perfect semigroups. Another examples of such structures
are semigroups having exactly two congruences with the property S = S2 (i.e., S is
globally idempotent ; note that perfect semigroups possess this property). Perfect
semigroups were studied first by Fortunatov [9, 10] and then by Hamilton and
Tamura [27], Hamilton [26], and by Goberstein [24]. In [3] the authors gave an
example of a cancellative simple perfect semigroup without idempotents.

Fortunatov in [9] determined the structure of all perfect orthogroups (that is,
perfect semilattices of rectangular groups; cf. [28]), and then in [10] showed that
all completely (0)-simple semigroups are perfect. He also described the structure
of commutative perfect semigroups, perfect bands, as well as perfect Clifford semi-
groups. Later in [27] the authors generalized some of his results to finite inverse

perfect semigroups and investigated the lattice of congruences in such semigroups.
Goberstein [24] generalized simultaneously Theorem 5 [10] (cf. Result 1.9, below)
and some of the principle results of [27]. Finally, in [26] Hamilton determined the
structure of completely regular perfect semigroups and finite perfect semigroups.

Quite-known examples of perfect algebras are: quasigroups, Boolean algebras,
as well as Cantor's algebras, cf. [11].
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Recall that a semigroup S is regular if S coincides with the set of its regular

elements
Reg(S) = {s ∈ S : s ∈ sSs}.

Recently, it has been proved in [18] that all eventually regular perfect semigroups
are necessarily regular (a semigroup S is eventually regular if every element of S
has a regular power [7]). Finally, in [19] it has been described the structure of
perfect group-bound semigroups (a semigroup S is group-bound if every element
of S has a power which lies in a subgroup of S).

In this paper we study Clifford congruences on η-idempotent-surjective perfect
semigroups. Well-known examples of η-idempotent-surjective semigroups are:

(a) idempotent-surjective semigroups (i.e., each idempotent congruence class
of such semigroups contains an idempotent [7]);

(b) regular semigroups;
(c) eventually regular semigroups [7];
(d) group-bound semigroups (in particular, periodic and finite semigroups);
(e) structurally regular semigroups (for the definition and numerous examples

of such semigroups, see [30]).
On the other hand, recall from [3] that there exists a perfect semigroup which

is not η-idempotent-surjective.
Before we start our study, we recall some definitions. For convenience of the

reader, we present first general properties of perfect semigroups, and then some
facts which will be needed in the sequel.

Denote the set of all idempotents of a semigroup S by ES , that is,

ES = {e ∈ S : e2 = e}.

The relation ≤ defined on ES by

e 6 f ⇔ e = ef = fe

is a natural order relation on ES (in fact, ≤ is indeed an ordering relation on ES).
According to Thierrin [38], an element a of a semigroup S is E-inversive if

there exists x ∈ S such that ax ∈ ES , and S is said to be E-inversive if every
element of S is E-inversive. It is well-known that S is E-inversive if and only if
the set

WS(a) = {x ∈ S : x = xax}

is non-empty for every a ∈ S. Notice that if x ∈WS(a), then ax, xa ∈ ES .
For some interesting results on E-inversive semigroups, see e.g. [12, 32].
If A is an ideal of a semigroup S, i.e., AS ∪ SA ⊆ A, then the relation

ρA = (A×A) ∪ 1S ,

where 1S is the identity relation on S, is a congruence on S (the so-called Rees

congruence). We shall write S/A instead of S/ρA. Obviously, A ∈ ES/A.
The set of all not E-inversive elements of S, if non-empty, is an ideal of S.
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Let S be a semigroup. Denote by S1 the semigroup obtained from S by adjoin-
ing an identity if necessary. Then S1aS1 is the least ideal of S containing a ∈ S.
Denote it by J(a). Moreover, we say that the elements a, b of S are J -related if
J(a) = J(b). An equivalence J -class containing a will be denoted by Ja. We can
define an order on S/J by the rule (a, b ∈ S):

Ja 6 Jb ⇐⇒ J(a) ⊆ J(b).

We say that a semigroup S without zero is simple if and only if it has no proper
ideals, that is, if and only if SaS = S for every a of S. Further, a semigroup S
with zero is called 0-simple if S is not null (i.e., S2 6= {0}) and S has exactly two
ideals. Obviously, S is 0-simple if and only if S2 6= {0} and S/J = {{0}, S \ {0}}.

By a 0-minimal ideal of a semigroup S we shall mean an ideal of S which is a
minimal element in the set of all non-zero ideals of S.

The following result seems to belong to folklore of semigroup theory.

Lemma 1.1. [28] Every 0-minimal ideal of a semigroup is either null, or it is a

0-simple semigroup.

Let a be an element of a semigroup S. Suppose first that Ja is minimal among
the J -classes of S. Then J(a) = Ja is the least ideal of S. On the other hand, if
Ja is not minimal in S/J , then the set

I(a) = {b ∈ J(a) : Jb 6 Ja, Jb 6= Ja}

is an ideal of S such that J(a) = I(a) ∪ Ja (and this union is disjoint). Also,
if B is a proper ideal of J(a) and I(a) ⊆ B, then I(a) = B. This implies that
J(a)/I(a) is a 0-minimal ideal of S/I(a), that is, J(a)/I(a) is either null, or it is a
0-simple semigroup (Lemma 1.1). For convenience, J(a)/∅ = J(a). The semigroups
J(a)/I(a) (a ∈ S) are the so-called principal factors of S. Remark that we can
think of the principle factor J(a)/I(a) as consisting of the J -class Ja = J(a)\I(a)
with zero adjoined (if I(a) 6= ∅). Evidently, J(a)/I(a) is null if and only if the
product of any two elements of Ja always falls into a lower J -class. In particular,
if Ja is a subsemigroup of S, then the principal factor J(a)/I(a) is not null.

A semigroup is said to be semisimple if each of its principal factors is either
0-simple or simple. Recall that a semigroup is semisimple if and only if all its ideals
are globally idempotent (see e.g. [4]).

Lemma 1.2. Any idempotent congruence class of a perfect semigroup S is globally

idempotent. In particular, all ideals of S are globally idempotent, i.e., S is semi-

simple.

Proof. Let E be an idempotent congruence class of S. Then clearly E2 ⊆ E. Since
S is perfect, then E2 = E.

Recall that a commutative semigroup in which all elements are idempotents
is semilattice. Evidently, the least semilattice congruence η on an arbitrary semi-
group S exists (note that J ⊆ η). This relation induces the greatest semilattice
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decomposition of S, say [Y ;Sα] (α ∈ Y ), where Y ∼= S/η, each Sα is an η-class
and S =

⋃
{Sα : α ∈ Y }. To indicate this fact we shall always write S = [Y ;Sα]

(α ∈ Y ) or just S = [Y ;Sα]. Notice that SαSβ ⊆ Sαβ for all α, β ∈ Y , where αβ
is the product of α and β in the semilattice Y .

We say that a semigroup S is intra-regular if every element a of S is J -related
to a2 [4]. It is easily seen that if S is intra-regular, then the relation J is a semi-
lattice congruence on S, so we have the following well-known result.

Lemma 1.3. [4] A semigroup S is intra-regular if and only if η = J , where every

J -class is a simple semigroup.

We recall some known results on perfect semigroups in general. For beginning,
from the First and the Second Isomorphism Theorem we get the following result.

Lemma 1.4. [10] Every homomorphic image of a perfect semigroup is a perfect

semigroup.

An ideal A of a semigroup S is called completely prime if ab ∈ A implies that
a ∈ A or b ∈ A.

From the definition of the Rees congruence follows the following result [10].

Lemma 1.5. Every non-zero ideal of a perfect semigroup is completely prime.

It is not difficult to see that every chain is perfect. Also, if the elements a, b of
a semilattice A are incomparable, then the congruence induced by the ideal aA is
not perfect. Thus we have the following result.

Lemma 1.6. [10] A semilattice is perfect if and only if it is a chain.

Let S = [Y ;Sα]. Assume that S is perfect. In the light of Lemmas 1.4 and 1.6,
Y is a chain. Moreover, the following results is a little more general than some
statements of [10].

Lemma 1.7. Let S = [Y ;Sα] be a perfect semigroup. Then Y is a chain and the

following statements hold:
(a) if S does not have a zero, then each Sα is simple and Y ∼= S/J ;
(b) if S contains a zero 0, then Y has a least element 0Y , Sα is a simple

semigroup for α 6= 0Y , and either S0Y = {0} (then Y ∼= S/J ) or S0Y is a 0-simple

semigroup whose zero is not adjoined (and Ja = aη \ {0} if a 6= 0).

Proof. (a). Suppose first that S has no a zero element. Since a2 ∈ S1a2S1, then
a ∈ S1a2S1 (Lemma 1.5), so S is intra-regular. Thus every Sα is a simple semi-
group and Y ∼= S/J (Lemma 1.3).

(b). Let now S contains a zero 0, say 0 ∈ S0Y . Since S0Y Sα ⊆ S0Y for all α ∈ Y ,
then S0Y Sα = S0Y for all α ∈ Y (since S is perfect). This implies that Y has least
element 0Y .

Since Y is a chain and every Sα is a semigroup, then the condition a2 = 0
implies that a ∈ S0Y . Thus Sα is a simple semigroup for all α 6= 0Y .
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If S0Y 6= {0}, then S2
0Y = S0Y 6= {0} (Lemma 1.2), since it is clear that S0Y is

an ideal of S, that is, S0Y is not null. Suppose that A ⊆ S0Y is a non-zero ideal
of S. Then A is completely prime (by Lemma 1.5). It follows that A is a non-zero
completely prime ideal of S0Y . Hence the partition {A,S0Y \ A} of S0Y induces
a semilattice congruence on S0Y . On the other hand, it is well-known that every
η-class of S has no semilattice congruences except the universal relation (cf. [37]).
In particular, S0Y possesses this property. It follows that A = S0Y , i.e., S0Y is
a 0-minimal ideal of S. Finally, observe that if 0 is adjoined to S0Y , then the
partition

{Sα (α 6= 0Y ), S0Y \ {0}, {0}}

of S induces a semilattice congruence on S which is properly contained in the least
semilattice congruence η, a contradiction, so S0Y is a 0-minimal ideal of S whose
zero is not adjoined. Consequently, S0Y is a 0-simple semigroup whose zero is not
adjoined (Lemma 1.1). Clearly, Ja = aη \ {0} if a 6= 0.

The following result will be very crucial in our further studies.

Proposition 1.8. Let S = [Y ;Sα] be an η-idempotent-surjective perfect semigroup.

Then each semigroup Sα is E-inversive, therefore, S is E-inversive.

Proof. It is sufficient to give a proof in the case when S has a zero element. Clearly,
S0Y is E-inversive. Consider now a semigroup Sα, where α 6= 0Y . By assumption
Sα contains some idempotent e of S. Since Sα is simple (Lemma 1.7), then the
set A of all elements of Sα which are not E-inversive must be empty (otherwise,
A 6= Sα is an ideal of Sα, since e /∈ A, a contradiction), i.e., Sα is E-inversive.

Let C be a class of semigroups (call its elements C-semigroups). Recall that a
semigroup is a semilattice of C-semigroups if there exists a semilattice congruence
ρ on S (that is, S/ρ is a semilattice) such that each ρ-class of S is a C-semigroup.
In particular, if every ρ-class of S is a group, then S is a semilattice of groups.

Let Y be a semilattice and F = {Gα : α ∈ Y } be a family of disjoint groups,
indexed by the set Y . Suppose also that for each pair (α, β) ∈ Y × Y such that
α > β there is an associated homomorphism φα,β : Gα → Gβ such that

(a) φα,α is the identical automorphism of Gα for every α ∈ Y , and
(b) φα,βφβ,γ = φα,γ for all α, β, γ ∈ Y such that α > β > γ.

Put S =
⋃
{Gα : α ∈ Y }, and define a binary operation · on S by the rule that if

aα ∈ Gα and aβ ∈ Gβ , then
aα · aβ = (aαφα,αβ)(aβφβ,αβ),

where the multiplication on the right side takes place in the group Gαβ .
It is a matter of routine to check that (S, ·) is a semigroup. Finally, in the light

of the condition (a), the new multiplication coincides with the given of each Gα,
so S is certainly a semilattice Y of groups Gα. We usually denote the product in
S also by juxtaposition and write S = [Y ;Gα;φα,β ].
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We call the semigroup S = [Y ;Gα;φα,β ] a strong semilattice of groups. In the
case when Y is a chain and each homomorphism φα,β is surjective, we say that S
is chain-surjective.

By a Clifford semigroup we mean a regular semigroup in which the idempotents
are central. It is well-known that a semigroup is a Clifford semigroup if and only
if it is a (strong) semilattice of groups [28]. In fact, S is a Clifford semigroup if
and only if S = [ES ;He;φe,f ], where He is a maximal subgroup of S having the
identity e (e ∈ ES) and for all e, f ∈ ES such that e > f , the homomorphism
φe,f : He → Hf is given by aφe,f = af for every a ∈ He.

The following result is due to Fortunatov [10].

Result 1.9. A Clifford semigroup S = [ES ;He;φe,f ] is perfect if and only if it is

chain-surjective.

An equivalence relation ρ on a semigroup S is called idempotent pure if eρ ⊆ ES
for all e ∈ ES . Recall from [28] that in an arbitrary semigroup S the relation

τ = {(a, b) ∈ S × S : (∀x, y ∈ S1) xay ∈ ES ⇔ xby ∈ ES}

is the largest idempotent pure congruence on S.
Recall from [28] that a semigroup S with ES 6= ∅ is left E-unitary if for all

a ∈ S and e ∈ ES , the condition ea ∈ ES implies a ∈ ES . The notion of a right

E-unitary semigroup is defined dually. Finally, S is E-unitary if it is both left and
right unitary. In [14] it has been shown that an E-inversive semigroup is E-unitary
if and only if it is left (right) unitary.

Moreover, some preliminaries about group congruences on a semigroup S are
needed. A subset A of S is called (respectively) full ; reflexive and dense if ES ⊆ A;
(∀a, b ∈ S)(ab ∈ A⇒ ba ∈ A) and (∀s ∈ S)(∃x, y ∈ S) sx, ys ∈ A. Also, we define
the closure operator ω on S by Aω = {s ∈ S : (∃ a ∈ A) as ∈ A} (where A ⊆ S).
We shall say that A ⊆ S is closed (in S) if Aω = A. Further, a subsemigroup N
of a semigroup S is said to be normal if it is full, dense, reflexive and closed (if
N is normal, then we shall write N C S). Finally, if a subsemigroup of S is dense
and reflexive, then it is called quasi-normal.

By the kernel ker(ρ) of a congruence ρ on a semigroup S we shall mean the
set {x ∈ S : (x, x2) ∈ ρ}. Also, S is an E-semigroup if ESES ⊆ ES .

Result 1.10. [14] Let B be a quasi-normal subsemigroup of a semigroup S. Then
the relation

ρB = {(a, b) ∈ S × S : (∃ x, y ∈ B) ax = yb}

is a group congruence on S. Furthermore, B ⊆ Bω = ker(ρB), and if B C S, then
B = ker(ρB).

Conversely, if ρ is a group congruence on S, then there is a normal subsemi-

group N of S such that ρ = ρN (in fact, N = ker(ρ)).
Moreover, the least group congruence on an E-inversive E-semigroup S is given

by
σ = {(a, b) ∈ S × S : (∃ e, f ∈ ES) ea = bf}.
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Remark 1.11. [14] Let B be a quasi-normal subsemigroup of S. Then:

(a, b) ∈ ρB ⇔ (∃x ∈ S) xa, xb ∈ B.

It is easily seen that if S is an E-inversive semigroup (and so ES is dense), then
there exists the least normal subsemigroup of S. In the light of Result 1.10, every
E-inversive semigroup possesses the least group congruence σ.

Note that if ρ is a group congruence on an E-inversive semigroup S, then aρ b
if and only if ab∗ ∈ ker(ρ) for some (all) b∗ ∈WS(b).

Result 1.12. [14] The following conditions concerning an E-inversive semigroup

S are equivalent:
(a) S is E-unitary;
(b) τ = σ;
(c) ker(σ) = ES.

In particular, every E-unitary E-inversive semigroup is an E-semigroup.

The next result will be very useful (for the definition of Green's relations and
undefined terms the reader is referred to the books [28, 36]).

Theorem 1.13. Let S be an E-unitary perfect Clifford semigroup. Then:
(a) η ∩ σ = 1S ;
(b) ησ = ση = S × S = η ∨ σ.

Consequently, S ∼= (S/η × S/σ), where S/η ∼= ES and S/σ ∼= He for all e ∈ ES.
Conversely, let S be the direct product of a chain E and a group G. Then S is

an E-unitary perfect Clifford semigroup, ES ∼= E and He
∼= G for every e ∈ ES.

Proof. Remark first that S is intra-regular, therefore, J is the least semilattice
congruence on S. On the other hand, it is well-known that H = η in an arbitrary
Clifford semigroup. It follows that H = L = R = D = J in S.

(a). This follows from Proposition III.7.2 [36] (p. 152).
(b). By Proposition VII.5.22 [36] (p. 343), ησ = S×S, so (ησ)−1 = ση = S×S.

Thus ησ = ση = S × S = η ∨ σ.
Consequently, S ∼= (S/η × S/σ). It is evident that S/η ∼= ES .
Finally, it is well-known that a Clifford semigroup [ES ;He;φe,f ] is E-unitary if

and only if each φe,f is injective. This implies that He
∼= Hf for all e, f ∈ ES , since

ES is chain (see also Result 1.9). Let e ∈ ES . Then the restriction of a natural
morphism σ\ : S → S/σ to He is an isomorphism of He onto S/σ. Indeed, denote
this restriction by ϕ. Clearly, ϕ is a homomorphism. Also, if aσ = bσ (a, b ∈ He),
then (ab−1, bb−1) ∈ σ. Hence ab−1 ∈ ES ∩He, since σ = τ (Result 1.12), so a = b.
Thus ϕ is an injective homomorphism. Furthermore, take any a ∈ S, say a ∈ Hf

(where f ∈ ES). If e > f , then there is b ∈ He such that bφe,f = a, that is, a = bf .
Consequently, b ∈ aσ ∩He. On the other hand, if e < f , then ae ∈ aσ ∩He, so ϕ
is the required isomorphism between He and S/σ.

It is a matter of routine to verify the converse of the theorem.
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Note that in Proposition VII.5.22 [36] the condition �σ is perfect� implies the
condition �Lσ = S × S�, therefore, we get the following corollary.

Corollary 1.14. An E-unitary Clifford semigroup S is perfect if and only if the

least group congruence σ on S is perfect.

Recall from [25] that any full quasi-normal subsemigroup of a semigroup S is
called seminormal. Clearly, an arbitrary E-inversive semigroup contains the least
seminormal subsemigroup, say B.

Finally, we have need the following two results. The first of them is clear.

Lemma 1.15. Let T be a seminormal subsemigroup of a semigroup S which is a

semilattice of E-inversive semigroups Sα (α ∈ A). Then T ∩ Sα is a seminormal

subsemigroup of Sα (α ∈ A).

Lemma 1.16. If B is the least seminormal subsemigroup of an E-inversive semi-

group S and ϕ is an epimorphism of S onto a Clifford semigroup T , then Bφ ⊆ ET .

Proof. Put A = (ET )ϕ−1. Clearly, A is a full subsemigroup of S. Thus A is dense.
Moreover, if xy ∈ A, then ET 3 (xy)ϕ = xϕ · yϕ = yϕ · xϕ = (yx)ϕ (since ET is
reflexive), so yx ∈ A. Hence B ⊆ A. Thus Bϕ ⊆ ((ET )ϕ−1)ϕ ⊆ ET .

2. Clifford congruences

Let X be a semilattice and let a, b ∈ X be such that a 6 b. Then the sets {a} (if
a = b), (a, b), (a, b], [a, b) and [a, b] are called the intervals of X. Recall that if ρ
is a semilattice congruence on a semigroup S = [Y, Sα], where Y is a chain, then
a typical element A of S/ρ is of the form

⋃
{Sα : α ∈ Z}, where Z is a non-empty

interval of Y . In particular, S/ρ is a chain.
Suppose that S is an η-idempotent-surjective perfect semigroup.
Let ε be a semilattice congruence on S. Denote the ε-classes of S by Sα, where

α's are elements of some set Z, and define on Z a binary operation ◦, as follows:
if a ∈ Sα, b ∈ Sβ , then α ◦ β = γ ⇔ ab ∈ Sγ .
Clearly, (Z, ◦) is a semilattice (isomorphic to S/ε), so S =

⋃
{Sα : α ∈ Z} is a

semilattice Z of E-inversive Sα (Proposition 1.8). For any seminormal subsemi-
group A of S, put Aα = A ∩ Sα (α ∈ Z). Then by Lemma 1.15 and Remark 1.11,
for every α, the relation

ρAα = {(a, b) ∈ Sα × Sα : (∃x ∈ Sα) xa, xb ∈ Aα}

is a group congruence on Sα. Put ρ =
⋃
{ρAα : α ∈ Z}. In a similar way as in [13],

we can show that ρ is a congruence on S. Moreover, aρ = aρAα if a ∈ Sα. Put
Gα = Sα/ρAα . Then S/ρ =

⋃
{Gα : α ∈ Z} is a semilattice Z of groups Gα.

Applying the above construction (of ρ) to the least semilattice congruence η on
S and to the least seminormal subsemigroup B of S, we obtain some semilattice
of groups congruence on S, say ξ.



Clifford congruences on perfect semigroups 219

Let S be an η-idempotent-surjective perfect E-semigroup. Then each η-class
of S is an E-semigroup. Define on every Sα the least group congruence σα (see
Result 1.10). Then the relation ξ∗, induced by this partition of S, is a congruence
on S (for the proof, see [13]).

Using Lemma 1.16, one can show (in a very similar way as in Section 2 of [13])
the following result (denote by Baη the intersection of aη and B (a ∈ S)).

Theorem 2.1.The least Clifford congruence on an η-idempotent-surjective perfect

semigroup S is given by

ξ = {(a, b) ∈ η : (∃x, y ∈ Baη) xa = by}.

The least Clifford congruence on an η-idempotent-surjective perfect E-semigroup

S is given by

ξ∗ = {(a, b) ∈ η : (∃ e, f ∈ Eaη) ea = bf}.
Remark 2.2. In the light of Remark 1.11,

ξ = {(a, b) ∈ η : (∃x ∈ aη) xa, xb ∈ Baη}.
Theorem 2.3. Let ε be an arbitrary semilattice congruence on an η-idempotent-

surjective perfect semigroup S and let A be a seminormal subsemigroup of S. Then
the relation

ρA,ε = {(a, b) ∈ ε : (∃x, y ∈ aε ∩A) xa = by}
is a Clifford congruence on S.

Conversely, if ρ is a Clifford congruence on S, then there exists a semilattice

congruence ε on S and a seminormal subsemigroup A of S such that ρ = ρA,ε.

Proof. The proof is closely similar to the proof of Theorem 2.4 [13].

Using Result 1.12 and Remark 2.2, one can prove in a similar way as in [13] the
following (if (b) below holds, then S is an E-semigroup by Remark 3(b) in [19]).

Theorem 2.4. The following conditions concerning an η-idempotent-surjective

perfect semigroup S are equivalent:
(a) ξ is idempotent pure;
(b) each η-class of S is an E-unitary E-inversive subsemigroup of S;
(c) ξ = η ∩ τ .
A semigroup S is called strongly E-reflexive if for all a, b ∈ S, e ∈ ES1 , the

condition eab ∈ ES implies eba ∈ ES [31].

Corollary 2.5. Let S be an η-idempotent-surjective perfect semigroup. Then ξ is

idempotent pure if and only if S is a semilattice of E-unitary E-inversive semi-

groups.

Moreover, if it is the case, then S is a strongly E-reflexive E-semigroup and

ξ = {(a, b) ∈ η : E(a) = E(b)},

where E(s) = {x ∈ S : sx, xs ∈ ES} (s ∈ S).
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Proof. The first part is clear. We show that S is strongly E-reflexive. Let eab ∈ ES ,
where a, b ∈ S and e ∈ ES1 . Then (eab)ξ is an idempotent of the Clifford semi-
group S/ξ. Since S/ξ is strongly E-reflexive, then (eba)ξ ∈ ES/ξ. On the other
hand, ξ is idempotent pure. Thus eba ∈ ES , as required. Hence the relation

χ = {(a, b) ∈ S × S : E(a) = E(b)}

is a congruence on S (Proposition 3.1 [16]). Moreover, S is an E-semigroup. Indeed,
if e, f are idempotents of the same η-class of S, then clearly ef ∈ ES . Otherwise,
e < f or f < e (cf. Remark 3(b) in [19]). Hence ef ∈ ES , as exactly required.

Finally, suppose that E(a) = E(e) (a ∈ S and e ∈ ES). Then f ∈ E(e) = E(a)
for some f ∈ Eaη (where aη is E-unitary). Thus fa ∈ Eaη, so a ∈ Eaη ⊆ ES , i.e.,
χ is idempotent pure. Consequently, τ = χ (since τ ⊆ χ by Proposition 3.3 [16]).
This implies the thesis of the corollary (cf. Theorem 2.4(c)).

Moreover, we have the following theorem.

Theorem 2.6. Let S be an idempotent-surjective perfect semigroup. The following

conditions are equivalent:
(a) S is E-unitary;
(b) ξ is an idempotent pure E-unitary congruence on S;
(c) for every a ∈ S, aη is E-unitary and σaη = σS ∩ (aη × aη).

Proof. The proof is closely similar to the proof of Theorem 2.8 [13].

The next result gives some equivalent conditions for ξ to be E-unitary, when
ξ is idempotent pure.

Corollary 2.7. If an idempotent-surjective perfect semigroup S is a semilattice of

an E-unitary E-inversive semigroups, then the following conditions are equivalent:
(a) S is E-unitary ;
(b) ξ = η ∩ σ;
(c) ξ is E-unitary ;
(d) for every a ∈ S, σaη = σS ∩ (aη × aη).

Proof. The proof is closely similar to the proof of Corollary 2.9 [13].

Finally, we have the following corollary.

Corollary 2.8. In an E-unitary η-idempotent-surjective perfect semigroup S,

ξ ∩H = 1S .

If in addition ES forms a semilattice, then

ξ ∩ L = ξ ∩R = 1S .

Proof. This follows from Theorem 5.5 [14], since ξ ⊆ σ.
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3. USG-congruences

A semigroup S is said to be a USG-semigroup if it is an E-unitary Clifford semi-
group. Remark that if S is a USG-semigroup, then σ ∩ η = 1S [29].

Theorem 3.1. In any η-idempotent-surjective perfect semigroup S, σ ∩ η = 1S if

and only if S is a USG-semigroup.

Proof. This follows easily from Theorem 2.1 and the above remark (see the proof
of Theorem 3.1 [13]).

The following result describes all USG-congruences on η-idempotent-surjective
perfect semigroups.

Theorem 3.2. The intersection ϑ of a semilattice congruence ε and a group

congruence υ on an arbitrary η-idempotent-surjective perfect semigroup S is a

USG-congruence. Conversely, any USG-congruence on S can be expressed uniquely

in this way. Moreover,

S/ϑ ∼= S/ε× S/υ.

Proof. Let ρ be any congruence on S. Using the Second Isomorphism Theorem,
one can prove without difficulty that S/ρ is an η-idempotent-surjective semigroup,
therefore, the class of η-idempotent-surjective perfect semigroups is closed under
taking homomorphic images (by the First Isomorphism Theorem and Lemma 1.4).

All assertions of the theorem except a uniqueness follows from Theorem 3.1 and
Theorem 3.2 [13]. The proof of the uniqueness is very similar to the corresponding
proof of Theorem 3.4 [13].

We show the last part of the theorem. If S has zero, then the thesis is obvious.
Notice that every idempotent ϑ-class of S contains an idempotent. Suppose next
that S has no zero and observe that (a, b ∈ S)

(aϑ, bϑ) ∈ η = H ⇔ (aa∗, bb∗) ∈ ϑ⇔ (aa∗, bb∗) ∈ ε⇔ (a, b) ∈ ε,

where c∗ ∈ W (c) ∩ cη for c ∈ {a, b}, therefore we get (S/ϑ)/η ∼= S/ε. Moreover
(below b∗ ∈W (b) ∩ bη),

(aϑ, bϑ) ∈ σ ⇔ ab∗ ∈ ker(ϑ)⇔ ab∗ ∈ ker(υ)⇔ (a, b) ∈ υ,

since S/ϑ is E-unitary (and so σ = τ in S/ϑ). Hence (S/ϑ)/σ ∼= S/υ. In the light
of Theorem 1.13, S/ϑ ∼= S/ε× S/υ.

Corollary 3.3. The relation σ ∩ η is the least USG-congruence on an arbitrary

η-idempotent-surjective perfect semigroup S.

Corollary 3.4. An arbitrary η-idempotent-surjective perfect semigroup S is a sub-

direct product of a group and a semilattice if and only if it is a USG-semigroup,

that is, if and only if S ∼= ES × S/σ, where ES is a chain (see Theorem 1.13).
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Proof. The proof is very similar to the proof of Corollary 3.6 [13].

One can show without difficulty that on an arbitrary (E-inversive) semigroup
S the least E-unitary congruence π (that is, S/π is E-unitary) exists.

Theorem 3.5. In an η-idempotent-surjective perfect semigroup S,

σ ∩ η = ξ ∨ π.

Proof. The proof is closely similar to the proof of Theorem 3.9 [13].

Corollary 3.6. In an E-unitary η-idempotent-surjective perfect semigroup S,

ξ = σ ∩ η

and

S/ξ ∼= S/η × S/σ.

4. The condition π ∩ ξ = 1S

In this section we characterize those idempotent-surjective perfect semigroups S
which are a subdirect product of an E-unitary semigroup and a Clifford semigroup,
that is, those semigroups S for which π ∩ ξ = 1S . Since E-unitary semigroups and
Clifford semigroups are both E-semigroups, then S are E-semigroups, too.

In [7] Edwards defined the relation µ on a semigroup S by

(a, b) ∈ µ ⇐⇒

{
(xL ax or xL bx) =⇒ axH bx,
(xRxa or xRxb) =⇒ xaHxb,

where x is an arbitrary element of Reg(S). He proved in [8] that µ is the maximum
idempotent-separating (that is, µ ∩ (ES × ES) = 1S) congruence on an arbitrary
idempotent-surjective semigroup S.

Recall that a semigroup S is:

• fundamental if µ = 1S [6];

• η-simple if η = S × S [37].

Proposition 4.1. If S is an η-idempotent-surjective perfect semigroup such that

π ∩ ξ = 1S, then S is a semilattice of (η-simple) E-unitary E-inversive semigroups.

Proof. The proof is very similar to the proof of Proposition 4.2 [13].

Theorem 4.2. Let S be a fundamental η-idempotent-surjective perfect semigroup.

Then π ∩ ξ = 1S if and only if S is E-unitary.

Proof. Let π ∩ ξ = 1S ; e, f ∈ ES . If (e, f) ∈ π, then (e, f) ∈ η. Hence (e, f) ∈ ξ.
Thus e = f , so π ⊆ µ = 1S . Consequently, S is E-unitary.

The converse implication is trivial.
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Remark 4.3. The above theorem is valid for any C-congruence ρ instead of π
(that is, S/ρ ∈ C, where C is some fixed class of C-semigroups) contained in η
(i.e., if we replace in the theorem π by ρ, then we must replace “E-unitary� with
�C-semigroup�).

Recall from [17] that (for idempotent-surjective semigroups) every congruence
of the interval [π, σ] is E-unitary. Also, ker(ρ) = ker(π) for every ρ ∈ [π, σ].

Recall that in regular semigroups S, µ ∩ τ = 1S . The next theorem gives
necessary and sufficient conditions for π ∩ ξ to be the identity relation on an
idempotent-surjective perfect semigroup S such that µ ∩ τ = 1S .

Theorem 4.4. Let S be an idempotent-surjective perfect semigroup, µ ∩ τ = 1S.
Then the following conditions are equivalent:

(a) π ∩ ξ = 1S ;
(b) S is a semilattice of E-unitary E-inversive semigroups and π ⊆ µ;
(c) S is a semilattice of E-unitary E-inversive semigroups and π ⊆ µ ∩ σ ⊆ σ;
(d) S is a semilattice of E-unitary E-inversive semigroups and the congruence

µ ∩ σ is E-unitary;
(e) S is a semilattice of E-unitary E-inversive semigroups and at least one

idempotent-separating congruence on S is E-unitary;
(f) S is a subdirect product of an E-unitary idempotent-surjective semigroup

and a Clifford semigroup;
(g) S is a semilattice of E-unitary E-inversive semigroups and the relation

H ∩ σ is E-unitary congruence on S.

Proof. The proof is closely similar to the proof of Theorem 4.6 [13].

5. Lattice of Clifford congruences

Throughout the entire section S denotes an arbitrary semigroup which is a semi-

lattice S/η of E-inversive semigroups eη (e ∈ ES).
Firstly, we shall indicate which of the above results are valid for S.

Result 5.1. Let ε be a semilattice congruence on S and let A be a seminormal

subsemigroup of S. Then the relation

ρA,ε = {(a, b) ∈ ε : (∃x, y ∈ aε ∩A) xa = by}

is a Clifford congruence on S.
Conversely, if ρ is a Clifford congruence on S, then there exists a semilattice

congruence ε on S and a seminormal subsemigroup A of S such that ρ = ρA,ε.

Result 5.2. If S is also an E-semigroup, then the least Clifford congruence on S
is given by

ξ = {(a, b) ∈ η : (∃ e, f ∈ Eaη) ea = bf}.
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Result 5.3. The following conditions concerning the least Clifford congruence ξ
on S are equivalent:

(a) ξ is idempotent pure;
(b) S is an E-semigroup and every η-class of S is E-unitary;
(c) ξ = η ∩ τ .

Proof. Suppose that (a) holds and take any e, f ∈ ES . Then clearly (ef)ξ ∈ ES/ξ.
Hence ef ∈ ES . Thus S is an E-semigroup. The rest of the proof is closely similar
to the corresponding proof of Theorem 2.6 in [13].

Result 5.4. The following conditions concerning S are equivalent:
(a) S is E-unitary;
(b) ξ is an idempotent pure E-unitary congruence on S;
(c) for every a ∈ S, aη is E-unitary and σaη = σS ∩ (aη × aη).

Proof. (a)⇒ (b). Indeed, S is an E-semigroup by [14]. As every η-class of S is an
E-unitary E-inversive semigroup, ξ is idempotent pure. Further, if (aξ)(eξ) ∈ ES/ξ
(a ∈ S, e ∈ ES), then ae ∈ ES (since ξ is idempotent pure). Hence a ∈ ES by (a).
Thus aξ ∈ ES/ξ, so S/ξ is E-unitary, that is, ξ is E-unitary.

(b) ⇒ (a). Let ae ∈ ES , where a ∈ S and e ∈ ES . Then (aξ)(eξ) ∈ ES/ξ, so
aξ ∈ ES/ξ (since ξ is E-unitary). Hence a ∈ ES (because ξ is idempotent pure).
Thus S is E-unitary.

(a) ⇔ (c). The proof is similar to the corresponding proof of Theorem 2.8 in
the paper [13].

Result 5.5. If every η-class of S is E-unitary, then the following conditions are

equivalent:
(a) S is E-unitary ;
(b) ξ = η ∩ σ;
(c) ξ is E-unitary ;
(d) for every a ∈ S, σaη = σS ∩ (aη × aη).

Proof. (a)⇒ (b). Firstly, S is an E-semigroup by (a). Hence ξ is idempotent pure
(Result 5.3). Thus ξ = η ∩ τ (Result 5.3). Further, as S is E-unitary, σ = τ [14].
Consequently, ξ = η ∩ σ.

(b)⇒ (c). It follows from the fact that η and σ are both E-unitary.
(c)⇒ (a) & (a)⇔ (d). This follows from Result 5.4.

Result 5.6. If S is E-unitary, then

ξ ∩H = 1S .

If in addition ES forms a semilattice, then

ξ ∩ L = ξ ∩R = 1S .

Result 5.7. If S is a fundamental and π ∩ ξ = 1S, then S is E-unitary.
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Result 5.8. S is a USG-semigroup if and only if σ ∩ η = 1S.

Let ρ be a congruence on S. Using the Second Isomorphism Theorem, one can
prove that T ∼= S/ρ is a semilattice T/η of E-inversive semigroups eη (e ∈ ET ).

Result 5.9. The intersection ϑ of any semilattice congruence ε and any group

congruence υ on S is a USG-congruence on S. Conversely, each USG-congruence

on S can be expressed uniquely in this way.

In particular, η ∩ σ is the least USG-congruence on S.

Result 5.10. S is a subdirect product of a group and a semilattice if and only if

S is a USG-semigroup.

Result 5.11. The following equality holds in the lattice of congruences on S:

σ ∩ η = ξ ∨ π.

In particular, if S is E-unitary, then ξ = σ ∩ η.

Secondly, we investigate the lattice of Clifford congruences on S. Remark that
the interval [ξ, S × S] consists of all Clifford congruences on S (since the class
of Clifford semigroups is closed under taking homomorphic images), so it is a
complete sublattice of C(S) (the lattice of congruences on S). Denote it by CC(S).
Moreover, the lattice of all semilattice congruences on S is denoted by SC(S).
Clearly, SC(S) = [η, S × S] is a complete sublattice of CC(S).

The following concepts will be useful. A congruence ρ on a semigroup A is called
idempotent-surjective (resp. regular-surjective) if each idempotent (resp. regular)
ρ-class of A contains some idempotent of A [7] (resp. regular element of A [15]).

Proposition 5.12. Each Clifford congruence ρ on S is regular-surjective and

every idempotent ρ-class of S is an E-inversive subsemigroup of S (in particular,

ρ is idempotent-surjective).

Proof. Indeed, every ρ-class of S is an equivalence class of some group congruence
on a certain E-inversive semigroup, therefore, it contains a regular element of S.
This also implies that any idempotent ρ-class of S is an E-inversive semigroup (for
details, see [21]).

By the trace tr(ρ) of a congruence ρ on an arbitrary semigroup A we shall mean
the restriction of ρ to the set EA, and by the kernel ker(ρ), the set {a ∈ A : a ρ a2}.
Observe that if ρ is a Clifford congruence on S, then ker(ρ) =

⋃
e∈ES eρ.

Using Proposition 5.12, we can show in a similar way, as in [15], the following
theorems.

Theorem 5.13. The following conditions concerning Clifford congruences ρ1, ρ2
on S are equivalent:

(a) eρ1 ⊆ eρ2 for every e ∈ ES ;
(b) ρ1 ⊆ ρ2.

Thus ρ1 = ρ2 if and only if eρ1 = eρ2 for every e ∈ ES.
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Theorem 5.14. The following conditions concerning Clifford congruences ρ1, ρ2
on S are equivalent:

(a) ker(ρ1) ⊆ ker(ρ2) & tr(ρ1) ⊆ tr(ρ2);
(b) ρ1 ⊆ ρ2.

Thus ρ1 = ρ2 if and only if ker(ρ1) = ker(ρ2) and tr(ρ1) = tr(ρ2).

Define an equivalence relation on CC(S), as follows:

θ = {(ρ1, ρ2) ∈ CC(S)× CC(S) : tr(ρ1) = tr(ρ2)}.

Take further ρ ∈ CC(S) and note that HS/ρ = ηS/ρ. Also, the relation

ρθ = {(a, b) ∈ S × S : aρHS/ρ bρ}

is a semilattice congruence on S. Clearly, ρ ⊆ ρθ and tr(ρ) = tr(ρθ). Moreover, if
% ∈ CC(S) with tr(%) = tr(ρ), then tr(%θ) = tr(ρθ), so %θ = ρθ (Theorem 5.14).
We have just proved that ρθ is a greatest element in ρθ. Further, ρθ has a least
element ρθ =

⋂
{α ∈ CC(S) : tr(ρ) ⊆ tr(α)}, therefore, we get ρθ = [ρθ, ρ

θ] for all
ρ ∈ CC(S). Finally, note that if ρ, % ∈ CC(S) with ρ ⊆ %, then clearly ρθ ⊆ %θ and
ρθ ⊆ %θ (again by Theorem 5.14).

From the above consideration follows that θ is a complete congruence on CC(S)
(see Lemma 4.13 [35]). As every θ-class of CC(S) contains exactly one semilattice
congruence on S, CC(S)/θ ∼= SC(S).

We shall summarize the above consideration in the following theorem.

Theorem 5.15. Let S be a semilattice S/η of E-inversive semigroups eη (e ∈ ES).
Put

θ = {(ρ1, ρ2) ∈ CC(S)× CC(S) : tr(ρ1) = tr(ρ2)}.

Then the following statements hold:
(a) θ is a complete congruence on CC(S);
(b) for every ρ ∈ CC(S), ρθ = [ρθ, ρ

θ] is a complete sublattice of CC(S), where

ρθ =
⋂
{α ∈ CC(S) : tr(ρ) ⊆ tr(α)}, ρθ = {(a, b) ∈ S × S : aρHS/ρ bρ}.

Moreover, ρθ is a unique semilattice congruence in ρθ.
(c) CC(S)/θ ∼= SC(S).

Some background material on biordered sets will be useful. For a definition of
a biordered set, its related axioms and concepts see [33, 6]. Let S be a semigroup
with E = ES 6= ∅. Define

ωl = {(e, f) ∈ E × E : ef = e}, ωr = {(e, f) ∈ E × E : fe = e}

6= ωl ∩ ωr, L = ωl ∩ (ωl)−1, R = ωr ∩ (ωr)−1

DE = {(e, f) ∈ E × E : ef = e or ef = f or fe = e or fe = f}.
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Then the partial algebra E with domain DE is a biordered set (Theorem 1.1 [33]).
Observe that 6 is a natural partial order on E; and if e, f ∈ E, then (e, f) ∈ L (R)
if and only if (e, f) ∈ L (R) (in a semigroup S). Further, the relations ωl and ωr

are quasi-orders on E. For ρ = ωl or ρ = ωr and any e ∈ E, we put

ρ(e) = {g ∈ E : (g, e) ∈ ρ}.

Moreover, for any two elements e, f of a biordered set E, we define the M-set

M(e, f) of e and f by (cf. [33])

M(e, f) = ωl(e) ∩ ωr(f) = {g ∈ E : g = ge = fg}.

If M(e, f) 6= ∅ for all e, f ∈ E, then we say that E is an M -biordered set.
For an arbitrary semigroup S, the M -set M(e, f) (e, f ∈ ES) will be at times

denoted by MS(e, f) if absolutely necessary.
A major result in the theory of biordered sets is that every biordered set is the

biordered set of a semigroup [6]. Also, each M -biordered set is the biordered set
of some E-inversive semigroup [12].

In 1996 Auinger and Hall [2] introduced the concept of a congruence for bi-

ordered sets. Recall that if E is a partial groupoid (that is, the multiplication is
defined for some non-empty subset DE of the Cartesian product E × E), then
an equivalence relation ρ on E is called a congruence if and only if the following
condition is satisfied:

(C1) ∀e, f, g, h ∈ E(
(e, f), (g, h) ∈ ρ & eg, fh ∈ DE

)
=⇒ (eg, fh) ∈ ρ.

In that case, the product (eρ)(fρ) is defined in S/ρ if and only if gh ∈ DE for
some g ∈ eρ, h ∈ fρ, and then (eρ)(fρ) = (gh)ρ (by (C1), this partial binary
operation on E/ρ is well-defined).

By a congruence on a biordered set E [2] we shall mean an equivalence relation
ρ on E satisfying, at the same time, the above condition (C1) and the following
three conditions:

(C2)
(
(∀e, f ∈ E) ef = e

) (
∀g ∈ eρ

) (
(∃h ∈ fρ) gh = g

)
;

(C3)
(
(∀e, f ∈ E) fe = f

) (
∀g ∈ eρ

) (
(∃h ∈ fρ)hg = h

)
;

(C4)
(
∀(e, f) ∈ ρ

)(
∃ g ∈ eρ

)
g ∈M(e, f).

Result 5.16. [2] For every congruence ρ on a biordered set E, the quotient partial

groupoid E/ρ is a biordered set.

Theorem 5.17. If ρ is a Clifford congruence on S, then tr(ρ) is a congruence on

the biordered set ES.
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Proof. Clearly, tr(ρ) satisfies (C1). By Proposition 5.12, tr(ρ) fulfills (C4).
(C2), (C3). Let e, f ∈ ES with ef = f and let g ∈ Eeρ. Then gf ρ ef ρ f . Take

any a ∈Wfρ((gf)2) and put h = gfagf . Then

h2 = gf(a(gf)2a)gf = gfagf = h ∈ ES ,

gh = h = gfagf ρ efaef = faf ρ f,

that is, h ∈ Efρ and gh = h. By duality, (C3) is also satisfied.

Remark 5.18. ES/tr(ρ) is the biordered set of the Clifford semigroup S/ρ. Hence
ES/tr(ρ) is a regular biordered set [33]. Also, the quasi-orders ωl and ωr coincide
in ES/tr(ρ), so ES/tr(ρ) is a semilattice biordered set, cf. Remark 1.3 in [33].

Corollary 5.19. The following statements concerning a Clifford congruence ρ on

S are valid:
(a) for all e, f ∈ ES such that ef = f and every g ∈ eρ there exists h ∈ fρ

such that gh = h;
(b) for all e, f ∈ ES such that fe = f and every g ∈ eρ there exists h ∈ fρ

such that hg = h;
(c) for all e, f ∈ ES such that e ρ f there is g ∈Meρ(e, f).

Recall that Ha 6 Hb if and only if aS1 ⊆ bS1 and S1a ⊆ S1b.
We know that any idempotent congruence class of a Clifford congruence on S

contains an idempotent. Also, the following analogous of the famous Lallement's
Lemma is valid.

Proposition 5.20. Let ρ be a Clifford congruence on S, a ∈ S. If aρ ∈ ES/ρ,
then there is e ∈ Eaρ such that He 6 Ha.

Proof. Take any x ∈Waρ(a
2) and put e = axa. Then evidently e ρ a and He 6 Ha.

Also, e2 = (axa)(axa) = a(xa2x)a = axa = e, as required.

The following three results follows directly from Theorem 5.17 and from [2],
see Lemmas 3.3, 3.4 and 4.1(i) in [2].

Result 5.21. Let ρ be a Clifford congruence on S, e, f ∈ ES. If (eρ)(fρ) = fρ(
(fρ)(eρ) = fρ

)
, then for every g ∈ Eeρ there exists h ∈ Efρ such that gh = h

(hg = h).

Result 5.22. Let ρ be a Clifford congruence on S. If gρ ∈ MS/ρ(eρ, fρ), where
e, f, g ∈ ES, then for all h ∈ Eeρ, i ∈ Efρ there exists j ∈ Egρ ∩MS(h, i).

Result 5.23. Let ρ be a Clifford congruence on S, e, f ∈ ES. If (eρ, fρ) ∈ L (R),
then e > gLh = fh (e > gRh = hf) for some g ∈ Eeρ and h ∈ Efρ.

Corollary 5.24. Let ρ be a Clifford congruence on S, e, f ∈ ES. If fρ 6 eρ, then
for every g ∈ Eeρ there exists h ∈ Efρ such that h 6 g.
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Proof. Let fρ 6 eρ, g ∈ Eeρ. Then fρ = (eρ)(fρ) = (fρ)(eρ). By Result 5.21,
there exist h1, h2 ∈ Efρ such that gh1 = h1 and h2g = h2. Fix h ∈ Mfρ(h2, h1)
(Corollary 5.19(c)) and observe that

gh = g(h1h) = (gh1)h = h1h = h, hg = (hh2)g = h(h2g) = hh2 = h.

Thus h ∈ Efρ and h 6 g.

Let A be a semigroup and b ∈ A. The set VA(b) = {a ∈ A : a = aba & b = bab}
is called the set of all inverses of b in the semigroup A.

Theorem 5.25. If ρ is a Clifford congruence on S, xρ ∈ VS/ρ(yρ), then there exist

a ∈ xρ, b ∈ yρ such that a = xbx, b = ycy (c ∈ S) and a ∈ VS(b). Also, if x ∈ ES,
then the element a can be chosen to be an idempotent, and if x, y, xy ∈ ES, then
both elements a and b can be chosen to be idempotents.

Proof. Let xρ ∈ VS/ρ(yρ). Then the class (xy)ρ is an idempotent of S/ρ. Take any

z ∈W(xy)ρ

(
(xy)2

)
and put a = x(yzxy)x and b = yzxy. Then

aba = (xyzxyx)yzxy(xyzxyx) = (xy)
(
z(xy)2(z(xy)2z)

)
xyx = xyzxyx = a,

bab = (yzxy)xyzxyx(yzxy) = y
(
(z(xy)2z)(xy)2z

)
xy = yzxy = b,

so a ∈ VS(b). Furthermore,

bρ = (y(zxy))ρ = (yxy)ρ = yρ, aρ = (xbx)ρ = (xyx)ρ = xρ.

Suppose now that x ∈ ES . Then

a2 = xyzxy(xx)yzxyx = xy(z(xy)2z)xyx = xyzxyx = a.

Finally, if x, y, xy ∈ ES , then z ∈W(xy)ρ

(
(xy)2

)
= W(xy)ρ(xy). Hence

b2 = yzx(yy)zxy = y(zxyz)xy = yzxy = b,

as required.

Remark 5.26. Notice that in the above theorem Ha 6 Hx and Hb 6 Hy.

Theorem 5.27. If ρ is a Clifford congruence on S and xρ ∈WS/ρ(yρ), then there

is z ∈ xρ such that z ∈WS(y) and Hz 6 Hx.

Proof. Let xρ ∈WS/ρ(yρ) and a ∈W(yx)ρ

(
(yx)3

)
. Put z = xyxayx. Then

zyz = (xyxayx)y(xyxayx) = xyx(a(yx)3a)yx = xyxayx = z,

zρ = (x(yxayx))ρ = (xyx)ρ = xρ,

that is, z ∈ xρ ∩WS(y). Clearly, Hz 6 Hx.
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Denote the complete lattice of all equivalence relations on the set X by E(X).
In the light of Proposition 5.12, using Corollary 5.19(c) and Theorem 5.27 instead
of (respectively) Proposition 2.4(c) [20] and Theorem 2.11 [20], we can prove in a
similar way, as in Section 4 of [20], the following theorem.

Theorem 5.28. If S is a semilattice S/η of E-inversive semigroups eη (e ∈ ES),
then the map θ̄ : CC(S) → E(ES), where ρθ̄ = tr(ρ) for every ρ ∈ CC(S), is a

complete lattice homomorphism (between the complete lattices CC(S) and E(ES))
which induces the complete congruence θ (cf. Theorem 5.15).

Finally, we have the following remark.

Remark 5.29. In [22] the author introduced the concept of a fruitful semigroup

(a semigroup A is defined to be fruitful if each idempotent congruence class of A
is an E-inversive subsemigroup of A). Note that the class of fruitful semigroups is
very large. For example, all structurally eventually regular semigroups [30], compact

semigroups are fruitful. The papers [22, 23] contain a great number of interesting
results. In particular, in [23] it has been shown that in any fruitful semigroup A,
the map θ̄ : C(A)→ E(EA), where

ρθ̄ = tr(ρ)

for every ρ ∈ C(A), is a complete lattice homomorphism (between the complete
lattices C(A) and E(EA)) which induces the complete congruence θ. This result has
been proved for certain classes of regular semigroups and for group-bound semi-
groups by Pastijn and Petrich in [34]. Moreover, Pastijn and Petrich asked whether
the above result is valid for regular semigroups in general. In 1986 Trotter [39]
solved a famous problem of Pastijn and Petrich. Finally, in 1996 Auinger and Hall
proved the above result for a special class of eventually regular semigroups, and
they asked whether the result is true for all eventually regular semigroups, see [1].
As all eventually regular semigroups are structurally eventually regular (by the
definition), their problem has been solved in [23].
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