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Coset diagrams of the action of a certain Bianchi

group on PL(F))
Qaiser Mushtag and Umer Shuaib

Abstract. In this paper, we investigate actions of a certain Bianchi group PSL2(Oz2) on the
projective line over the finite field, PL(F}), by drawing coset diagrams. We prove that PSL2(O2)
acts on PL(Fp) only if p — 2 is a perfect square in F,. We prove that the permutation group
(emerging from this) of the action is a subgroup of A4 1, and describe how the connectors connect
different fragments occuring in the coset diagrams of the action of PSL2(O2) on PL(F,). We
also show that the group each orbit after removing the connectors from these coset diagrams is
isomorphic to A4 and establish formulae to count the number of orbits for each p and prove that

the action is transitive.

1. Introduction

A large portion of work on finite group theory, in particular combinatorial group
theory, depends upon subgroups of Mobius group. There are several methods
which generate some important and interesting subgroups of Mobius group. Let
d be a positive square free integer. We suppose Oy is a ring of algebraic integers
over the imaginary quadratic numbers Q(1/(—d)). A Bianchi group denoted by
PSLy(0g) (or I'g) is defined as

w

pst.00 - {[!

i] Tw, T, Y, 2 EOd,wzzyl}.

It is well known that the Bianchi groups are classified into two classes on
the basis of the rings Oy4 having the Euclidean algorithm. The Bianchi group
PSLy(03) is one of the five Euclidean Bianchi groups. A good refrence for the
Bianchi groups is [5]. The finite presentation of the group PSL2(O2) due to [3] is
given by

PSLy(03) =< a,t,u: a® = (at)® = (u 'aua)?® = [t,u] =1 >

where a: z — (=1)/z, t: 2 — z+ 1, u: z — z+ /(—2) are the linear fractional
transformations. The matrix representation corresponding to each respective lin-
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ear fractional transformation is given as

S |

1 0 1 0 1

By the application of Tietz transformations namely,

s=at, m= 1flau7 V= uflsu,

we obtain a new presentation of PSLy(O2) as < a,s,m,v,u : a®> = §3 = m? =
v3 = (am)? = (sv ™12 =1, m = utau,v = ulsu,am = sv™! >, where a : 2 —

- —V/=2z+1 —V=2z+(1-v/=2
(—1)/z,s:z—>ﬁ,m:z—>ﬁ,v:z—>%,u:z—>z+\/—2

are the linear fractional transformations.

The main idea behind the theory of group amalgams is to decompose, if pos-
sible, an infinite group into an amalgam of some of its subgroups. Therefore,
amalgam decomposition is equally important in infinite group theory as a prime
factorization theorem in number theory, although the amalgam decomposition of
a group need not be unique. There are two main approaches in the theory of a
group amalgams. One of them is combinatorial approach which deals with pre-
sentation for the groups and its factors. A complete behavior of the combinatorial
approach is given in [7]. Whereas, the second one is a powerful geometric method
due to [2]. Tt is well known that PSLy(O2) can be decomposed as a free product
of G and G2 with amalgamated subgroup H written as I's = Gy *g G2, where G
and G5 are HNN groups of Klien-4 group Ds and the alternating group A4 and
H=7x ZQ.

One of the graphical methods to study groups is the coset diagrams. It is used
to study various properties of a group by taking its actions on fields, quadratic
fields and sets. The Euclidean Bianchi groups are the natural algebraic generaliza-
tion of the extensively studied modular group. G. Higman initiated the study of
coset diagrams for the modular group and the extended modular group. Further
Q. Mushtaq [8] proved many important results for the modular group using coset
diagrams. For more on coset diagrams one can refer to [1], [4] and [8].

2. Action of PSLy(0O2) on PL(F),)

Every odd prime of the sequence in which —2 is a perfect square can be expressed
asp=4n+1ifniseven, or p=4n —1if nis odd, n € N. The only even prime
2 is also in the sequence. Such primes are called the M — S primes.

We observe from the following theorem that PSL2(O2) acts on PL(F),) only if
p — 2 is a perfect square in Fj,.

Theorem 2.1. The group PSLy(O2) acts on PL(F,) only if p — 2 is a perfect
square in F,, where p is an M-S prime.
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Proof. PSLy(03) =< a,s,m,v,u : a®> = s> = m? = v® = (am)? = (sv71)? =
1, mzu_lau, v:u_lsu, am = sv! >,wherea:z—>*71,s:z—>;—+11,

m=z— 7_%1 LUz — —_‘/f(zli(\l/i_;/)ﬁ) .

The linear fractional transformations a, s, m, v convert into because of the mod-
ular calculations.

Since —2 = p — 2(mod p) therefore, implies that /=2 = /p — 2(mod p),

ieldi _ —Vp—2z+1 . —VP—22+(1-p=2)
yleldlngmandvasm_ﬁ and v:z — PG Ry S

The transformations ¢ and s map elements of PL(F,) onto the elements of
PL(F,) without any condition on p, whereas transformations m and v map ele-
ments of PL(F),) onto elements of PL(F},) only if p — 2 is a perfect square in F),
because of the occurence of v/p — 2 in the transformations m(z) and v(z). Hence
PSLy(03) acts on PL(F),) only if p — 2 is a perfect square in F),. O

Remark 2.2. In the action of PSLs(O3) on PL(F),),

(1) fixed points of the transformations a and m exist only if —1 is a perfect
square (mod p),

(#4) fixed points of the transformations s and v exist only if —3 is a perfect
square (mod p).

Theorem 2.3. There does not exist X such that X?> = (AX)?
(MX)? = (VX)2 =1.

Proof. Let on the contrary, X be such that X? = (4X)? = (SX)? = (MX)? =
a b

(VX)* = 1. Suppose that X(z) = 222, that is, X = [C |- The matrix

(SX)2 =

representations of the linear fractional transformations a, s, m and v are as follow

i B e e R I e |

X? =1, and a matrix of GL(2,C) is of order 2 if and only if its trace is zero, or
tr(X)=a+d=0.

Also AX = [ac ﬂ and since it is assumed that (AX)? = 1, therefore
tr(AX) =0, that is, b = c.
. | e —d D o0 4
Similarly SX = L‘ e bt d} , and supposition, (SX)* = 1 implies that
tr(SX) =0, that is, b+ d = c.

. _|=VvV—2at+c —V/—=2+4Db o 9 _

Again MX = { at/ e b/ 3d and due to the supposition, (M X)? =1,

we get tr(MX) =0, that is, v—2a +c+ b+ /—2d = 0.
. [V =2a+ (1= v=2)c —/=2b+(1—/=2)d

Similarly, VX = [ o+ (1+v=2)e bt (14 v=2)d and by sup-
position, (VX)2 =1, we get tr(VX) = 0, that is, —v/—2a + (1—v/=2)c+ b+ (1+
V=2)d = 0.
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From b=cand b+ d+c =0, we get d =0. But a + d = 0 implies that a = 0.
This together with the case of M X shows that X is a zero matrix.
Thus, there does not exist any non-zero transformation like X (z). O

The coset diagrams of the action of PSLy(O2) on PL(F,), where pisan M —S
prime, are made of four generators @, s, m and v, where @, s, m and v are
images of a,s.m and v under the action. We denote these generators graphically
as follows. The three cycles of the permutations § are represented by triangles
having solid lines whereas ¥ is represented by triangles having edges consisiting of
bold solid lines. The involution @ is denoted by broken edges and 7 is denoted
by dotted edges. Fixed points are represented by heavy dots if they exist. Each
diagram represents finite, non-abelian and simple subgroups of 4,41, for p > 11.
We denote the permutation subgroup emerging from the action of PSL2(O2) on
PL(F},) by Ty.

For example the following coset diagram depicts action of P.SLy(O3) on PL(F11)

6 2
TR Z
N/
Iy b 4
ST T -
\\\ >l LT
1 4
%
A \

Theorem 2.4. The action of PSLy(O2) on PL(F,) gives a permutation group
generated by a,s,m and v with relations (a)? = (5)° = (m)? = (v)* = (am)? =
(sv=1)% =1, as a subgroup of A,i1, where p is an M-S prime.

Proof. Note that T'y is generated by the permutations @, 5, m and T corresponding
to the linear fractional transformations a, s, m and v in PSL4(O2), where s and
v are products of cycles each of length three. So every cycle can be decomposed
into even number of transpositions. Thus 5 and T are even permutations. Since @
and m are involutions, therefore, the number of transpositions of @ and 77 is #
which is an even number if @ and ™ have no fixed points in F,. If @ and m have
fixed points which exist only if —1 is a perfect square (mod p), then the number of
transpositions inf @ and 7 is p—;l which is also an even number. This implies that

T is generated by even permutations and hence I's is a subgroup of A, ;. O

3. Connectors for the coset diagrams of the action
of PSLy(Os) on PL(F))

There are two connectors, namely, C7 and C5 of the coset diagrams of the action
of PSLy(Oz) on PL(F,). The connectors C; and Cy graphically represent the
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behavior of the linear fractional transformations a and m respectively in these
diagrams. Since the mappings ¢ : z — (—=1)/z, and m : z — %\/2%1 are
bijective, therefore, the corresponding connectors C; and C5 join each vertex of
a fragment to the other vertex in a unique way. Initially, the coset diagrams
contain different orbits. Each orbit represent the alternating group A4. When we
start joining these orbits through the connectors C; and Cb, the diagrams start
becoming connected. Once all these orbits are completely joined by C; and Cs,
we obtain connected coset diagrams depicting subgroups of A,,;. The connected
diagrams also show that the action of PSLs(O2) on PL(F),) is transitive. The
connector (' is represented by broken edges and the connector Cj is represented
by doted edges in the coset diagrams of the action of PSL3(O2) on PL(F},). The
algebraic effects of these connectors on the diagrams are same. This means that
if we drop one of these connectors from the diagrams, the algebraic properties of
the groups depicting from these diagrams do not change. However, if we remove
both the connectors from the diagrams, we obtain different orbits of the complete
coset diagram. Let GG denote the group represented by each such orbit then

G=<sv:8=0v3=(0"1)2=1>.

In the following result, we note the above stated fact.

Theorem 3.1. The group G=<s,v: s>=v3= (sv™1)2=1> is isomorphic to Ay.

Proof. Since G =< s,v : §% = v = (sv71)2 =1 >, we put s = ab, v = b and
obtain G=<a,b,s,v: s> =v3= (sv71)2=1,8 = ab,v = b>=<a,b: (ab)®>=b>=
(abb=1)?=1>=<a,b: a®>= b>= (ab)®=1>, which is isomorphic to A,. O

There are three types of fragments of G which occurr in the coset diagrams
for the action of PSLy(O2) on PL(F,). Some details of these fragments are given
below.

The fragment I'; :

This fragment exists in each coset diagram for the action of PSLy(O2) on

PL(F},) for all p except p = 3.

The fragment I's :
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This fragment occurs along with fragment I'; in those coset diagrams in which
—3 is a perfect square modulo p.
The fragment I's :

This fragment occurs along with fragment I'; in those coset diagrams when —1
is a perfect square modulo p.

Consider the following fragment of the action of PSLy(O3) on PL(Fy;) after
removing all connectors.

10 0

8 7

The following result is about the number of orbits as copies of A4 occurring
in the coset diagrams of the action of PSLy(O3) on PL(F),) after removing the
connectors.

Theorem 3.2. In the action of PSLy(O2) on PL(F),),

() if —1 is a perfect square (mod p), then number of copies of Ay are (p1725)—|— 1,

(7i) if —3 is a perfect square (mod p), then number of copies of Ay are (%) +1,
except for p =3,

(#i7) if neither —1 nor —3 are perfect squares (mod p), then number of copies of

Ay are (%),

(iv) if both —1 and —3 are perfect squares (mod p), then number of copies of Ay
are (&) + 2.
Proof. Case (i): The subsequence of the sequence of M-S prime in which —1 is a
perfect square (mod p) is given by x; = {17,41,89,...}.
The number of copies of A4 for p = 17 is 2 that is (252) + 1. The following
diagram indicates the above fact
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>

Number of copies of A4 for p = 41 is 4 that is (4452)+1. The following diagram
indicates the above fact.

Continuation of the above process leads us to note that there exist ( pfzs) +1
copies of A, in this case.

Case (i1): The subsequence of the sequence of M-S primes in which —3 is a
perfect square (mod p) is given by mo = {3,19,43,67,...}.

One can easily observe that only one copy of A, exists for p = 3. The following
diagram indicates the above argument.

<

Number of copies of Ay for p = 19 is 3, that is, (1332) + 1. The following
diagram depicts the above fact.

¢ D
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Number of copies of Ay for p = 43 is 5, that is, (#332) + 1. The following
diagram depicts the above fact.

Continuation of the above process leads us to the conclusion that in this case
there exist (pf';)) + 1 copies of Aj.

Case (iii): The subsequence of the sequence of M-S primes in which neither
—1 nor —3 are perfect squares (mod p) is given by w3 = {11,59,83,...}.

Number of copies of Ay exist for p = 11 is one that is, (1551). The following
diagram indicates the above fact.

The number of copies of A4 for p = 59 is 5, that is (25H1).

diagram depicts the above fact.

The following

Continuation of the above process leads us to the conclusion that in this case
there exist (%) copies of Ay.

Case (iv): The subsequence of the sequence of M-S primes in which both —1
and —3 are perfect squares (mod p) is given by {73,97,...} copies of A, exist for

p =73 is 8 that is (Z51) + 2. The following diagram illustrates the above fact.
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The continuation of this process shows that in this case there exist (251) + 2

2
copies of Ay4.

4. Transitivity of the action of PSLy(0;) on PL(F),)
In this section we study transitivity of the action of PSL2(O2) on PL(F}).

Theorem 4.1. The function f : F, x {p} — F,\{0}, defined by f(n,p) = ﬁ,
is injective, for a prime p.

Proof. Let m,n € F, and f(m) = f(n). Then (pf;)i—m = (pfg)l_m
m = n, that is f is injective. O

implies that

Theorem 4.2. The action of PSL2(O2) on PL(F),) is transitive.

Proof. We begin from vertex 1. Since the transformation sa maps 1 to %, SO

there is a path from 1 to pp%l = ﬁ. Again application of the transformation

sa on pp;l yields Z%} = (Z)fﬁ. Therefore, we find a path from 1 to ;ﬁ =

ﬁ. The continuation of the above process provides us a path from the vertex
1to ﬁ, wheren =0,1,2,...,p—1. By Theorem 4.1, all the vertices ﬁ,
wheren = 0,1,2,...,p—1 are distinct and none of these is equal to 0. By applying
the transformation a on ﬁ, we reach at the vertex 0. Hence the action is
transitive. O
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