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Automorphisms of abelian n-ary groups

Nikolay A. Shchuchkin

Abstract. We describe relations between automorphisms of an abelian n-ary group and
automorphisms of their binary retracts.

1. Introduction and preliminary results

An algebra 〈G, f〉 with an n-ary operation f (n > 2) is an n-ary (polyadic) group,
if the operation f is associative, i.e.,

f(f(a1, . . . , an), an+1, . . . , a2n−1)
= f(a1, . . . , ai, f(ai+1, . . . , ai+n), ai+n+1, . . . , a2n−1)

for all i = 1, . . . , n− 1, and the equation

f(a1, . . . , aj−1, xj , aj+1, . . . , an) = b

has a unique solution xj ∈ G for each j = 1, . . . , n and a1, . . . , an, b ∈ G.
Since for n = 2 we obtain a (binary) group, we will assume that n > 2.
n-Ary groups belong to a wide class of algebraic objects that are studied from

various point of views. The importance of such groups was pointed out, for exam-
ple, by A.G. Kurosh [14].

In an n-ary group 〈G, f〉 for each a ∈ G the solution of the equation

f(a, . . . , a, x) = a

is denoted by ā and is called the skew element for a. Since this element is uniquely
determined, an n-ary group 〈G, f〉 can be considered (cf. [11]) as an algebra
〈G, f,̄ 〉 with one associative n-ary operation f and one unary operation¯: x→ x̄
such that the following identities:

f(y, x, . . . , x︸ ︷︷ ︸
n−2

, x̄) = f(y, x, . . . , x︸ ︷︷ ︸
n−3

, x̄, x) = f(x̄, x, . . . , x︸ ︷︷ ︸
n−2

, y) = f(x, x̄, x, . . . , x︸ ︷︷ ︸
n−3

, y) = y

are satis�ed.

2010 Mathematics Subject Classi�cation: 20N15, 08N05
Keywords: n-ary group, abelian semicyclic n-ary group, retrect, automorphism, holomorph,
automorphism group, congruence



256 N. A. Shchuchkin

Another weaker system of identities de�ning an n-ary group can be found in
[3] and [5].

Note by the way that in some n-ary groups the map¯: x → x̄ is an endomor-
phism, i.e.,

f(x1, . . . , xn) = f(x̄1, . . . , x̄n)

(cf. [7] and [9]). This situation take place, for example, in n-ary groups in which

f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n))

for all permutations σ ∈ Sn. Such n-ary groups are called commutative or abelian.
Note that the term abelian is also used in another sense (cf. for example [9]).

With each n-ary group 〈G, f〉 there are associated binary groups 〈G,+〉c =
retc〈G, f〉 de�ned by

a+ b = f(a, c, . . . , c︸ ︷︷ ︸
n−3

, c̄, b)

where c is an arbitrary �xed element of G. The element c is a zero (neutral
element) of the group retc〈G, f〉. Moreover, all these groups (called retracts of
〈G, f〉) are isomorphic (cf. [6]). So, all retracts of an abelian n-ary group 〈G, f〉
will be identi�ed with the group 〈G,+〉.

In the case of commutative n-ary groups we have

f(a1, . . . , an) = a1 + . . .+ an + d, (1)

where 〈G,+〉 = retc〈G, f〉 and d = f(c, . . . , c) (cf. [19] or [6]). In this case we say
that an n-ary group 〈G, f〉 is d-derived from the group 〈G,+〉 and denote this fact
by 〈G, f〉 = derd〈G,+〉. If d = 0 (the neutral element of 〈G,+〉), then we say that
an n-ary group der0〈G,+〉 is derived from the group 〈G,+〉.

The reverse is also true: if 〈G,+〉 is an arbitrary abelian group, then for every
d ∈ G the n-ary groupoid d-derived from the group 〈G,+〉 is an n-ary group.
In this case, 〈G,+〉 = ret0derd〈G,+〉, where 0 is a zero element of the group
〈G,+〉 (cf. [19]). Obviously 〈G, f〉 = derdretc〈G, f〉, where d = f(c, . . . , c), for all
commutative n-ary groups.

An n-ary group having a cyclic retract is called an semicyclic [8]. Each com-
mutative semicyclic n-ary group is isomorphic to an n-ary group d-derived from
some cyclic group (cf. [17]). So, commutative semicyclic n-ary groups will be
called abelian semicyclic n-ary groups.

For other basic facts on n-ary groups see [4] and [8].

The composition of maps ϕ,ψ we de�ne by the rule (ϕ ◦ ψ)(x) = ψ(ϕ(x)).
The cyclic group generated by a is denoted by (a); gcd(k,m) denotes the great
common divisor of k and m.
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2. Automorphisms of abelian n-ary groups

We start with the description of relations between automorphisms of abelian n-ary
groups and automorphisms of their binary retracts.

Using ideas presented in the paper [6] we can prove the following two usaful
propositions.

Proposition 2.1. Let ψ be an automorphism of an abelian n-ary group 〈G, f〉
and c ∈ G. Then the map σ : G → G de�ned by σ(x) = −ψ(c) + ψ(x) is an

automorphism of the retract retc〈G, f〉.

Proof. Let a, b ∈ G. Then

σ(a+ b) = σ(f(a, c, . . . , c, c̄, b)) = −ψ(c) + ψ(f(a, c, . . . , c, c̄, b))

= −ψ(c) + f(ψ(a), ψ(c), . . . , ψ(c), ψ(c), ψ(b))

= −ψ(c) + ψ(a) + (n− 3)ψ(c) + ψ(c) + ψ(b) + d

= (−ψ(c) + ψ(a)) + (−ψ(c) + ψ(b)) + (n− 2)ψ(c) + ψ(c) + d

= σ(a) + σ(b) + (n− 2)ψ(c) + ψ(c) + d

= f(σ(a) + σ(b), ψ(c), . . . , ψ(c), ψ(c)) = σ(a) + σ(b),

where d = f(c, . . . , c). Hence the proposition.

Proposition 2.2. Let 〈G, f〉 = derd〈G,+〉 and σ be an automorphism of the

abelian group 〈G,+〉. If there is an element u ∈ G such that σ(d) = (n− 1)u+ d,
then the map ψ : G→ G, de�ned by ψ(x) = u+ σ(x), is an automorphism of the

n-ary group 〈G, f〉. There are no more automorphisms of 〈G, f〉.

Proof. Let a1, . . . , an ∈ G. Then

ψ(f(a1, . . . , an)) = u+ σ(a1 + . . .+ an + d) = u+ σ(a1) + . . .+ σ(an) + σ(d)

= u+ σ(a1) + . . .+ σ(an) + (n− 1)u+ d

= f(u+ σ(a1), . . . , u+ σ(an)) = f(ψ(a1), . . . , ψ(an)).

Hence ψ is an automorphism of 〈G, f〉.
Now let τ be an arbitrary automorphism of 〈G, f〉. Then, according to Propo-

sition 2.1, the map σ : G→ G de�ned by σ(x) = −u+ τ(x), where u = τ(0), is an
automorphism of the group 〈G,+〉 = ret0〈G, f〉. Moreover,

σ(d) = −u+ τ(d) = −u+ τ(f(0, . . . , 0) = −u+ f(u, . . . , u)

= −u+ nu+ d = (n− 1)u+ d.

Then τ is one of automorphisms of 〈G, f〉 obtained earlier from automorphisms of
the group 〈G,+〉. Hence the proposition.
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Later we will need the following

Lemma 2.3. Let d be a �xed element of an abelian group G and Ud be the set of

all automorphisms σ of G such that σ(d) = (n− 1)u+ d (n > 2) for some u ∈ G.

Then Ud is a subgroup of AutG.

Proof. Let σ1, σ2 ∈ AutG be such that σ1(d) = (n − 1)u1 + d and σ2(d) =
(n− 1)u2 + d (n > 2) for some u1, u2 ∈ G. Then

(σ1 ◦ σ2)(d) = σ2(σ1(d)) = σ2((n− 1)u1 + d) = (n− 1)σ2(u1) + σ2(d)
= (n− 1)σ2(u1) + (n− 1)u2 + d = (n− 1)(σ2(u1) + u2) + d.

Thus (σ1 ◦ σ2)(d) = (n − 1)u3 + d, where u3 = σ2(u1) + u2. For an identity
automorphism 1G and for the zero element 0 of the group G we have 1G(d) =
(n− 1)0 + d. Finally

σ−1
1 (d) = σ−1

1 (σ1(d)− (n− 1)u1) = σ−1
1 (σ1(d))− (n− 1)σ−1

1 (u1)

= (n− 1)σ−1
1 (−u1) + d.

Hence σ−1
1 (d) = (n−1)u4+d, where u4 = σ−1

1 (−u1). This completes the proof.

Now we can study the automorphism group of an abelian n-ary group.

Theorem 2.4. The automorphism group of abelian n-ary group 〈G, f〉 is embedded

into the holomorph of the group retc〈G, f〉.

Proof. Consider the holomorph Hol retc〈G, f〉 of the group retc〈G, f〉. De�ne the
map τ from Aut〈G, f〉 to Hol retc〈G, f〉 by putting τ(ψ) = (σ,−ψ(c)), where σ is
an automorphism of retc〈G, f〉 such that σ(x) = −ψ(c)+ψ(x). By Proposition 2.1
the de�nition of τ is correct. Now we are going to show that τ is injective. Let
τ(ψ1) = τ(ψ2) for some ψ1, ψ2 ∈ Aut〈G, f〉, where τ(ψ1) = (σ1,−ψ1(c)) and
τ(ψ2) = (σ2,−ψ2(c)). Then ψ1(c) = ψ2(c), and for each x ∈ G we have σ1(x) =
σ2(x) which implies −ψ1(c) + ψ1(x) = −ψ2(c) + ψ2(x). Hence ψ1(x) = ψ2(x), for
each x ∈ G. So τ is injective. It also preserves the group operation. Indeed, if
ψ1, ψ2 ∈ Aut〈G, f〉 and

τ(ψ1) = (σ1,−ψ1(c)), τ(ψ2) = (σ2,−ψ2(c)), τ(ψ1 ◦ ψ2) = (σ3,−(ψ1 ◦ ψ2)(c)),

where

σ1(x) = −ψ1(c)+ψ1(x), σ2(x) = −ψ2(c)+ψ2(x), σ3(x) = −(ψ1◦ψ2)(c)+(ψ1◦ψ2)(x)

for each x ∈ G, then

(σ1 ◦ σ2)(x) = σ2(σ1(x)) = σ2(−ψ1(c) + ψ1(x)) = −σ2(ψ1(c)) + σ2(ψ1(x))
= −(−ψ2(c) + ψ2(ψ1(c))) + (−ψ2(c) + ψ2(ψ1(x)))
= −(ψ1 ◦ ψ2)(c) + (ψ1 ◦ ψ2)(x),
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hence σ3(x) = (σ1 ◦ σ2)(x) for each x ∈ G. Then

τ(ψ1) · τ(ψ2) = (σ1,−ψ1(c)) · (σ2,−ψ2(c)) = (σ1 ◦ σ2,−ψ1(c) + σ1(−ψ2(c)))
= (σ1 ◦ σ2,−ψ1(c)− σ1(ψ2(c)))
= (σ1 ◦ σ2,−ψ1(c) + ψ1(c)− ψ1(ψ2(c)))
= (σ1 ◦ σ2,−(ψ1 ◦ ψ2)(c)) = τ(ψ1 ◦ ψ2),

which completes the proof.

3.Automorphisms of abelian semicyclic n-ary groups

Automorphisms of semicyclic n-ary groups (both abelian and non-abelian) are
studied in [7]. Here we recall some facts from this paper.

Consider an additive group Zk modulo k and a corresponding abelian semicyclic
n-ary group derlZk, where 0 6 l < k. Finite cyclic groups of the same order are
isomorphic but abelian semicyclic n-ary groups of the same order may not be
isomorphic. It is known (cf. [10]) that two n-ary groups derl1Zk and derl2Zk are
isomorphic if and only if gcd(l1, n − 1, k) = gcd(l2, n − 1, k). It implies that the
number of distinct (non-isomorphic) abelian semicyclic n-ary groups l-derived from
the group Zk is equal to the number of positive divisors τ(d) of d = gcd(n− 1, k)
and each such n-ary group is de�ned by a divisor l of d.

For example, three abelian semicyclic 5-ary groups can be de�ned on a cyclic
group Z4 since gcd(4, 4) has three divisors: 1,2,4. So, they have the form der0Z4,
der1Z4 and der2Z4, where der1Z4 is a cyclic 5-ary group.

Knowing automorphisms of a �nite cyclic group one can �nd all automorphisms
of the corresponding �nite abelian semicyclic n-ary group.

Proposition 3.1. (Theorem 6.3, [7]) Let derlZk be a semicyclic n-ary group and

σ(x) = wx, where w and k are coprime, be an automorphism of the group Zk. Then

the map ψ(x) = wx+ t, where t is a solution of the congruence x(n− 1) ≡ l(w− 1)
(mod k) and gcd(n−1, k) is a divisor of l(w−1), is an automorphism of the n-ary
group derlZk. There are no more automorphisms of derlZk.

Corollary 3.2. If σ(x) = wx is an automorphism of the group Zk, then ψ(x) =
wx + t, where t is a solution of the congruence x(n − 1) ≡ 0(mod k) is an au-

tomorphism of the n-ary group der0Zk. There are no more automorphisms of

der0Zk.

It follows from Proposition 3.1 that each automorphism of a �nite cyclic group
Zk de�ned by an integer w gives exactly d = gcd(n− 1, k) distinct automorphisms
of the semicyclic n-ary group derlZk, since the congruence x(n − 1) ≡ l(w − 1)
(mod k) has d solutions, that can be calculated using the formulas t = t0 + v k

d

where 0 6 v 6 d−1 and t0 is a solution of the congruence xn−1
d ≡ l(w−1)

d (mod k
d ).

Thus each automorphism of derlZk is de�ned uniquely by the integers w and t.
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Example 3.3. Find all automorphisms of abelian semicyclic 5-ary groups de�ned
on the cyclic group Z4. As it was mentioned earlier there are three such 5-ary
groups: der0Z4, der1Z4 and der2Z4.

The 5-ary group der0Z4 has 8 automorphisms since there are two integers
that are coprime to 4, and the congruence 4x ≡ 0(mod 4) has four solutions.
So, by Corollary 3.2, each automorphism is de�ned by one of the following rules:
ψ1(x) = x, ψ2(x) = x+1, ψ3(x) = x+2, ψ4(x) = x+3, ψ5(x) = 3x, ψ6(x) = 3x+1,
ψ7(x) = 3x+ 2, ψ8(x) = 3x+ 3.

The cyclic 5-ary group der1Z4 has 4 automorphisms since there is exactly one
integer that is coprime to 4 which satis�es the Proposition 3.1. Thus we have the
congruence 4x ≡ 0(mod 4). It has four solutions. According to Proposition 3.1,
automorphisms of der1Z4 have the form: ψ1(x) = x, ψ2(x) = x+1, ψ3(x) = x+2,
ψ4(x) = x+ 3.

Finally, the 5-ary group der2Z4 has 8 automorphisms since there are two inte-
gers w that are coprime to 4 and satisfy the Proposition 3.1. Both congruences:
4x ≡ 0(mod 4) for w = 1, and 4x ≡ 4(mod 4) for w = 3, have four solutions.
So, by Proposition 3.1, these automorphisms coincide with automorphisms of the
5-ary group der0Z4.

Let Z∗
k be the multiplicative group of the ring Zk. Then the set

A∗
d
l

=
{
w ∈ Z∗

k | w ≡ 1 (mod
d

l
)
}
,

where l divides d, is a subgroup of Z∗
k (see our discussion before Proposition 3.1).

Theorem 3.4. (Theorem 6.5, [7]) The automorphism group of the abelian semi-

cyclic n-ary group derlZk, provided l|gcd(n− 1, k), is isomorphic to the extension

of a cyclic group of order d = gcd(n− 1, k) by the multiplicative group A∗
d
l

.

Corollary 3.5. (Corollary 6.6, [7]) The automorphism group of a cyclic n-ary
group of a �nite order k is isomorphic to the direct sum of A∗

d and a cyclic group

(k
d ), where d = gcd(n− 1, k).

Corollary 3.6. The automorphism group of an n-ary group derived from a cyclic

group of a �nite order k is isomorphic to the extension of a cyclic group of order

d = gcd(n− 1, k) by the multiplicative group Z∗
k.

Proof. Each n-ary group derived from a cyclic group of a �nite order k is iso-
morphic to the n-ary group derived from the cyclic group Zk. Consequently, by
Corollary 3.2, the multiplicative group A∗

d
l

from Theorem 3.4 is exactly the mul-

tiplicative group Z∗
k.

Corollary 3.7. (Corollary 6.8, [7]) If gcd(n − 1, k) = 1, then the n-ary group

derlZk is cyclic for each l = 0, 1, 2, . . . , k − 1 (see [18], Corollary 1) and its auto-

morphism group is isomorphic to the multiplicative group Z∗
k.
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As is well known (see Theorem 3, [18]) each in�nite abelian semicyclic n-ary
group is isomorphic to the n-ary group derlZ, where 0 6 l 6 n−1

2 and Z is the
additive group of integers.

Theorem 3.8. Let derlZ be an in�nite semicyclic n-ary group. Then

1) for l = 0 it has only two automorphisms: ϕ1(x) = x and ϕ2(x) = −x,

2) for l = n−1
2 it has only two automorphisms: ϕ1(x) = x and ϕ2(x) = −x− 1,

3) in other cases it has only the identity automorphism.

Proof. If l = 0, then by Proposition 2.2 each automorphism of the group Z is an
automorphisms of an n-ary group der0Z. So, ϕ(x) = x or ϕ(x) = −x.

Now let 0 < l 6 n−1
2 . If τ is an automorphism of an n-ary group derlZ, then,

by Proposition 2.1, the map σ(x) = τ(x)− t, where τ(0) = t, is an automorphism
of the group Z. So, either τ(x) = x + t or τ(x) = −x + t. Furthermore, on one
hand, either τ(f(0, . . . , 0)) = τ(l) = l + t or τ(f(0, . . . , 0)) = τ(l) = −l + t; on the
other hand, f(τ(0), . . . , τ(0)) = f(t, . . . , t) = nt+ l. Hence, either l+ t = nt+ l or
−l+t = nt+l. The �rst equality implies t = 0, i.e., τ is the identity automorphism.
The second equality gives two cases: (a) l = 0 and t = 0, (b) l = n−1

2 for odd n and
t = −1. In the case (a) we have τ(x) = −x; in the case (b) we get τ(x) = −x− 1.
Therefore, there are no other automorphisms.

Since an n-ary group derlZ is cyclic if and only if either l ≡ 1(mod n − 1)
or l ≡ −1(mod n − 1) (see Proposition 8, [17]), as a consequence of the above
theorem we obtain

Corollary 3.9. (Corollary 6.11, [7]) For n > 3 the automorphism group of an

in�nite abelian cyclic n-ary group is trivial.

Corollary 3.10. (Corollary 4, [15]) The automorphism group of an in�nite abelian

cyclic ternary group has only two elements: ϕ(x) = x and ϕ(x) = −x− 1.

4. Automorphisms of primary abelian n-ary groups

Following the group theory, we say that a �nite n-ary group is an n-ary p-group
if its order is a power of a prime number p. Such n-ary groups are also called
primary.

Recall the following

Theorem 4.1. (Theorem 8, [2]) Each �nite abelian n-ary group is isomorphic to

a direct product of semicyclic abelian n-ary p-groups.

Let 〈G, f〉 be an abelian n-ary group of an order pα1pα2 . . . pαk , where p is
prime and α1 > α2 > . . . > αk. Consider the abelian group 〈G,+〉 = retc〈G, f〉.
Since c is a zero of 〈G,+〉 it will be identi�ed with 0.
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Let 〈G,+〉 =
∑k

s=1Gs be a direct sum of abelian p-groups Gs, where each
group Gs =

∑ns

i=1(ais) is a direct sum of cyclic groups (ais) of the �xed order pαs .

Then d = f(0, . . . , 0) =
∑k

s=1

∑ns

i=1 lisais.
Consider the family of n-ary groups derlisais

(ais). The map ψ from an n-ary

group 〈G, f〉 into the direct product
∏k

s=1

∏ns

i=1 derlisais
(ais) de�ned by

ψ(
∑k

s=1

∑ns

i=1 xisais) =
∏k

s=1

∏ns

i=1 xisais

is an isomorphism (see the proof of Theorem 8 in [2]).
It is known (see, for example, §21, [13]), that the ring End〈G,+〉 is isomorphic

to the ring M of integer matrices (yjt
is) of the order n1 + n2 + . . . + nk, where

1 6 s, t 6 k and for given s, t the indexes i, j satisfy
∑s−1

r=1 nr + 1 6 i 6
∑s

r=1 nr

and
∑t−1

r=1 nr + 1 6 j 6
∑t

r=1 nr (where in the case s = 1 and t = 1 we have

n0 = 0). The lower pair of indexes is denotes the number of the rows
∑s−1

r=1 nr + i;

the upper pair jt denotes the number of columns
∑t−1

r=1 nr + j, where

yjt
is =

{
xjt

is, if either s < t or s = t and i < j, where 0 6 xjt
is < pαt ,

pαt−αsxjt
is, if either s > t or s = t and i > j, where 0 6 xjt

is < pαs .

The addition and multiplication are de�ned as follows:

(yjt
is) + (y′jt

is) = ((yjt
is + y′

jt
is) (mod p)αt),

(yjt
is)× (y′jt

is) = ((
∑k

r=1

∑nr

v=1 y
vr
is · y′jt

vr) (mod p)αt).

The isomorphism ψ maps every automorphism σ of the group 〈G,+〉 to the
invertible matrix (yjt

is) from the ring M , so σ acts on G by the following rule: if

g ∈ G and g =
∑k

s=1

∑ns

i=1 qisais, then

σ(g) =
k∑

t=1

nt∑
j=1

( k∑
s=1

ns∑
i=1

qisy
jt
is

)
ajt. (2)

Proposition 4.2. Let 〈G, f〉 =
∏k

s=1

∏ns

i=1 derlisais
(ais) be a direct product of

n-ary groups derlisais(ais), where |(ais)| = pαs , α1 > α2 > . . . > αk and p is

prime. If σ is an automorphism of the group 〈G,+〉 =
∑k

s=1

∑ns

i=1(ais) that

corresponds to the integer matrix (yjt
is) of the order

∑k
s=1 ns and gcd(n − 1, pαt)

divides ljt −
∑k

s=1

∑ns

i=1 lisy
jt
is for each t = 1, . . . , k and j = 1, . . . , nt, then the

map ψ(g) = σ(g) +
∑k

t=1

∑nt

j=1 ujtajt, where ujt are solutions of the congruences∑k
s=1

∑ns

i=1lisy
jt
is ≡ (n−1)x+ ljt(mod )pαt, is an automorphism of the n-ary group

〈G, f〉.

Proof. Since 〈G, f〉 = derd〈G,+〉, where d =
∑k

s=1

∑ns

i=1 lisais, and gcd(n−1, pαt)
divides ljt −

∑k
s=1

∑ns

i=1 lisy
jt
is for all t = 1, . . . , k and j = 1, . . . , nt, then
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gcd(n−1, pα1) | (l11 −
∑k

s=1

∑ns

i=1 lisp
α1−αsx11

is )
. . . . . . . . . . . . . . . . . . . . . . . .

gcd(n−1, pα1) | (ln11 −
∑k

s=1

∑ns

i=1 lisp
α1−αsxn11

is )
gcd(n−1, pα2) | (l12 −

∑n1
i=1 li1x

12
i1 −

∑k
s=2

∑ns

i=1 lisp
α2−αsx12

is )
. . . . . . . . . . . . . . . . . . . . . . . .

gcd(n−1, pα2) | (ln22 −
∑n1

i=1 li1x
n22
i1 −

∑k
s=2

∑ns

i=1 lisp
α2−αsxn22

is )
. . . . . . . . . . . . . . . . . . . . . . . .

gcd(n−1, pαk−1) | (l1k−1 −
∑k−1

s=1

∑ns

i=1 lisx
1k−1
is −

∑nk

i=1 likp
αk−1−αkx1k−1

ik )
. . . . . . . . . . . . . . . . . . . . . . . .

gcd(n−1, pαk−1) | (lnk−1k−1−
∑k−1

s=1

∑ns

i=1lisx
nk−1k−1
is −

∑nk

i=1likp
αk−1−αkx

nk−1k−1
ik )

gcd(n−1, pαk) | (l1k −
∑k

s=1

∑ns

i=1 lisx
1k
is )

. . . . . . . . . . . . . . . . . . . . . . . .

gcd(n−1, pαk) | (lnkk −
∑k

s=1

∑ns

i=1 lisx
nkk
is ).

This means that the following congruences

∑k
s=1

∑ns

i=1 lisp
α1−αsx11

is ≡ (n− 1)x+ l11(mod pα1)
. . . . . . . . . . . . . . . . . . . . . . . .∑k

s=1

∑ns

i=1 lisp
α1−αsxn11

is ≡ (n− 1)x+ ln11(mod pα1)∑n1
i=1 li1x

12
i1 +

∑k
s=2

∑ns

i=1 lisp
α2−αsx12

is ≡ (n− 1)x+ l12(mod pα2)
. . . . . . . . . . . . . . . . . . . . . . . .∑n1

i=1 li1x
n22
i1 +

∑k
s=2

∑ns

i=1 lisp
α2−αsxn22

is ≡ (n− 1)x+ ln22(mod pα2)
. . . . . . . . . . . . . . . . . . . . . . . .∑k−1

s=1

∑ns

i=1 lisx
1k−1
is +

∑nk

i=1 likp
αk−1−αkx1k−1

ik ≡ (n− 1)x+ l1k−1(mod pαk−1)
. . . . . . . . . . . . . . . . . . . . . . . .∑k−1

s=1

∑ns

i=1lisx
nk−1k−1
is +

∑nk

i=1likp
αk−1−αkx

nk−1k−1
ik ≡(n−1)x+lnk−1k−1(mod pαk−1)∑k

s=1

∑ns

i=1 lisx
1k
is ≡ (n− 1)x+ l1k (mod pαk)

. . . . . . . . . . . . . . . . . . . . . . . .∑k
s=1

∑ns

i=1 lisx
nkk
is ≡ (n− 1)x+ lnkk (mod pαk).

have solutions.
Let ujt (where t = 1, . . . , k and j = 1, . . . , nt) be the solutions of the cor-

responding congruences from the above system. Then σ(d) = (n − 1)u + d for

u =
∑k

s=1

∑ns

i=1 uisais. Proposition 2.2 completes the proof.

By Proposition 4.2 each automorphism σ of the group 〈G,+〉 =
∑k

s=1

∑ns

i=1(ais)
for which dt = gcd(n − 1, pαt) | (ljt −

∑k
s=1

∑ns

i=1 lisy
jt
is) for t = 1, . . . , k and

j = 1, . . . , nt, de�nes exactly
∏k

t=1 dt automorphisms of the abelian n-ary group

〈G, f〉 =
∏k

s=1

∏ns

i=1 derlisais
(ais). Moreover, each of them is de�ned by the in-

tegers vjt (0 6 vjt 6 dt − 1) such that u
vjt

jt = u0
jt + vjt

pαt

dt
is a solution of the

congruence
∑k

s=1

∑ns

i=1 lisy
jt
is ≡ (n− 1)x+ ljt (mod pαt), where u0

jt is the solution
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of the congruence
∑k

s=1
∑ns

i=1 lisyjt
is

dt
≡ n−1

dt
x + ljt

dt
(mod pαt

dt
). Thus each automor-

phism of
∏k

s=1

∏ns

i=1 derlisais
(ais) is uniquely determined by the ordered set

V = {vjt | t = 1, . . . , k, j = 1, . . . , nt}

and an automorphism σ of the direct sum of cyclic groups
∑k

s=1

∑ns

i=1(ais) such
that dt = gcd(n−1, pαt) | (ljt−

∑k
s=1

∑ns

i=1 lisy
jt
is) for t = 1, . . . , k and j = 1, . . . , nt.

Thus we denote such automorphism by ψσ,V .

Theorem 4.3. Let 〈G, f〉 =
∏k

s=1

∏ns

i=1 derlisais(ais) be the direct product of n-ary
groups derlisais

(ais), where |(ais)| = pαs , α1 > α2 > . . . > αk and p is prime. If

Ud is an automorphism group of the direct sum of cyclic groups
∑k

s=1

∑ns

i=1(ais)
having the corresponding integer matrices (yjt

is) of the degree
∑k

s=1 ns such that

dt = gcd(n − 1, pαt) | (ljt −
∑k

s=1

∑ns

i=1 lisy
jt
is) for each t = 1, . . . , k and j =

1, . . . , nt, then the automorphism group of the n-ary group 〈G, f〉 is isomorphic to

the extension of the direct sum
∑k

t=1

∑nt

j=1(
pαt

dt
ajt) of cyclic subgroups (pαt

dt
ajt) of

cyclic groups (ajt) by the group Ud.

Proof. For each σ ∈ Ud corresponds an invertible matrix (yjt
is) from the ring M

(de�ned earlier) such that σ acts onG by the rule (2). For each index s ∈ {1, . . . , k}
and each index i ∈ {1, . . . , , ns} (for each �xed s) we can calculate the image of

the generating element pαs

ds
ais of the cyclic subgroup (pαs

ds
ais). Namely,

σ(
pαs

ds
ais) =

k∑
t=1

nt∑
j=1

pαs

ds
yjt

isajt. (3)

Now we �x indexes s and i and show that for any indexes t and j from (3) the

integer pαs

ds
yjt

is is divided by pαt

dt
. Indeed, if s < t or s = t and i < j, then αs > αt

and, consequently, pαs

ds
is divided by pαt

dt
. If s > t or s = t and i > j, then αs ≤ αt

and hence pαs

ds
pαt−αs is divided by pαt

dt
. So in both cases pαs

ds
yjt

is is divided by pαt

dt
.

Let pαs

ds
yjt

is = zjt
is

pαt

dt
. Since zjt

is = qjt
isdt + rjt

is , where 0 6 rjt
is < dt, from (3) we

obtain

bis = σ(pαs

ds
ais) =

∑k
t=1

∑nt

j=1 r
jt
is

pαt

dt
ajt.

Let us show that all elements bis form the basis of the direct sum
∑k

s=1

∑ns

i=1(
pαs

ds
ais).

Let
∑k

s=1

∑ns

i=1misbis = 0, then
∑k

s=1

∑ns

i=1mis(
∑k

t=1

∑nt

j=1 r
jt
is

pαt

dt
ajt) = 0 or∑k

t=1

∑nt

j=1(
∑k

s=1

∑ns

i=1misr
jt
is)

pαt

dt
ajt = 0. Since all the elements pαt

dt
ajt form the

basis of the direct sum
∑k

s=1

∑ns

i=1(
pαs

ds
ais), then

∑k
s=1

∑ns

i=1misr
jt
is ≡ 0(mod dt)

for all t and j. Since zjt
is ≡ rjt

is (mod dt), then
∑k

s=1

∑ns

i=1misz
jt
is ≡ 0(mod dt) for

all t, j. Multiplying the last congruence by pαt

dt
we get

∑k
s=1

∑ns

i=1misz
jt
is

pαt

dt
≡ 0
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(mod pαt) for all t and j. Since pαs

ds
yjt

is = zjt
is

pαt

dt
, then

∑k
s=1

∑ns

i=1mis
pαs

ds
yjt

is ≡ 0

(mod pαt). Thus
∑k

t=1

∑nt

j=1(
∑k

s=1

∑ns

i=1mis
pαs

ds
yjt

is)ajt = 0. According to (2) we

have σ(
∑k

s=1

∑ns

i=1mis
pαs

ds
ais) = 0. Hence

∑k
s=1

∑ns

i=1mis
pαs

ds
ais = 0 since σ is

bijective. But the elements ais form the basis of the group
∑k

s=1

∑ns

i=1(ais), thus,
mis

pαs

ds
≡ 0(mod pαs) for any s and i. Then mis ≡ 0 (mod ds) for any indexes s

and i. Thus we have proved that the elements bis form the basis of the direct sum
B =

∑k
s=1

∑ns

i=1(
pαs

ds
ais), and therefore the map σB de�ned by the following rule:

if g ∈ B and g =
∑k

s=1

∑ns

i=1 qis
pαs

ds
ais, then

σB(g) =
∑k

t=1

∑nt

j=1(
∑k

s=1

∑ns

i=1 qisr
jt
is)

pαt

dt
ajt,

is an automorphism of the group B.
Now we �x the homomorphism ζ : Ud → AutB such that ζ(σ) = σB . We

construct the extension Ud ·B of the group B by the group Ud with the operation
acting in the following way: let σ1, σ2 ∈ Ud, g1, g2 ∈ B, g1 =

∑k
s=1

∑ns

i=1 v
′
is

pαs

ds
ais,

g2 =
∑k

s=1

∑ns

i=1 v
′′
is

pαs

ds
ais and the automorphism σ2 from Ud be de�ned by the

matrix (y′′jt
is). Moreover,

σ2

(pαs

ds
ais

)
=

k∑
t=1

nt∑
j=1

pαs

ds
y′′

jt
isajt =

k∑
t=1

nt∑
j=1

r′′
jt
is

pαt

dt
ajt (4)

for all elements pαs

ds
ais of B. Therefore,

ζ(σ2)(g1) = σB
2 (g1) =

k∑
t=1

nt∑
j=1

( k∑
s=1

ns∑
i=1

v′isr
′′jt

is

)pαt

dt
ajt.

Thus,

σ1g1 · σ2g2 = (σ1 ◦ σ2)(ζ(σ2)(g1) + g2) = (σ1 ◦ σ2)(σB
2 (g1) + g2)

= (σ1 ◦ σ2)
( k∑

t=1

nt∑
j=1

( k∑
s=1

ns∑
i=1

v′isr
′′jt

is + v′′jt

)pαt

dt
ajt

)
(see, for example, [12]). Hence, σ1g1 · σ2g2 = (σ1 ◦ σ2)g3, where

g3 =
k∑

t=1

nt∑
j=1

( k∑
s=1

ns∑
i=1

v′isr
′′jt

is + v′′jt

)pαt

dt
ajt. (5)

We de�ne the map τ : Aut〈G, f〉 → Ud · B by putting τ : ψσ,V → σg, where

g =
∑k

s=1

∑ns

i=1 vis
pαs

ds
ais. It is clear that τ is a bijection.

Let ψσ1,V1 , ψσ2,V2 ∈ Aut〈G, f〉, where the automorphisms σ1 and σ2 are de-

�ned by matrices (y′jt
is) and (y′′jt

is), respectively. Consider the ordered set V1
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of integers v′jt taken from the solutions u
v′jt

jt = u′
0
jt + v′jt

pαt

dt
of the congruence∑k

s=1

∑ns

i=1 lisy
′jt
is ≡ (n − 1)x + ljt (mod pαt), where u′0jt is a solution of the con-

gruence
∑k

s=1
∑ns

i=1 lisy′jt
is

dt
≡ n−1

dt
x + ljt

dt
(mod pαt

dt
). Similarly, V2 is an ordered

set of integers v′′jt taken from the solutions u
v′′jt

jt = u′′
0
jt + v′′jt

pαt

dt
of the congru-

ence
∑k

s=1

∑ns

i=1 lisy
′′jt

is ≡ (n − 1)x + ljt (mod pαt), where u′′0jt is a solution of

the congruence
∑k

s=1
∑ns

i=1 lisy′′jt
is

dt
≡ n−1

dt
x + ljt

dt
(mod pαt

dt
). Here t = 1, . . . , k and

j = 1, . . . , nt for any �xed t.
For each g ∈ G, g =

∑k
s=1

∑ns

i=1 qisais, we have

(ψσ1,V1 ◦ ψσ2,V2)(g) = ψσ2,V2(ψσ1,V1(g)) = ψσ2,V2

(
σ1(g) +

k∑
r=1

nr∑
v=1

u
v′vr
vr avr

)
= ψσ2,V2

( k∑
r=1

nr∑
v=1

( k∑
s=1

ns∑
i=1

qisy
′vr
is

)
avr +

k∑
r=1

nr∑
v=1

u
v′vr
vr avr

)
= ψσ2,V2

( k∑
r=1

nr∑
v=1

( k∑
s=1

ns∑
i=1

qisy
′vr
is + u

v′vr
vr

)
avr

)
= σ2

( k∑
r=1

nr∑
v=1

( k∑
s=1

ns∑
i=1

qisy
′vr
is + u

v′vr
vr

)
avr

)
+

k∑
t=1

nt∑
j=1

u
v′′jt

jt ajt

=
k∑

t=1

nt∑
j=1

( k∑
r=1

nr∑
v=1

( k∑
s=1

ns∑
i=1

qisy
′vr
is + u

v′vr
vr

)
y′′

jt
vr

)
ajt +

k∑
t=1

nt∑
j=1

u
v′′jt

jt ajt

=
k∑

t=1

nt∑
j=1

( k∑
r=1

nr∑
v=1

( k∑
s=1

ns∑
i=1

qisy
′vr
is

)
y′′

jt
vr

)
ajt+

k∑
t=1

nt∑
j=1

( k∑
r=1

nr∑
v=1

u
v′vr
vr y

′′jt
vr

)
ajt+

k∑
t=1

nt∑
j=1

u
v′′jt

jt ajt

= (σ1 ◦ σ2)(g) +
k∑

t=1

nt∑
j=1

( k∑
r=1

nr∑
v=1

u
v′vr
vr y

′′jt
vr + u

v′′jt

jt

)
ajt.

Let us show that c =
∑k

r=1

∑nr

v=1 u
v′vr
vr y′′

jt
vr + u

v′′jt

jt is a solution of the congruence

k∑
s=1

ns∑
i=1

lis

( k∑
r=1

nr∑
v=1

y′
vr
is y

′′jt
vr

)
≡ (n− 1)x+ ljt (mod pαt). (6)

By the hypothesis, the following n1 + . . .+ nk congruences
k∑

s=1

ns∑
i=1

lisy
′vr
is ≡ (n− 1)uv′vr

vr + lvr (mod pαr )

is valid for r = 1, . . . , k and v = 1, . . . , nr.
Multiplying each of these congruences by the corresponding y′′

jt
vr (for �xed t

and j) we obtain (n1 + . . .+ nk)2 congruences

k∑
s=1

ns∑
i=1

lisy
′vr
is y

′′jt
vr ≡ (n− 1)uv′vr

vr y
′′jt

vr + lvry
′′jt

vr (mod pαr ).
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Adding (with respect to r and v) obtained congruences for �xed t and j we obtain
n1 + . . .+ nk true congruences

k∑
r=1

nr∑
v=1

( k∑
s=1

ns∑
i=1

lisy
′vr
is y

′′jt
vr

)
≡

k∑
r=1

nr∑
v=1

(n−1)uv′vr
vr y

′′jt
vr+

k∑
r=1

nr∑
v=1

lvry
′′jt

vr (mod pαt). (7)

But by the hypothesis for each t and j we also get n1 + . . .+ nk true congruences

k∑
r=1

nr∑
v=1

lvry
′′jt

vr ≡ (n− 1)u
v′′jt

jt + ljt (mod pαt).

So, (7) gives

k∑
r=1

nr∑
v=1

( k∑
s=1

ns∑
i=1

lisy
′vr
is y

′′jt
vr

)
≡

k∑
r=1

nr∑
v=1

(n−1)uv′vr
vr y

′′jt
vr+(n−1)u

v′′jt

jt +ljt (mod pαt) or

k∑
s=1

ns∑
i=1

lis

( k∑
r=1

nr∑
v=1

y′
vr
is y

′′jt
vr

)
≡ (n− 1)

( k∑
r=1

nr∑
v=1

u
v′vr
vr y

′′jt
vr + u

v′′jt

jt

)
+ ljt (mod pαt).

Hence c satis�es the congruence (6). Therefore c = u
v′′′jt

jt = u′′′
0
jt + v′′′jt

pαt

dt
is a

solution of the congruence
∑k

s=1

∑ns

i=1 lisy
′′′jt

is ≡ (n − 1)x + ljt(mod pαt), where

u′′′
0
jt is a solution of the congruence

∑k
s=1

∑ns
i=1 lisy′′′jt

is

dt
≡ n−1

dt
x + ljt

dt
(mod pαt

dt
),

y′′′
jt
is =

∑k
r=1

∑nr

v=1 y
′vr
is y

′′jt
vr and 0 6 v′′′jt 6 dt − 1.

Consequently, the composition ψσ1,V1 ◦ ψσ2,V2 of the automorphisms ψσ1,V1

and ψσ2,V2 of the n-ary group 〈G, f〉 is the automorphism ψσ1◦σ2,V3 , where V3 is a

collection of integers v′′′jt from the solutions u
v′′′jt

jt of (6).
Now let us prove that

τ(ψσ1,V1 ◦ ψσ2,V2) = τ(ψσ1,V1) · τ(ψσ2,V2).

We have τ(ψσ1,V1 ◦ ψσ2,V2) = τ(ψσ1◦σ2,V3) = (σ1 ◦ σ2)g4, where g4 has the form

g4 =
∑k

s=1

∑ns

i=1 v
′′′
is

pαs

ds
ais. On the other hand τ(ψσ1,V1) · τ(ψσ2,V2) = (σ1 ◦ σ2)g3,

where g3 is from (5). Let us show g3 = g4. Indeed, considering (4) we have

g4 =
k∑

t=1

nt∑
j=1

v′′′jt

pαt

dt
ajt =

k∑
t=1

nt∑
j=1

( k∑
r=1

nr∑
v=1

u
v′vr
vr y

′′jt
vr + u

v′′jt

jt − u′′′
0
jt

)
ajt

=
k∑

t=1

nt∑
j=1

( k∑
r=1

nr∑
v=1

(u′0vr + v′vr

pαr

dr
)y′′jt

vr + u′′
0
jt + v′′jt

pαt

dt
− u′′′

0
jt

)
ajt

=
k∑

t=1

nt∑
j=1

( k∑
r=1

nr∑
v=1

u′
0
vry

′′jt
vr +

k∑
r=1

nr∑
v=1

v′vr

pαr

dr
y′′

jt
vr + u′′

0
jt + v′′jt

pαt

dt
− u′′′

0
jt

)
ajt

=
k∑

t=1

nt∑
j=1

( k∑
r=1

nr∑
v=1

u′
0
vry

′′jt
vr+u

′′0
jt−u′′′

0
jt

)
ajt+

k∑
t=1

nt∑
j=1

( k∑
r=1

nr∑
v=1

v′vr

pαr

dr
y′′

jt
vr+v

′′
jt

pαt

dt

)
ajt
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=
k∑

t=1

nt∑
j=1

( k∑
r=1

nr∑
v=1

u′
0
vry

′′jt
vr+u

′′0
jt−u′′′

0
jt

)
ajt+

k∑
t=1

nt∑
j=1

( k∑
r=1

nr∑
v=1

v′vrr
′′jt

vr+v
′′
jt

)pαt

dt
ajt.

It is now su�cient to show that the �rst component of the last sum is equal to
zero. In fact, we have n1 + . . .+ nk true congruences∑k

s=1

∑ns

i=1 lisy
′vr
is

dr
≡ n− 1

dr
u′

0
vr +

lvr

dr
(mod

pαr

dr
),

where r = 1, . . . , k and v = 1, . . . , nr. Multiplying each congruence by the corre-
sponding y′′

jt
vr (for �xed t and j), we obtain (n1 + . . .+ nk)2 congruences∑k
s=1

∑ns

i=1 lisy
′vr
is y

′′jt
vr

dr
≡ n− 1

dr
u′

0
vry

′′jt
vr +

lvr

dr
y′′

jt
vr (mod

pαr

dr
).

Adding (with respect to r and v) obtained congruences for �xed t and j and get
n1 + . . .+ nk true congruences∑k

r=1
∑nr

v=1(
∑k

s=1
∑ns

i=1 lisy′vr
is y′′jt

vr)

dt

≡
∑k

r=1
∑nr

v=1(n−1)u′0vry′′jt
vr

dt
+

∑k
r=1

∑nr
v=1 lvry′′jt

vr

dt
(mod pαt

dt
).

(8)

Since, by the hypothesis, for each t and j we have n1 + . . .+ nk true congruences∑k
s=1

∑ns

i=1 lisy
′′jt

is

dt
≡ n− 1

dt
u′′

0
jt +

ljt

dt
(mod

pαt

dt
),

from (8) we obtain∑k
r=1

∑nr

v=1(
∑k

s=1

∑ns

i=1lisy
′vr
is y

′′jt
vr)

dt
≡ n−1

dt

( k∑
r=1

nr∑
v=1

u′
0
vry

′′jt
vr+u

′′0
jt

)
+
ljt

dt
(mod

pαt

dt
).

But ∑k
r=1

∑nr

v=1(
∑k

s=1

∑ns

i=1 lisy
′vr
is y

′′jt
vr)

dt
≡ n− 1

dt
u′′′

0
jt +

ljt

dt
(mod

pαt

dt
).

Thus the congruence∑k
r=1

∑nr

v=1(
∑k

s=1

∑ns

i=1 lisy
′vr
is y

′′jt
vr)

dt
≡ n− 1

dt
x+

ljt

dt
(mod

pαt

dt
)

has a unique solution. Therefore,

k∑
r=1

nr∑
v=1

u′
0
vry

′′jt
vr + u′′

0
jt ≡ u′′′

0
jt (mod

pαt

dt
).

Consequently,
∑k

t=1

∑nt

j=1(
∑k

r=1

∑nr

v=1 u
′0
vry

′′jt
vr +u′′0jt−u′′′

0
jt)ajt = 0, which com-

pletes the proof.
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If a prime p does not divide n − 1, then a �nite abelian n-ary p-group is
isomorphic to a direct product of some cyclic n-ary p-groups (see Corollary 3, [2]).
Thus we have the following

Corollary 4.4. If a prime p does not divide n− 1, then the automorphism group

of a �nite abelian n-ary p-group 〈G, f〉 is isomorphic to the automorphism group

of retc〈G, f〉.

Following the group theory we say that an n-ary p-group 〈G, f〉 is an elementary

abelian n-ary p-group if it is isomorphic to the n-ary group derl1Zp× . . .×derlkZp.
Such n-ary groups will be denoted by 〈Gk(p), f〉.

In binary case each elementary abelian p-group 〈Gk(p),+〉 of the rank k can
be viewed as the vector space of dimension k over the �eld Z/pZ with p elements.
Its automorphism group is isomorphic to the group GL(k,Z/pZ).

Corollary 4.5. (Corollary 1, [16]) The automorphism group of the elementary

abelian n-ary p-group

〈Gk(p), f〉 = der0Zp × . . .× der0Zp,

where p | (n − 1), and the automorphism group of any elementary n-ary p-group
of order pk, where p - (n− 1), are isomorphic to the group GL(k,Z/pZ).

Corollary 4.6. (Theorem 4, [16]) The automorphism group of the elementary

abelian n-ary p-group

〈Gk(p), f〉 = derl1Zp × . . .× derlkZp,

where at least one of l1, . . . , lk is non-zero and p | (n − 1), is isomorphic to the

extension of the group

Gk(p) = Zp + . . .+ Zp︸ ︷︷ ︸
k

by the stationary subgroup St(d) ⊆ AutGk(p) of the element d =
∑k

i=1 li.

5. Automorphisms of free abelian n-ary groups

Free n-ary groups are described in [1]. In this section we describe the automor-
phism group of �nitely generated free abelian n-ary groups.

We start with the following result which will be used later.

Theorem 5.1. (Corollary 1, [18]) Each free abelian n-ary group 〈F, f〉 generated
by a �nite set X is isomorphic to a direct product of one in�nite cyclic n-ary group

der1Z and |X| − 1 copies of an n-ary group der0Z.
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Theorem 5.2. The automorphism group of the n-ary group der1Z×
∏k−1

i=1 der0Z
is isomorphic to the group of all automorphisms σ of the free abelian group

∑k
i=1 Z

such that

σ((1, 0, . . . , 0)) = (t1, t2, . . . , tk),

where t1 ≡ 1(mod n− 1) and ti ≡ 0(mod n− 1) for i = 2, . . . , k.

Proof. Let 〈P, f〉 = der1Z ×
∏k−1

i=1 der0Z. Consider the abelian group retc〈P, f〉
determined by the element c = (0, . . . , 0) and put d = f(c, . . . , c) = (1, 0, . . . , 0).
Then 〈P, f〉 = derd

∑k
i=1 Z and retc〈P, f〉 =

∑k
i=1 Z.

It is clear that the set U of all automorphisms σ of the group
∑k

i=1 Z satisfying

conditions mentioned in the theorem forms a subgroup of the group Aut
∑k

i=1 Z.
Moreover, σ(d) = (n− 1)u+ d for every σ ∈ U and u = ( t1−1

n−1 ,
t2

n−1 , . . . ,
tk

n−1 ).
Indeed,

σ(d) = σ((1, 0, . . . , 0)) = (t1, t2, . . . , tk) = (t1 − 1, t2, . . . , tk) + (1, 0, . . . , 0)

= (n− 1)
(

t1−1
n−1 ,

t2
n−1 , . . . ,

tk

n−1

)
+ (1, 0, . . . , 0) = (n− 1)u+ d.

It follows from Proposition 2.2 that ψ(x) = u+σ(x) is an automorphism of 〈P, f〉.
Consider the map φ : U → Aut〈P, f〉 de�ned by φ(σ) = ψ. This map is

surjective. In fact, by Proposition 2.1, for every ψ ∈ Aut〈P, f〉, the map σ(x) =
−ψ(c) + ψ(x) is an automorphism of the group retc〈P, f〉 =

∑k
i=1 Z. Moreover,

σ(d) = −ψ(c) + ψ(d) = −ψ(c) + ψ(f(c, . . . , c)) = −ψ(c) + f(ψ(c), . . . , ψ(c))

= −ψ(c) + nψ(c) + d = (n− 1)ψ(c) + d.

If σ(d) = σ((1, 0, . . . , 0) = (t1, t2, . . . , tk) and ψ(c) = (r1, r2, . . . , rk), then

(t1, t2, . . . , tk) = (n− 1)(r1, r2, . . . , rk) + (1, 0, . . . , 0).

Therefore t1 = (n − 1)r1 + 1 and ti = (n − 1)ri (i = 2, . . . , k), i.e., σ ∈ U . Thus
φ(σ) = ψ. So, φ is surjective.

It is also is injective. Indeed, since for any automorphism σj ∈ U we have
σj(d) = (tj1, tj2, . . . , tjk), where tj1 ≡ 1(mod n − 1) and tji ≡ 0(mod n − 1),
i = 2, . . . , k, from φ(σ1) = φ(σ2) it follows u1 + σ1(x) = u2 + σ2(x) for any x ∈ P,
where uj = ( tj1−1

n−1 ,
tj2

n−1 , . . . ,
tjk

n−1 ), j = 1, 2. Thus, u1 + σ1(d) = u2 + σ2(d), i.e.,( t11−1
n−1

+t11,
t12
n−1

+t12, . . . ,
t1k

n−1
+t1k

)
=

( t21−1
n−1

+t21,
t22
n−1

+t22, . . . ,
t2k

n−1
+t2k

)
.

Then t11−1
n−1 + t11 = t21−1

n−1 + t21 and t1i

n−1 + t1i = t2i

n−1 + t2i for i = 2, . . . , k. This
means that nt1i = nt2i for i = 1, 2, . . . , k, i.e., t1i = t2i. Hence, u1 = u2. Therefore
σ1 = σ2, so φ is injective.
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Now we have to check that φ preserves the group operation. Let σ1, σ2 ∈ U
and φ(σ1) = u1 + σ1(x), φ(σ2)(x) = u2 + σ2(x). Then

(φ(σ1)◦φ(σ2))(x)= φ(σ1)(φ(σ2)(x))= φ(σ1)(u2+σ2(x))= u1+σ1(u2)+(σ1◦σ2)(x).

On the other side, if φ(σ1 ◦ σ2)(x) = u3 + (σ1 ◦ σ2)(x), then u3 = u1 + σ1(u2)
since the automorphism φ(σ1 ◦ σ2) uniquely determines the automorphism from
Aut〈P, f〉. Thus φ(σ1) ◦ φ(σ2) = φ(σ1 ◦ σ2), which completes the proof.

The automorphism group of the free abelian group of a �nite rank k is isomor-
phic to the group GLk(Z) of invertible matrices of order k over the ring of integers
Z. Denote by Uk the set of all matrices [aij ]k from GLk(Z) such that the element
a11 is a solution of the congruence x ≡ 1(mod n − 1) and other elements of the
�rst row are the solutions of the congruence x ≡ 0(mod n− 1), provided n > 2.

The set Uk is a subgroup of GLk(Z) and it is isomorphic to the group U of
all automorphisms σ of the free abelian group of a �nite rank k satisfying the
conditions given in Theorem 5.2. Then from Theorem 5.1 and Theorem 5.2 we get

Corollary 5.3. The automorphism group of the free k-generated abelian n-ary
group is isomorphic to a multiplicative group of invertible matrices Uk of the order

k over the ring of integers Z such that the �rst element of the �rst row is congruent

to 1 modulo n−1 and the rest of elements in the �rst row are congruent to 0 modulo

n− 1.
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