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Automorphisms of abelian n-ary groups

Nikolay A. Shchuchkin

Abstract. We describe relations between automorphisms of an abelian n-ary group and
automorphisms of their binary retracts.

1. Introduction and preliminary results

An algebra (G, f) with an n-ary operation f (n > 2) is an n-ary (polyadic) group,
if the operation f is associative, i.e.,

f(f(al,...,an),an+1,...,a2n_1)
= flar,...,ai, f(@ix1,- 5 Qign), QGignyts - Q2n—1)
forall i =1,...,n — 1, and the equation
f(al,...,aj_l,:cj,aj+1,...,an) :b
has a unique solution z; € G for each j =1,...,n and a41,...,a,,b € G.

Since for n = 2 we obtain a (binary) group, we will assume that n > 2.

n-Ary groups belong to a wide class of algebraic objects that are studied from
various point of views. The importance of such groups was pointed out, for exam-
ple, by A.G. Kurosh [14].

In an n-ary group (G, f) for each a € G the solution of the equation

is denoted by a and is called the skew element for a. Since this element is uniquely
determined, an n-ary group (G, f) can be considered (cf. [11]) as an algebra
(G, f,7) with one associative n-ary operation f and one unary operation : x — &
such that the following identities:

f(y7x7"'7a:7i‘) = f(y’x""’x7£7x) = f(a:7x7"'7x7y) = f(x7 'r7a:7"')x7y) :y
N—— S—— —— N——
n—2 n—3 n—2 n—3

are satisfied.
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Another weaker system of identities defining an n-ary group can be found in
[3] and [5].

Note by the way that in some n-ary groups the map ~: z — Z is an endomor-
phism, i.e.,

f(a:l,...,a:n) = f(.fl,...7i‘n)

(cf. [7] and [9]). This situation take place, for example, in n-ary groups in which

f(xla"'axn) = f(xa(l)w"axa(n))

for all permutations o € S;,. Such n-ary groups are called commutative or abelian.
Note that the term abelian is also used in another sense (cf. for example [9]).

With each n-ary group (G, f) there are associated binary groups (G, +). =
ret.(G, f) defined by

a+b= f(a,c,...,c,cb)
——

n—3

where ¢ is an arbitrary fixed element of G. The element ¢ is a zero (neutral
element) of the group ret.(G, f). Moreover, all these groups (called retracts of
(G, f)) are isomorphic (cf. [6]). So, all retracts of an abelian n-ary group (G, f)
will be identified with the group (G, +).

In the case of commutative n-ary groups we have
flar,...,an)=a1+...+a, +4d, (1)

where (G, +) = ret (G, f) and d = f(c,...,c) (cf. [19] or [6]). In this case we say
that an n-ary group (G, f) is d-derived from the group (G, +) and denote this fact
by (G, f) = derq(G,+). If d = 0 (the neutral element of (G,+)), then we say that
an n-ary group dero(G,+) is derived from the group (G, +).

The reverse is also true: if (G, +) is an arbitrary abelian group, then for every
d € G the n-ary groupoid d-derived from the group (G,+) is an m-ary group.
In this case, (G,+) = retodery(G,+), where 0 is a zero element of the group
(G,+) (ct. |19]). Obviously (G, f) = dergret (G, f), where d = f(c,...,c), for all
commutative n-ary groups.

An n-ary group having a cyclic retract is called an semicyclic [8]. Each com-
mutative semicyclic n-ary group is isomorphic to an n-ary group d-derived from
some cyclic group (cf. [17]). So, commutative semicyclic n-ary groups will be
called abelian semicyclic n-ary groups.

For other basic facts on n-ary groups see [4] and [§].

The composition of maps ¢, we define by the rule (¢ o ¢¥)(x) = ¥ (p(x)).
The cyclic group generated by a is denoted by (a); ged(k,m) denotes the great
common divisor of k£ and m.
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2. Automorphisms of abelian n-ary groups

We start with the description of relations between automorphisms of abelian n-ary
groups and automorphisms of their binary retracts.

Using ideas presented in the paper [6] we can prove the following two usaful
propositions.

Proposition 2.1. Let ¢ be an automorphism of an abelian n-ary group (G, f)
and c € G. Then the map o : G — G defined by o(x) = —v(c) + P(x) is an
automorphism of the retract ret.(G, ).

Proof. Let a,b € G. Then

ola+0b) =0c(f(a,c,...,c,e,b) = —v(c) +¥(f(a,c,...,c,eb))

where d = f(c,...,c). Hence the proposition. O

Proposition 2.2. Let (G, f) = derq(G,+) and o be an automorphism of the
abelian group (G,+). If there is an element u € G such that o(d) = (n — 1)u +d,
then the map v : G — G, defined by ¥(x) = u+ o(x), is an automorphism of the
n-ary group (G, f). There are no more automorphisms of (G, f).

Proof. Let ay,...,a, € G. Then

v(f(at,...,an)) =u+o(ar+...+ap+d)=u+o(a1)+...+0(an) +o(d)
=u+o(a)+...+0(an)+n—1u+d
= fluto(a),...;utolan)) = f(Y(ar), ..., d(an)).

Hence ¢ is an automorphism of (G, f).

Now let 7 be an arbitrary automorphism of (G, f). Then, according to Propo-
sition 2.1, the map ¢ : G — G defined by o(x) = —u+ 7(x), where u = 7(0), is an
automorphism of the group (G, +) = reto(G, f). Moreover,

o(d) = —u+7(d) = —u+71(f(0,...,0) = —u+ f(u,...,u)
=—u+nu+d=(n-1u+d.

Then 7 is one of automorphisms of (G, f) obtained earlier from automorphisms of
the group (G, +). Hence the proposition. O
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Later we will need the following

Lemma 2.3. Let d be a fixed element of an abelian group G and Uy be the set of
all automorphisms o of G such that o(d) = (n—1)u+d (n > 2) for some u € G.
Then Uy is a subgroup of Aut G.

Proof. Let 01,02 € AutG be such that o1(d) = (n — 1)u; + d and o2(d) =
(n—1)uz +d (n > 2) for some uy,us € G. Then

(01 002)(d) = 02(01(d)) = o2((n — 1)ug +d) = (n — 1)oa(u1) + o2(d)
=(n—1)oz2(ur1) + (n—us +d=(n—1)(o2(u1) + uz) +d.
Thus (o1 0 09)(d) = (n — 1)ug + d, where ug = o02(u1) + ue. For an identity

automorphism 1g and for the zero element 0 of the group G we have 1g(d) =
(n —1)0 + d. Finally

o7 (d) = 07 (01(d) — (n — Duy) = o7 H(o1(d)) — (n — 1oy (us)
= (n— 1oy ' (~u) +d.

Hence 07 (d) = (n—1)ug+d, where uy = o *(—uy). This completes the proof. [

Now we can study the automorphism group of an abelian n-ary group.

Theorem 2.4. The automorphism group of abelian n-ary group (G, f) is embedded
into the holomorph of the group ret.(G, f).

Proof. Consider the holomorph Holret.(G, f) of the group ret.(G, f). Define the
map 7 from Aut(G, f) to Hol ret (G, f) by putting 7(¢)) = (o, —¢(c)), where o is
an automorphism of ret.(G, f) such that o(z) = —¢(c) +1(x). By Proposition 2.1
the definition of 7 is correct. Now we are going to show that 7 is injective. Let

T(Y1) = T(h2) for some 11,92 € Aut(G, f), where 7(¢1) = (01, —¢1(c)) and
T(12) = (02, —2(c)). Then 1(c) = 12(c), and for each x € G we have o1(z) =
o2(z) which implies —);(c) + ¥1(x) = —1ba(c) + ¥2(z). Hence 9y (z) = 1)(x), for
each z € . So 7 is injective. It also preserves the group operation. Indeed, if
Y1, € Aut(G, f> and

(Y1) = (01, =¥1(c)), T(P2) = (02, —¥2(c)), T(Y102) = (03, —(11 0 92)(c)),

where

o1(z) = —1(c)+1(), 02(x) = —ha(c)+ba(z), o3(x) = —(P1oth2)(c)+(Y1092)(z)

for each z € G, then

(o1 002)(x) = 02(01(2)) = o2(—1(c) + P1(2)) = —02(¥1(c)) + o2 (P1(2))
= —(=th2(c) + P2(¥1(c))) + (—va(c) + Y2(¥1(x)))
= —(¢1 0 2)(c) + (Y1 0 92) (),
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hence o3(z) = (01 0 02)(x) for each x € G. Then

(1) - 7(Y2) = (01, =1 (c )) (02, =1h2(c)) = (01 0 02, =91 (c) + o1 (—2(c)))
= (01002, —t1(c) — a1(h2(c)))

= (01 002, —¢1(c) + P1(c) — P1(¢2(c)))

= (01002, — (¢10¢2)( ) = 7(th1 0 4ha),

which completes the proof. O

3. Automorphisms of abelian semicyclic n-ary groups

Automorphisms of semicyclic n-ary groups (both abelian and non-abelian) are
studied in [7]. Here we recall some facts from this paper.

Consider an additive group Z; modulo k£ and a corresponding abelian semicyclic
n-ary group der;Zy, where 0 < [ < k. Finite cyclic groups of the same order are
isomorphic but abelian semicyclic n-ary groups of the same order may not be
isomorphic. It is known (cf. [10]) that two n-ary groups der;, Zy, and dery,Zy, are
isomorphic if and only if ged(ly,n — 1,k) = ged(l2,n — 1,k). It implies that the
number of distinct (non-isomorphic) abelian semicyclic n-ary groups I-derived from
the group Zj is equal to the number of positive divisors 7(d) of d = ged(n — 1,k)
and each such n-ary group is defined by a divisor [ of d.

For example, three abelian semicyclic 5-ary groups can be defined on a cyclic
group Z4 since ged(4,4) has three divisors: 1,2,4. So, they have the form dergZy,
der1Z4 and deryZ,4, where der,Zy is a cyclic 5-ary group.

Knowing automorphisms of a finite cyclic group one can find all automorphisms
of the corresponding finite abelian semicyclic n-ary group.

Proposition 3.1. (Theorem 6.3, [7]) Let der;Zy, be a semicyclic n-ary group and
o(x) = wx, where w and k are coprime, be an automorphism of the group Zi. Then
the map ¥ (x) = wx +t, where t is a solution of the congruence x(n—1) = l(w—1)
(mod k) and ged(n—1,k) is a divisor of l(w—1), is an automorphism of the n-ary
group der;Zy. There are no more automorphisms of der;Zy,. O

Corollary 3.2. If o(z) = wx is an automorphism of the group Zy, then ¢(z) =
wz + t, where t is a solution of the congruence x(n — 1) = 0(mod k) is an au-
tomorphism of the n-ary group dergZy. There are no more automorphisms of
deroZy,. O

It follows from Proposition 3.1 that each automorphism of a finite cyclic group
Zy, defined by an integer w gives exactly d = ged(n — 1, k) distinct automorphisms
of the semicyclic n-ary group der;Zy, since the congruence z(n — 1) = I(w — 1)
(mod k) has d solutions, that can be calculated using the formulas t = to + v
where 0 < v < d—1 and £ is a solution of the congruence x*5= l = @ (mod %)
Thus each automorphlsm of der;Zy, is defined uniquely by the integers w and ¢.
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Example 3.3. Find all automorphisms of abelian semicyclic 5-ary groups defined
on the cyclic group Z4. As it was mentioned earlier there are three such 5-ary
groups: dergZy, der1Z4 and dersZy.

The 5-ary group dergZs has 8 automorphisms since there are two integers
that are coprime to 4, and the congruence 4x = 0(mod 4) has four solutions.
So, by Corollary 3.2, each automorphism is defined by one of the following rules:
Y1(x) = 2, Ya(x) = a+1, P3(2) = 242, Ya(x) = 243, ¥5(z) = 3z, Ye(2) = 32+1,
r(x) = 3z + 2, Ys(x) = 3z + 3.

The cyclic 5-ary group der1Z4 has 4 automorphisms since there is exactly one
integer that is coprime to 4 which satisfies the Proposition 3.1. Thus we have the
congruence 4x = 0(mod 4). It has four solutions. According to Proposition 3.1,
automorphisms of der1Z4 have the form: ¢ (x) = z, Yo (x) = z+ 1, ¥3(x) = x+2,
Ya(r) =z + 3.

Finally, the 5-ary group dersZ4 has 8 automorphisms since there are two inte-
gers w that are coprime to 4 and satisfy the Proposition 3.1. Both congruences:
4x = 0(mod 4) for w = 1, and 42 = 4(mod 4) for w = 3, have four solutions.
So, by Proposition 3.1, these automorphisms coincide with automorphisms of the
5-ary group dergZy. O

Let Zj be the multiplicative group of the ring Zj;. Then the set
* * d
Ay = weZk|w51(mod7) )
1

where [ divides d, is a subgroup of Z; (see our discussion before Proposition 3.1).

Theorem 3.4. (Theorem 6.5, [7]) The automorphism group of the abelian semi-

cyclic n-ary group der;Zy, provided l|gcd(n — 1, k), is isomorphic to the extension

of a cyclic group of order d = ged(n — 1, k) by the multiplicative group A% . O
2

Corollary 3.5. (Corollary 6.6, [7]) The automorphism group of a cyclic n-ary
group of a finite order k is isomorphic to the direct sum of A} and a cyclic group
(%), where d = ged(n — 1, k). O

Corollary 3.6. The automorphism group of an n-ary group derived from a cyclic
group of a finite order k is isomorphic to the extension of a cyclic group of order
d = ged(n — 1, k) by the multiplicative group Zj.

Proof. Each n-ary group derived from a cyclic group of a finite order £ is iso-

morphic to the n-ary group derived from the cyclic group Zj. Consequently, by

Corollary 3.2, the multiplicative group A% from Theorem 3.4 is exactly the mul-
L

tiplicative group Zj. O

Corollary 3.7. (Corollary 6.8, [7]) If ged(n — 1,k) = 1, then the n-ary group
der|Zy, is cyclic for each 1 =0,1,2,...,k — 1 (see [18], Corollary 1) and its auto-
morphism group is isomorphic to the multiplicative group Z7,. O
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As is well known (see Theorem 3, [18]) each infinite abelian semicyclic n-ary
group is isomorphic to the n-ary group der;Z, where 0 < [ < "T_l and Z is the
additive group of integers.

Theorem 3.8. Let der;Z be an infinite semicyclic n-ary group. Then
1) for 1 =0 it has only two automorphisms: v1(x) =z and p3(z) = —=,
2) for 1 = 251 it has only two automorphisms: 1(z) =z and o(z) = —z —1,
3) in other cases it has only the identity automorphism.

Proof. If [ = 0, then by Proposition 2.2 each automorphism of the group Z is an
automorphisms of an n-ary group deroZ. So, p(x) = x or p(z) = —x.

Now let 0 < I < ”T’l If 7 is an automorphism of an n-ary group der;Z, then,
by Proposition 2.1, the map o(x) = 7(x) — ¢, where 7(0) = ¢, is an automorphism
of the group Z. So, either 7(z) = x + ¢ or 7(x) = —z + t. Furthermore, on one
hand, either 7(f(0,...,0)) =7() =1+t or 7(f(0,...,0)) = 7(I) = =l +¢t; on the
other hand, f(7(0),...,7(0)) = f(t,...,t) = nt + 1. Hence, either [+t = nt+1 or
—Il+4t = nt+I1. The first equality implies ¢t = 0, i.e., 7 is the identity automorphism.
The second equality gives two cases: (a) I =0and t =0, (b) [ = 25+ for odd n and
t = —1. In the case (a) we have 7(z) = —x; in the case (b) we get 7(z) = —z — 1.
Therefore, there are no other automorphisms. O

Since an n-ary group der;Z is cyclic if and only if either I = 1(mod n — 1)
or I = —1(mod n — 1) (see Proposition 8, [17]), as a consequence of the above
theorem we obtain

Corollary 3.9. (Corollary 6.11, [7]) For n > 3 the automorphism group of an
infinite abelian cyclic n-ary group is trivial. O

Corollary 3.10. (Corollary 4, [15]) The automorphism group of an infinite abelian
cyclic ternary group has only two elements: p(z) = x and p(z) = —x — 1. O

4. Automorphisms of primary abelian n-ary groups

Following the group theory, we say that a finite n-ary group is an n-ary p-group
if its order is a power of a prime number p. Such n-ary groups are also called
primary.

Recall the following

Theorem 4.1. (Theorem 8, [2]) Each finite abelian n-ary group is isomorphic to
a direct product of semicyclic abelian n-ary p-groups. O

Let (G, f) be an abelian n-ary group of an order p“'p®z...p“*, where p is
prime and a1 > a9 > ... > ap. Consider the abelian group (G, +) = ret.(G, f).
Since ¢ is a zero of (G, +) it will be identified with 0.
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Let (G,+) = Zle G, be a direct sum of abelian p-groups G, where each
group G, = Y1, (a;5) is a direct sum of cyclic groups (a;s) of the fixed order p®:.
Then d = f(0,...,0) = ZS O Liss.

Consider the famlly of n-ary groups dery,.a,.(a;is). The map ¢ from an n-ary
group (G, f) into the direct product HS 152, dery,,q,. (a;s) defined by

V(S S wisass) = TTosy T s
is an isomorphism (see the proof of Theorem 8 in [2]).

It is known (see, for example, §21, [13] ), that the ring End(G, +) is isomorphic
to the rlng M of integer matrices (y)) of the order n; + ng + ... + ny, where
1 < s,t < k and for glven s, the indexes i, j satisfy 3°_1n, + 1 < i< Yoo ny
and ZT e+ 1< j <Y n, (where in the case s = 1 and t = 1 we have
ng = 0). The lower pair of indexes is denotes the number of the rows > >~ 1 Ny +14;
the upper pair jt denotes the number of columns Zr:l n, + j, where

187 18

it 27t if either s <t or s =t and ¢ < j, where 0 < alt < por
yw = Qap—ag . Jt
TRy, 0<

if either s >t or s =t and i > j, where xjt < p%s.

The addition and multiplication are defined as follows:

(Wh) + 1) = (Wl + v/ (mod p)™),
(w70 x (') = (272 oy vl - y'%r) (wod p)™).

The isomorphism ¢ maps every automorphism o of the group (G,+) to the
invertible matrix (y/!) from the ring M, so ¢ acts on G by the following rule: if

k s
geGandg=73 Z?‘:l isQis, then

Ns

o(g) = i 3 ( > aisyll ) ase. (2)
t=1 j=1 1

s=1i=

Proposition 4.2. Let (G, f) = H’;Zl [12, der;.a;.(ais) be a direct product of
n-ary groups dery,,q,.(ais), where |(a;s)] = p*s, o > g > ... > ap and p is
prime. If o is an automorphism of the group (G,+) = Zle i (as) that
corresponds to the integer matrix (yg) of the order Z§:1 ns and ged(n — 1,pt)
divides 1j; — ZS 1 Z"S lwyf-; for eacht = 1,...,k and j = 1,...,ny, then the
map P(g9) = o(g) + thl D5ty wjtag, where ujy are solutions of the congruences
ES S Lyl = (n—1)x + 1j1(mod )p™, is an automorphism of the n-ary group
(G, f)-

Proof. Since (G, f) = derq(G,+), where d = Zle i lisays, and ged(n—1, p™t)
divides [j; — ZS (S Ligyl! forallt=1,...,kand j =1,...,n, then
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gcd(n—l,po‘l) | (lll _ZS 12"5 lwpal aqxll)

ng(nilﬂpal) | (lnll 725 1an lwp 1 asznll)
| (112 - Zz lll1 zl - Zs Qan lzspa27asx74152)

ged(n—1,p°) | (Iny2 = X2 lnaf® = Y00 SO0, Lisp™ ~* 22%)

ged(n—1,p 1) | (lig_q — P21 S0 Lt — SO0 Gppor—r—on g Ll

ng(n_lapakil) ‘ (lnk_lk 1 21:711 :lelzs ;n: 1hel Z;Lillikpakfl_akx?kkilk_l
ged(n—1,p) | (i = Yty Yiy Lisw i)

ng(n_lapak) | (lnkk - ZS 12”3 l,sxn’“k).

This means that the following congruences

ZS Lo Lisp® Tzl = (n = 1)z + 111 (mod p™)
POND PN lzspal_asx = (n— 1) + ln,1 (mod p™)
S a4+ Y, S Liap® % wl2 = (n — 1)z + Iz (mod p©2)

Z Z"S l“xlk 1—|—an Lipgp®e—1— "‘kxllf Y= (n— 1)z + l1x_1(mod p*-1)
SRR ST ) R .
25:1 i1 lisy —|—Z Wigp™— T %R =(n—1)x+1n,_x—1(mod p*-1)
ZS > Liset = (n— 1)a + Iy, (mod p*)

(n—1)x 4 lp,k (mod p**).

)

CI'

L

I\
[

”é
"

have solutions.

Let wj; (where t = 1,...,k and j = 1,...,n;) be the solutions of the cor-
responding congruences from the above system. Then o(d) = (n — 1)u + d for
u= Zle >t uisais. Proposition 2.2 completes the proof. O

By Proposition 4.2 each automorphism o of the group (G, +) = ZS o (ais)
for which d; = ged(n — 1,p™) | (I — b, S Liydl) for t = 1,...,k and
j=1,...,n, defines exactly Hle dy automorphisms of the abelian n-ary group
G, f) = H’::1 H?;l dery,.q,.(a;is). Moreover, each of them is defined by the in-
tegers v;; (0 < vjy < dy — 1) such that uﬁt = u?t + vjt% is a solution of the

congruence Zs S Lyt = (n— 1)z + 1 (mod p®*), where uY, is the solution
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k
M—”l

x + i (mod pdﬁ). Thus each automor-
t t

of the congruence

phism of H’;Zl [T, dery;.a;. (a;s) is unlquely determined by the ordered set
V:{’th | t:1,...,k, j:1,...,nt}

and an automorphism o of the direct sum of cyclic groups 327_, 3> (a;,) such
that d; = ged(n—1,p™) | (Lji—=3F_, 2% Lisy?) fort = 1,... kandj = 1,...,n
Thus we denote such automorphism by v, v .

Theorem 4.3. Let (G, f) = H]::1 [T, dery,.a;. (ais) be the direct product of n-ary
groups dery, q,. (ais), where |(a;s)] = p®, a1 > az > ... > ay andp is prime. If
Uy is an automorphism group of the direct sum of cyclic groups ZS oo (ags)
having the corresponding integer matrices (yfst) of the degree 23:1 ng such that
dy = ged(n — 1,p™) | (s — 5 2% Liydh) for each t = 1,... k and j =
1,...,n, then the automorphism group of the n ary group (G, f) is isomorphic to

the extension of the direct sum Zt 1 Z"’ (5 “ajt) of cyclic subgroups (2 T “ajt) of
cyclic groups (a;¢) by the group Uy.

Proof. For each o € Uy corresponds an invertible matrix (yfz ) from the ring M
(defined earlier) such that o acts on G by the rule (2). For each index s € {1,...,k}
and each index ¢ € {1,...,,n,} (for each fixed s) we can calculate the image of
the generating element %ais of the cyclic subgroup (%ﬁais). Namely,

yfst ajt- (3)

-y

t=1 j=1 ds

Now we ﬁx indexes s and 9 and show that for any indexes t and j from (3) the
integer & ylS is d1v1ded by 2 T Indeed ifs<tors=tandi<j,then ag > ¢

and, consequently, . is divided by IMs>tors=t and 1> j, then a, < at
and hence B T “pt =% ig divided by £~ So in both cases B ylS is divided by £~

where 0 < rjt < dy, from (3 ) we

p . ]tp Jjt t
Let yw = . Since zJ; = qlsdt + rw, e

zs dy
obtaln
it ot
bis = U( R ~ais) = Zt 12?1 ispdt Qjt -

Let us show that all elements b;, form the basis of the direct sum Y2%_ S (22 T Gis)-
Let Zs:l Sore mishis = 0, nhen Zs 1anlm“(2t 123 L f;pdt aj;) = 0 or
PN Z?;l(zlzzl >y misrﬁ)pd . aj = 0. Since all the elements 2 @ aj; form the
basis of the direct sum Y ¢, 377 (B2 o is), then DN mzsrls = 0(mod d;)

for all ¢ and j. Since z/! = /! (mod d;), then ZS Lo szl = O(rnod dt) for

=0

all ¢,7. Multiplying the last congruence by “— we get Zs I Mzl 5
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(mod p®t) for all ¢ and j. Since p ylS = zfstp t then ZS Lo ms B T yw =0

(mod p*). Thus Zf 1 Z (2:g IO ms B T “y/Naj = 0. Accordmg to (2) we
have o(3F_, 327, my B T—ais) = 0. Hence Sk e m B Z ~a;s = 0 since o is
bljectlve But the elements a;, form the basis of the group ZS 1> (ais), thus,

mis %~ = 0(mod p**) for any s and 4. Then m;s =0 (mod ds) for any indexes s
and i. Thus we haxge proved that the elements b;, form the basis of the direct sum
B= z’;zl S (B “ais), and therefore the map o defined by the following rule:

ingBandg:ZS DYy 1%(1 “a;s, then

B(g) = Zt:l 2521(25 12202 q“rzs) aJt7
is an automorphism of the group B.
Now we fix the homomorphism ¢ : U; — Aut B such that (o) = ¢Z. We
construct the extension Uy - B of the group B by the group Ud with the operatlon
acting in the following way: let 01,09 € Ug, g1,92 € B, g1 = ZS DY b-ais,

go = Zg DDA pd a;s and the automorphism oo from Uy be deﬁned by the
//J )

Moreover,

STCAT I 3) SLASERIED wp Bz @

t=1 j=1 t=1 j=1

matrix (y"7
for all elements p am of B. Therefore,

Thus,

0191 - 0292 = (01 0 02)(C(02)(g1) + g2) = (01 0 02) (05 (91) + g2)

k

= (o 0‘72)(2% (iivgsrﬂz;-Fv )p;:ajt)

t=1j=1 s=1i=1

(see, for example, [12]). Hence, 0191 - 0292 = (01 © 02)g3, where

k. ng ng ap
gg—ZZ(ZZ A )%aﬁ. (5)
t=1j=1 s=1i=1 t
We define the map 7 : Aut(G, f) — Uy - B by putting 7 : ¢, v — og, where
g= ZS IO v B T “a;s. It is clear that 7 is a bijection.
Let Yo, vy Yos.vs € Aut(G, f), where the automorphisms o7 and oy are de-
fined by matrices (y’j ) and (y ”Jt), respectively. Consider the ordered set Vj

18 18
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0 o
of integers v’ taken from the solutions u /' = u'%, + v/,2~ of the congruence
jt ]t Jt Jt d;

ZS Loy syl = (n — 1)z + ljs (mod p*), where u’?t is a solution of the con-

k 15t
is — l; t o . .
L Bty syl — nd n—lo 4 4 (mod Z~).  Similarly, Vg is an ordered

gruence =eslegp=ltafis =
set of integers v}, taken from the solutlons ujgt = u”?t + v}, p " of the congru-
ence Y2F_ S Lyt = (n — Dz + 1, (mod p™), where u 275 is a solution of
the congruence w = o lj—f (mod %). Here t = 1,...,k and

j=1,...,ns for any ﬁxed t
For each geqG, g= Zs L Do Gisais, we have

k. n, ,
(wﬂlavl © 11[}027\/2)(9) = w02,V2 (1/)01,‘/1 (g)) = ¢027V2 (Gl(g) + Z Zuzlﬁavr>

r=1v=1

k n, kE n, ,
= Voo Ve ( Z Z ( Z Z qu/m)avr + Z Z uZ%Taw>

r=1lv=1 s=11i= 1 r=1v=1

k- nr
=Yos, V2 ( > ( Z Z GisY'is + uvﬁ)aw>

r=1v=1 s=11i=1

k. n, k  ne
:02(22 (ZZQisy/fg"’u”T )aw> +ZZU Ttaj

r=1v=1 s=114i=1 t=1 j= 1
k. ng k

— ZZ (Zi (Zk:iqisy'f:—f—uw )y"f,i)a]t+zzuﬂ aj

tl]l r=1v=1 s=114i=1 t=1 j=1
k  ng n, k

_ZZ(ZZ 5 s ) /m) aﬁz Z(zzwyugj ) aﬁz Z Wi,

t=1j=1 r=1v=1 s=1 i=1 —1]17“1111 t=1 j=1

~mome)+ 3030 (30 S + i s

=1j=1 r=1lv=1
k jt .
Let us show that c=>"7_; >, ulpr Yy ” is a solution of the congruence

zzzw(zz YY"

s=11i=1 r=1v=1

(n— 1)z + ;¢ (mod p™). (6)

By the hypothesis, the following ni + ...+ ng congruences

503 a2 = (0 i + o (mod )
s=11i=1
isvalidforr=1,...,kandv=1,...,n,
. . . it
Multiplying each of these congruences by the corresponding y”?, (for fixed ¢
and j) we obtain (n; + ...+ ng)? congruences

S S I = = D+ g (mod )

s=1 =1
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Adding (with respect to r and v) obtained congruences for fixed ¢ and j we obtain
n1 + ...+ ng true congruences

k n, k n, k n,
DN IILETAS 3 RURITCED ) pICATISNT
r=lv=1 s=1:=1 r=lv=1 r=lv=1

But by the hypothesis for each ¢ and j we also get ny + ...+ ny true congruences

Zley"ﬁL (n— Duld + 1 (mod p™).

r=1v=1
So, (7) gives
k n, k ng k ng.
§ :2 : § :§ : ror gt it v’
/ jt «
( lzsy is Y vr) § E n— 1 u’U;)“Ty vr (nil)uji +ljt (HlOdp t) or
r=lv=1 s=1i=1 r=1lv=1
k ng Ny N ’
T gt njt Vit o
E E ZZS<E E isY W): n—l(E E uvryw jt>+ljt(m0dp ).
s=1i=1 r=1lv=1 r=1lv=1
"
. 0
Hence c satisfies the congruence (6). Therefore ¢ = u Uit = =u" + UWL is a
Jjt Jt t d

solution of the congruence ZS DY Lisy" ' = (n — Da + ljt(mod pt), where

1110 Es IE:L 1 ‘Léy” {2 — Jt
u"";, is a solution of the congruence d—t' noly 4 “(mod % ),

Y = e Yy and 0 < < dy -
Consequently, the composition wol,vl o 1%2,\/2 of the automorphisms ., v,
and v, v, of the n-ary group (G, f) is the automorphism ¥, 04, v,, Where V3 is a

'

collection of integers v’/ from the solutions u]t" of (6).
Now let us prove that

T(¢017V1 © ¢027V2) = T(w0'17vl) ' T(¢027V2)'

We have 7(¢s, v, © 1/)027‘/2) = T(Vo1009,v5) = (01 0 02)ga, where g4 has the form

g4 = Z]::l Z?:gl ;;/ pd a;s. On the other hand 7(11[}01 V1) (11[}172,‘/2) = (0'1 © 02)937
where gs is from (5). Let us show g3 = g4. Indeed, considering (4) we have

g = Z Z v///p Z Z (Z Z uy;wy//z)i ]Zf N umjot)ajt

/I/

t=1 j=1 t=1 j=1 r=1v=1
k  ng p
nit //0 " 110

E :E (E E vrd )y or T U t+vjtd — U 4 )Gt

1 i t

t=1j=1 r=1lv=1
k nt k} Ny p

/0 //Jt njt //0 " 10

E (E:E:uv +§:§ Uv'r‘d yvr+ t+v d U )Gt
t=1j=1 r=1lv=1 r=1v=1 t

M=

VO NREATCATEATI 90 310 WAL Y

1j=1 r=1v=1 t=1j=1 r=1v=1

&~
Il
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k  ny Ny k  ng pat
o /0 //Jt //0 1m0 //jt
—ZZ(ZZ ot bt GG Jaget Y 0y ZZW” Tt

t=1j=1 r=1v=1 t=1j=1 r=1v=1 t

It is now sufficient to show that the first component of the last sum is equal to
zero. In fact, we have ny + ...+ ny true congruences

ZS Zns lzsy/:}g _n—- 1 0 lm’ par
1 o =7 'y + T (mod 7 ),
where r = 1,...,k and v = 1,...,n,. Multiplying each congruence by the corre-

sponding y”J (for fixed t and j), we obtain (n; + ...+ ny)? congruences

Z Zn& L y/vry//jt n—1 , jt l jt par
s=1 drls 18 vr — dr u/va//vT_Fiy//vr (mod )

d; d,
Adding (with respect to r and v) obtained congruences for fixed ¢ and j and get
n1 + ...+ ng true congruences
PRIIND DL Dyl 121 sy 7y

k it k ny it
1 Tl ot
SR D D SCIES T RTE ND D0 i SESTE A a0

(8)

Since, by the hypothesis, for each ¢ and j we have n; + ...+ ny true congruences

s it
Z& 1Zn lZSy”ié _ n—1 ”0 + l]t ( od pOét )7

d, =4 d; d;
from (8) we obtain
Zf:l Zz;l(Zi:lZ?:SJisy/y:yﬂz;tr) _ . /0 //jt //0 ljt p
dt = (ZZ or¥ urt jt)+d7t (mOd dt )
r=lv=1

But

k Ny Ng ur it
ZT‘:l szl(Zq 1 Z llsy/zs y//{;r) _n- 1 ///0 L+ ZJt (mod i)
dy

dt dt d
Thus the congruence

k Ny N ur a
Zr:l Zv:l(Zs 1 Z llsy,zs y”ii’) _n- 1 + ljit ( od 71)
dt dt v dt

has a unique solution. Therefore,

>3ty = % mod 2

r=1v=1

k t 0 0 .
Consequently, >, Z;”:l(zr I wy”ir—i—u” —u""};)aj; = 0, which com-
pletes the proof. O
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If a prime p does not divide n — 1, then a finite abelian n-ary p-group is
isomorphic to a direct product of some cyclic n-ary p-groups (see Corollary 3, [2]).
Thus we have the following

Corollary 4.4. If a prime p does not divide n — 1, then the automorphism group
of a finite abelian n-ary p-group (G, f) is isomorphic to the automorphism group

of ret (G, f). O

Following the group theory we say that an n-ary p-group (G, f) is an elementary
abelian n-ary p-group if it is isomorphic to the n-ary group dery, Z, x ... x dery, Zy.
Such n-ary groups will be denoted by (Gk(p), f).

In binary case each elementary abelian p-group (Gi(p),+) of the rank k can
be viewed as the vector space of dimension k over the field Z/pZ with p elements.
Its automorphism group is isomorphic to the group GL(k,Z/pZ).

Corollary 4.5. (Corollary 1, [16]) The automorphism group of the elementary
abelian n-ary p-group

<Gk(p)7f> = deTOZp X ... X de’]"ozp7

where p | (n — 1), and the automorphism group of any elementary n-ary p-group
of order p*, where p{ (n — 1), are isomorphic to the group GL(k,Z/pZ). O

Corollary 4.6. (Theorem 4, [16]) The automorphism group of the elementary
abelian n-ary p-group

(Gr(p), ) =der,Zy x ... x dery, Ly,

where at least one of ly,...,l; is non-zero and p | (n — 1), is isomorphic to the
extension of the group

Gi(lp) =Zp+...+ 7,
N—————’
k

by the stationary subgroup St(d) C Aut Gi(p) of the element d = Zle l;. O

5. Automorphisms of free abelian n-ary groups

Free n-ary groups are described in [1]. In this section we describe the automor-
phism group of finitely generated free abelian n-ary groups.
We start with the following result which will be used later.

Theorem 5.1. (Corollary 1, [18]) Each free abelian n-ary group (F, f) generated
by a finite set X is isomorphic to a direct product of one infinite cyclic n-ary group
deriZ and | X|—1 copies of an n-ary group deryZ. O
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Theorem 5.2. The automorphism group of the n-ary group der1Z x Hf;ll deroZ

is isomorphic to the group of all automorphisms o of the free abelian group Zle Z
such that

0((1,0,...,0)) = (t1,t2,...,tk),
wheret; = 1(mod n—1) and t;, =0(modn—1) fori=2,... k.

Proof. Let (P, f) = der1Z X Hi-:ll deroZ. Consider the abelian group ret.(P, f)
determined by the element ¢ = (0,...,0) and put d = f(e,...,c) = (1,0,...,0).
Then (P, f) = derq Y1, Z and ret (P, f) =" Z.
It is clear that the set U of all automorphisms o of the group Zle Z satisfying
conditions mentioned in the theorem forms a subgroup of the group Aut Zle Z.
Moreover, o(d) = (n — 1)u + d for every o € U and u = (4=, 2o . tey,
Indeed,

o(d) = o((1,0,...,0)) = (t1,ta, ..., tx) = (t1 — 1, ta, ..., tx) + (1,0,...,0)
=(n—1)(4=, Lo ) +(1,0,...,0) = (n— Du+d.

n—17'n-—1" ' n—1

It follows from Proposition 2.2 that ¢ (z) = u+ o(x) is an automorphism of (P, f).
Consider the map ¢ : U — Aut(P, f) defined by ¢(oc) = «. This map is

surjective. In fact, by Proposition 2.1, for every ¢ € Aut(P, f), the map o(z) =

—(c) + ¢(x) is an automorphism of the group ret.(P, f) = Zle Z. Moreover,

o(d) = =¢(c) + ¢(d) = —¢(c) +(f(c, ..., c)) = =v(c) + f(¥(c), ..., ¥(c))
= —1(c) + n(c) +d = (n — 1)¢(c) + d.

If o(d) = 0((1,0,...,0) = (t1,t2,...,tx) and ¥(c) = (r1,72,...,7), then
(ti,t2,...,tg) = (n = 1)(r1,72,...,7) + (1,0,...,0).

Therefore t1 = (n—1)ry +1land t;, = (n — )r; (i =2,...,k), i.e., 0 € U. Thus
¢(c) = 1. So, ¢ is surjective.

It is also is injective. Indeed, since for any automorphism o; € U we have
o;j(d) = (tj1,t52,...,tjx), where tj1 = 1(mod n — 1) and t;; = 0(mod n — 1),
i=2,...,k, from ¢(o1) = ¢(02) it follows uy + o1(x) = uz + o2(z) for any x € P,
where u; = (t”*1 bz Lk 5= 1,2, Thus, uy 4 01(d) = ug + 02(d), i.e.,

n—1"’"n—-1’ n—1

t11—1 t
(11 +t11, 12

1k
n—1 n n—

to1—1 t
+t127---,7+t1k) = ( 2o, i2

tok
1 n—1 n n—

1 1

Then tlnl%ll + tll = til_zl + t21 and Tfill + tli = rfill + t2i for 1 = 2, .. .,k. This
means that nty; = nty; fori =1,2,...,k, i.e., t1; = to;. Hence, uy = us. Therefore

01 = 09, SO ¢ is injective.
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Now we have to check that ¢ preserves the group operation. Let 01,00 € U
and ¢(01) = w1 +01(z), ¢(02)(x) =uz+ o2(x). Then

(¢(01)09(02))(x) = ¢(01)(P(02)(x)) = ¢(01) (u2+02(2)) = w1 +01 (u2)+(01002) (7).

On the other side, if ¢(oq1 0 02)(x) = uz + (01 0 02)(x), then uz = uy + o1 (u2)
since the automorphism ¢(oq1 0 03) u 1que1y determines the automorphism from
Aut(P, f). Thus ¢(01) o p(02) = ¢(o1 0 02), which completes the proof. O

The automorphism group of the free abelian group of a finite rank & is isomor-
phic to the group GL(Z) of invertible matrices of order k over the ring of integers
Z. Denote by Uy, the set of all matrices [a;;]x from GL(Z) such that the element
ay1 is a solution of the congruence = 1(mod n — 1) and other elements of the
first row are the solutions of the congruence z = 0(mod n — 1), provided n > 2.

The set Uy, is a subgroup of GLi(Z) and it is isomorphic to the group U of
all automorphisms o of the free abelian group of a finite rank £ satisfying the
conditions given in Theorem 5.2. Then from Theorem 5.1 and Theorem 5.2 we get

Corollary 5.3. The automorphism group of the free k-generated abelian n-ary
group is isomorphic to a multiplicative group of invertible matrices Uy, of the order
k over the ring of integers Z. such that the first element of the first row is congruent
to 1 modulo n—1 and the rest of elements in the first row are congruent to 0 modulo
n—1. O
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