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On multiplicative conjugate loops

Shumaila Ambreen and Asif Ali

Abstract. The objective of this paper is twofold. Firstly to de�ne MC-loops and show that every
conjugate of subloops of such loops also are subloops Secondly to investigate various properties
of MC-loops and its relation with numerous other already existing loops, moreover number of
examples and counter examples are provided to make these relations more clearer.

1. Introduction

A loop L is an inverse property loop [2] if every x ∈ L has a unique two-sided
inverse, denoted by x−1, and if, for all x, y ∈ L the loop satis�es

x−1(xy) = y = (yx)x−1.

A loop L is said to be a conjugate loop [1] if it satis�es the following identity
x

(
yx−1

)
= (xy) x−1, for all x, y ∈ L. A loop is IP-conjugate [1] if it satis�es

inverse property and conjugate property. Smallest non-associative IP -conjugate
loop is of order 7.

Following [1], �exible C-loops are conjugate IP -loops. Every diassociative loop
is a conjugate IP -loop. Conjugate IP -loop L is commutative i� every element in
L is self conjugate.

An IP -conjugate loop L is called a multiplicative conjugate loop (MC-loop) i�
for all x, y, g ∈ L, we have

(xy)g = xgyg.

Proposition 1.1. An IP-conjugate loop L is MC-loop i� Tg(xy) = Tg(x)Tg(y)
for Tg ∈ INN(L).

Proof. Indeed,

(xy)g = xgyg ⇔ g−1(xy)g = (g−1.xg)(g−1.yg)
⇔ (xy)RgLg−1 = (x)RgLg−1 .(y)RgLg−1

⇔ (xy)RgL
−1
g = (x)RgL

−1
g .(y)RgL

−1
g because L is an IP -loop.

⇔ (xy)Tg = (x)Tg.(y)Tg
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2. Counting of multiplicative conjugate loops

In [8] J. Slaney and A. Ali enumerated IP -loops up to order 13 by using �nite
domain enumerator FINDER. Using that enumeration and our following GAP
code we have counted multiplicative conjugate loops.

function(L):=IsMCLoop
local x, y, z;

if not IsConjugateIPLoop(L) then return false;
for x in L do
for y in L do
for z in L do
if zˆ− 1 ∗ (x ∗ y) ∗ z <> (zˆ− 1 ∗ x ∗ z) ∗ (zˆ− 1 ∗ y ∗ z) then return false;
�;
od;od;od;
return true;
end;

Size IP Conjugate IP MC

7 2 1 1

8 8 0 0

9 7 0 0

10 47 7 6

11 49 3 3

12 2684 27 17

13 10600 16 10

Number of IP, conjugate IP and MC-loops of order n = 7, . . . , 13.

Example 2.1. The smallest non-associative MC-loop has the form.

. 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7
2 2 3 1 6 7 5 4
3 3 1 2 7 6 4 5
4 4 7 6 5 1 2 3
5 5 6 7 1 4 3 2
6 6 4 5 3 2 7 1
7 7 5 4 2 3 1 6

3. Properties of MC-loops

We start with the following obvious lemma.

Lemma 3.1. In an MC-loop L every T ∈ INN(L) is pseudo-automorphism with

companion 1.

Theorem 3.2. The nucleus of an MC-loop L is a normal subloop.
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Proof. As L is MC-loop so L is also an IP -loop. Moreover let T : L → L be
pseudo-automorphism as described in Lemma 3.1. The restriction of a pseudo-
automorphism T from Lemma 3.1 T to the nucleus N of L is an automorphism of
N. Hence aN = Na for all a ∈ L and N(xy) = (Nx)y, (xy)N = x(yN) from the
de�nition of a nucleus.

Theorem 3.3. A homomorphic image of an MC-loop is an MC-loop.

Proof. Obvious.

Proposition 3.4. If L is an MC-loop, then [xy, zy] = [x, z]y for all x, y, z ∈ L.

Proof. Indeed,

[xy, zy] = (xy)−1(zy)−1 · xyzy = (x−1)y(z−1)y · xyzy

= (x−1z−1)y · (xyzy) = (x−1z−1 · xz)y = [x, z]y.

Theorem 3.5. Let L be an MC-loop, then [L,L] = 〈[x, y];x, y ∈ L〉 is a weak

normal subloop of L.

Proof. In fact, we have [L,L]l = [Ll, Ll] = [L,L] for every l ∈ L.

Theorem 3.6. If L is an MC-loop and H 6 L, then Hx = {x−1hx : ∀h ∈ H} is

a subloop of L.

Proof. For x ∈ L and a, b ∈ Hx, there exists h1, h2 ∈ H such that a = x−1h1x and
b = x−1h2x. Thus, ab = (x−1h1x)(x−1h2x) = hx

1hx
2 = (h1h2)x ∈ Hx. Analogously,

a−1 = (x−1hx)−1 = x−1h−1x = (h−1)x ∈ Hx. Thus, Hx 6 L.

Theorem 3.7. In an MC-loop the conjugate of a maximal subloop is also maximal.

Proof. Let M be a maximal subloop of an MC-loop L. Then Mg is its conjugate
subloop. If there is a subloop H such that Mg 6 H 6 L, then M 6 Hg−1

6 Lg−1
.

Hence, M 6 Hg−1
6 L which is a contradiction. So, M is maximal.

Recall that an intersection of all maximal subloops is again a subloop. It is
known as the Frattini subloop. For a loop L, the Frattini subloop is denoted by
Φ(L).

Theorem 3.8. If L is an MC-loop, then Φ(L) is a weak normal in L.

Proof. Let {Mi : i ∈ I} be the family of all maximal subloops of L and Φ(L) =
∩i∈IMi. Then x ∈ Φ(L) implies xg ∈ Φ(L) for all g ∈ L. Hence, Φ(L) is weakly
normal in L.

The subloop generated by all the nilpotent normal subloops of L is called the
Fitting subloop of L and is denoted by Fit(L). Below we prove that in MC-loops
it is normal.
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Lemma 3.9. If M and N be normal subloops of an MC-loop L, then the product

MN = {mn : m ∈ M,n ∈ N} is also a normal subloop of L.

Proof. Let L be an MC-loop and M,N be its two normal subloops. Then for any
m ∈ M , n ∈ N and l ∈ L we have (mn)l = mlnl ∈ MN. Moreover,

(mn · y)z = (m(n1y))z = m1(n1y · z) = m1(n2 · yz) = m2n2(yz).

Similarly, we can prove that (yz)(MN) = y(z(MN). Hence, MN is normal.

Remark 3.10. It can be shown by induction that the product of a �nite family
of normal subloops of any MC-loop is its normal subloop.

Theorem 3.11. If L be an MC-loop, then Fit(L) is normal in L.

Proof. Let Fit(L) = 〈N1, N2, N3, . . . , Nm〉, where all N1, N2, . . . , Nm are nilpotent
normal subloops of L. Since, all subloops are normal therefore we can express
Fit(L) alternatively as, Fit(L) = N1N2 · · ·Nm. This completes the proof.

Theorem 3.12. In an MC-loop the centralizer of any its non-empty subset is a

subloop.

Proof. The centralizer of X has the form CL(X) = {a ∈ L : ax = xa ,∀ x ∈ X}.
Let a, b ∈ CL(X) and x ∈ X,then

(ab)x = x(x−1(ab.x)) = x(ab)x = x(axbx) = x(ab),

which implies ab ∈ CL(X). Now, for b ∈ CL(X) we have bx = xb. Thus, b−1xb = x.
Hence, x = b(b−1xb)b−1 = bxb−1, i.e., b−1x = xb−1. So, b−1 ∈ CL(X).

Corollary 3.13. The commutant C(L) of an MC-loop L is its subloop.

Corollary 3.14. Let L1, L2 be a subloop of a MC-loop L. If L = L1 × L2, then

C(L) = C(L1)× C(L2).

The following fact is obvious.

Proposition 3.15. For an MC-loop L the map δx : L → L de�ned by (a)δx =
x−1ax is its automorphism.

4. Relation of MC-loops with other loops

In this section we describe connections of MC-loops with other types of loops.
The following fact is well known but we give a short proof of this fact.

Theorem 4.1. Every commutative IP-loop L is an MC-loop.
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Proof. Let L be an arbitrary commutative IP -loop. Then for all x, x−1, y ∈ L we
have x−1 · yx = x−1 · xy = x−1x · y = y. On the other hand, x−1y · x = yx−1 · x =
y · x−1x = y. Hence, we get x−1 · yx = x−1y · x. So, L is an IP -conjugate loop.

Moreover, xgyg = (g−1·xg)(g−1·yg) = (g−1·gx)(g−1·gy) = (g−1g·x)(g−1g·y) =
xy and (xy)g = g−1.(xy)g = g−1.g(xy) = (g−1g)(xy) = xy. So, (xy)g = xgyg.

Hence, L is an MC-loop.

Corollary 4.2. Every Steiner loop, every commutative C-loop and every commu-

tative Moufang loop are MC-loops but the converse is not true.

Example 4.3. The following loop

. 1 2 3 4 5 6 7 8 9 10 11 12

1 1 2 3 4 5 6 7 8 9 10 11 12
2 2 1 4 3 6 5 8 7 12 11 10 9
3 3 6 5 2 1 4 9 10 11 12 7 8
4 4 5 6 1 2 3 10 9 8 7 12 11
5 5 4 1 6 3 2 11 12 7 8 9 10
6 6 3 2 5 4 1 12 11 10 9 8 7
7 7 8 11 10 9 12 1 2 5 4 3 6
8 8 7 12 9 10 11 2 1 4 5 6 3
9 9 12 7 8 11 10 3 4 1 6 5 2
10 10 11 8 7 12 9 4 3 6 1 2 5
11 11 10 9 12 7 8 5 6 3 2 1 4
12 12 9 10 11 8 7 6 5 2 3 4 1

is a noncommutative Moufang loop which is not an MC-loop since (xy)g = xgyg

is not true for x = 2, y = 3 and g = 7.

Example 4.4. This is a non-commutative C-loop which is not an MC-loop.

. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 2 1 5 6 3 4 8 7 10 9 16 14 15 12 13 11
3 3 8 1 7 6 5 4 2 11 13 9 15 10 16 12 14
4 4 6 7 1 8 2 3 5 12 14 15 9 16 10 11 13
5 5 7 2 8 4 3 6 1 13 11 14 16 12 15 10 9
6 6 4 8 2 7 1 5 3 14 12 13 10 11 9 16 15
7 7 5 4 3 2 8 1 6 15 16 12 11 14 13 9 10
8 8 3 6 5 1 7 2 4 16 15 10 13 9 11 14 12
9 9 10 11 12 16 14 15 13 1 2 3 4 8 6 7 5
10 10 9 13 14 15 12 16 11 2 1 8 6 3 4 5 7
11 11 16 9 15 10 13 12 14 3 5 1 7 6 8 4 2
12 12 14 15 9 13 10 11 16 4 6 7 1 5 2 3 8
13 13 15 10 16 9 11 14 12 5 3 6 8 1 7 2 4
14 14 12 16 10 11 9 13 15 6 4 5 2 7 1 8 3
15 15 13 12 11 14 16 9 10 7 8 4 3 2 5 1 6
16 16 11 14 13 12 15 10 9 8 7 2 5 4 3 6 1

It is not an MC-loop because (2.3)9 6= 2939.
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Example 4.5. Consider the following commutative loop.

· 1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10
2 2 1 4 3 6 5 8 7 10 9
3 3 4 1 2 7 9 5 10 6 8
4 4 3 2 1 10 8 9 6 7 5
5 5 6 7 10 1 2 3 9 8 4
6 6 5 9 8 2 1 10 4 3 7
7 7 8 5 9 3 10 1 2 4 6
8 8 7 10 6 9 4 2 1 5 3
9 9 10 6 7 8 3 4 5 1 2
10 10 9 8 5 4 7 6 3 2 1

It is a commutative MC-loop but not C-loop.

Since in MC-loops the inverses are unique, we will use unique inverses instead
of right or left inverses.

Theorem 4.6. An MC-loop is a group i� it is conjugacy closed loop (CC loop).

Proof. If L is a CC-loop, then

x(yz) = (x · yz)(x−1x) = ((x · yz)x−1)x = (yz)x−1
· x = (yx−1

· zx−1
)x

= (yx−1
· x)(x−1(zx−1

· x)) = (xyx−1 · x)(x−1(xzx−1 · x)) = (xy)z.

Hence, L is a group. The converse statement is obvious.

Corollary 4.7. An MC-loop is a group i� it is an extra loop.

Proof. Since every extra loop is a conjugacy closed loop so the corollary follows
from the last theorem.

Theorem 4.8. Every MC-loop is three power associative.

Proof. Every MC-loop is conjugate IP -loop. Every conjugate IP loop is �exible.
Flexible loops are always three power associative. Hence, MC-loop is three power
associative.

Example 4.9. This loop

· 1 2 3 4 5

1 1 2 3 4 5
2 2 1 5 3 4
3 3 4 1 5 2
4 4 5 2 1 3
5 5 3 4 2 1

is three power associative but it is not an MC-loop.
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Example 4.10. Consider the following multiplicative conjugate loop.

· 1 2 3 4 5 6 7 8 9 10 11 12

1 1 2 3 4 5 6 7 8 9 10 11 12
2 2 1 4 3 6 5 8 7 11 12 9 10
3 3 4 1 2 9 11 10 12 5 7 6 8
4 4 3 2 1 11 9 12 10 6 8 5 7
5 5 6 10 12 1 2 9 11 7 3 8 4
6 6 5 12 10 2 1 11 9 8 4 7 3
7 7 8 9 11 10 12 1 2 3 5 4 6
8 8 7 11 9 12 10 2 1 4 6 3 5
9 9 11 7 8 3 4 5 6 12 1 10 2
10 10 12 5 6 7 8 3 4 1 11 2 9
11 11 9 8 7 4 3 6 5 10 2 12 1
12 12 10 6 5 8 7 4 3 2 9 1 11

It is neither diassociative nor alternative loop.

The above example shows that "Moufang theorem" is not always applicable in
MC-loops. Indeed, in the above loop

11(6.12) = (11.6)12.

But the subloop < 11, 6, 12 > is a loop which is not associative. From this, we
can conclude that in MC-loops three elements associate with each other generata
a subloop which is not a group, in general.

Example 4.11. This loop is a multiplicative conjugate loop but it is not power
associative.

· 1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10
2 2 1 5 6 3 4 9 10 7 8
3 3 5 7 1 9 2 10 4 8 6
4 4 6 1 8 2 10 3 9 5 7
5 5 3 9 2 8 1 6 7 10 4
6 6 4 2 10 1 7 8 5 3 9
7 7 9 10 3 6 8 5 1 4 2
8 8 10 4 9 7 5 1 6 2 3
9 9 7 8 5 10 3 4 2 6 1
10 10 8 6 7 4 9 2 3 1 5

Indeed, the subloop 〈3〉 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} is not associative.

Power associative loops are not MC-loop because Moufang loops are power
associative but not MC-loop.

The relationship of MC-loops with other loops is illustrated by the following
diagram.
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