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On sheaf spaces of partially ordered quasigroups

Jan Brajercik and Milan Demko

Abstract. The conditions under which a partially ordered quasigroup can be represented as
sections of a sheaf space of partially ordered quasigroups are investigated.

1. Introduction

There are known some characterizations of representable lattice ordered groups,
i.e., lattice ordered groups, shortly I-groups, which are [-isomorphic to a subdirect
product of totally ordered groups; see, e.g., [2]. One of these characterizations is
based on the theory of sheaf spaces of I-groups. The central theorem used for this
purpose gives the conditions (using ideals of I-groups) under which an I-group can
be represented as sections of a sheaf space of [-groups (see [2, Theorem 49.4]). In
this paper we generalize this result for partially ordered quasigroups.

2. Preliminaries

A quasigroup is an algebra (Q,-,\, /) with three binary operations -, \, / satisfying
the following identities

Ny -z)=z; (v y)fy=x; y W)=z (z/y)-y=uz (1)

It is easy to see that
z/(y\r) =y; (z/y\z=y (2)

follow from (1). Further, the identities (1) imply that, given a, b € @, the equations
b-x = aand y-b = a have unique solutions z = b\a and y = a/b, respectively.
Conversely, if G is a groupoid such that the equations b+ = a and y - b = a have
unique solutions z, y € G, then G is a quasigroup, where b\a and a/b are defined
as the solution of the equation b-x = a or = - b = a, respectively. Clearly, every
group is a quasigroup with z/y = x - y~! and y\z = y~! - 2. General information
concerning the properties of quasigroups can be found, e.g., in [1], [3].

A quasigroup (@, -, \,/) with a binary relation < is called a partially ordered
quasigroup (po-quasigroup) if
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(i) (@, <) is a partially ordered set,
(ii) for all z,y,a € @, x < y implies

ar < ay, ra <ya, v/a <yla, a\r <a\y, a/y <a/z, y\a < z\a.

For a po-quasigroup we will use the notation @ = (Q, -, \,/, <). Clearly, every
partially ordered group is a po-quasigroup.

A partially ordered quasigroup Q is called a lattice ordered quasigroup (shortly
l-quasigroup), if < is a lattice order. Analogously to the case of the lattice ordered
groups it can be proved that for [-quasigroups the following identities, determining
the relationship between the quasigroup operations and the lattice operations V,
A, hold

(L1) a(bVve)=abVac; (bVc)a=baV ca,
a(bAc)=abAac; (bAc)a=baA ca.

(L2) (bVe)/a=(b/a)V (c/a); a\(bV c)= (a\b) V (a\c),
(bAc)/a= (b/a) A (c/a); a\(bAc) = (a\b) A (a\c).
(L3) a/(bVe)=(a/b) A(a/e); (bV e)\a= (b\a) A (c\a),
a/(bAc)=(a/b)V (a/c); (bAc)\a= (b\a) V (c\a).

Here we prove only the first identity from (L3); the proofs of remaining identities
are analogous. Since b,c¢ < bV ¢, we have a/(bV ¢) < a/b,a/c, and therefore
a/(bVec) < (a/b) A(a/c). On the other hand, (a/b) A (a/c) < a/b,a/c. Using (2)
we obtain ¢, b < ((a/b) A (a/c))\a, which implies b V ¢ < ((a/b) A (a/c))\a. Hence
(a/b)A(a/c) < a/(bVe). Therefore we can conclude that a/(bVe) = (a/b) A (a/c).

Let Q and ‘H be the partially ordered quasigroups. We say that a mapping
d: @ — H is an o-embedding of Q into H if ® is a quasigroup homomorphism
and

P(z) < P(y) <=z <y.

In that case we say that Q is o-embedded into H.

Let Q = (Q,+,\,/, <) be a partially ordered quasigroup. Let 8 be a congruence
relation on (Q, -, \, /). The congruence class of § containing a € @ will be denoted
by [a]6, i.e., [a]0 = {x € Q| zfa}. Clearly, every congruence class [a]6 is a partially
ordered set under the relation induced by <. We say that 6 is a convexr congruence
relation on Q if 6 is a congruence relation on (Q,-,\,/) and there exists a € Q
such that the congruence class [a]f is a convex subset of Q. We say that 6 is a
directed congruence relation on Q if 6 is a congruence relation on (Q,-,\,/) and
there exists a € @ such that the congruence class [a]f is a directed subset of Q
(i.e., for each z,y € [a]d there exist u,v € [a]f such that u < x,y and x,y < v).

Let Q be a po-quasigroup and let 6 be a convex congruence relation on Q. Let
us put

[]0 < [y]€ if and only if there exist x¢ € [£]0,yo € [y]0 such that xo < yo. (3)
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A quotient-quasigroup (@, -,\,/)/6 with the relation defined by (3) is a partially
ordered quasigroup; it will be denoted by Q/6 (see [3, Theorem 2.6]). If Q is an
l-quasigroup and 6 is a convex directed congruence relation on Q, then Q/f is an
l-quasigroup with the lattice operations V and A defined by (see [3])

[2]0 V [y]0 = [z V y]0; [x]0 A [y]6 = [z A y]6.

3. Sheaf spaces of po-quasigroups

Let E and X be topological spaces. A continuous mapping o : ' — X is called a
local homeomorphism, if each point s € F has a neighborhood V such that o (V) is
an open set in X and the restricted mapping o|y : V' — o(V) is a homeomorphism.
If x € X is a point, the set F, = o~ !(z) is called the fibre over x. Let U be an
open set in X. A continuous mapping f : U — E such that f(z) € o~ !(z) for
all z € U is called a continuous local section of o over U. If o is surjective and
U = X, fis called a continuous global section. The basic facts on sections of a
local homeomorphism can be find, e.g., in [4]. For the sake of convenience, we
summarize here some results which will be frequently used.

Proposition 3.1. (cf. [4, Lemma 1])
(i) A local homeomorphism is an open mapping.

(i) The restriction of a local homeomorphism to a topological subspace is a local
homeomorphism.

Proposition 3.2. (cf. [4, Lemma 2|) Let 0 : E — X be a local homeomorphism.

(i) To each point s € E there exist a neighborhood U of x = o(s) and a contin-
uous section f:U — E such that f(x) = s.

(ii) Let f be a continuous section of E over an open subset U of X. To each point
x € U and each neighborhood V' of f(x) such that o(V') is open and oly is
a homeomorphism, there exists a neighborhood Uy of x such that f(Uy) CV

and fly, = (olv) v,

(éi0) If U, V are open sets in X, and f: U — E, g: V — E are continuous
sections, then the set {x e UNV | f(x) = g(x)} is open.

(iv) Every continuous section of E defined on an open set is an open mapping.
Proposition 3.3. (cf. [4, Lemma 3]) Let 0 : E — X be a local homeomorphism.

(i) The open sets V C E such that o|y : V — o(V) is a homeomorphism form
a basis of the topology of E.

(i9) The topology of E coincides with the final topology associated with the set of
all continuous sections of E.
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Let 0 : F — X be a local homeomorphism. For any U C X we denote

Ey = U E,.
xeU

Immediately from the definition of a local homeomorphism we obtain
Lemma 3.4. If U C X is open in X, then Ey is an open set in E.

By EAE we denote the set |J, .y (E; x E,) with the induced topology from
ExE.

Definition 3.5. Let £ and X be topological spaces and let ¢ : E — X be a
surjective local homeomorphism. We say that a triplet (E, X, o) is a sheaf space
of po-quasigroups if

(i) each fibre E, is a po-quasigroup,

(ii) the mappings (s,t) — s-t, (s,t) — t\s and (s,t) — s/t from EAFE to E are
continuous.

Definition 3.6. A sheaf space of po-quasigroups (F, X, o) is said to be a sheaf
space of l-quasigroups if each fibre F, is an l-quasigroup and the mappings

(s,t) — s Vi, (s,t) — s At
from EAE to E are continuous.

Let (E,X,0) be a sheaf space of po-quasigroups. Let f, g be continuous
sections defined over the same open set U C X. Define fg, ¢\ f and f/g by

(fg)(x) = f(z)-g(x); (\f)(z) = g(@)\f(x); (f/9)(x)= f(x)/g(x).

Since -, \,/ are continuous mappings from EAFE to E, fg, g\f and f/g are con-
tinuous sections over U.

Lemma 3.7. Let (F,X,0) be a sheaf space of po-quasigroups and let f : U — FE
be a continuous local section over an open set U C X. Then the mapping ¢y :
Ey — Ey; Ey 3 s+— f(x)/s is a homeomorphism.

Proof. By Lemma 3.4, Ey is an open set in E. Clearly, ¢y : By — Ey; E; 3
s+ f(x)/s is a bijection. Using (2) it is easy to verify that the inverse mapping
<p]71 : By — Ey is defined by E, 5 s — s\ f(x).

Let s € Ey, o(s) =x € U. Let W C Ey be an open set, f(z)/s € W. In view
of Proposition 3.3(¢) for the proof of the continuity of ¢y we may suppose that
olw is a homeomorphism. Denote (o|y)~! = g. Clearly, g is a continuous local
section over Uy = o(W) and g(x) = f(x)/s. Put V = (g\f)(Up). Since g\f is a
continuous local section, by Proposition 3.2(iv), V' is open in Ey. Moreover, since
(g\f)(z) = g(2)\f(z) = (f(x)/s)\f(z) = s, we have s € V. Further, if t € p(V),
then there is u € Uy such that ¢ = ¢¢(g(u)\f(uw)) = f(w)/(g(w)\f(v)) = g(u) € W.
Thus ¢f(V) € W, and we can conclude that ¢ is continuous. The proof of the
continuity of go;l is analogous. O
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Let (E, X, o) be a sheaf space of po-quasigroups. Consider the following con-
dition:

(C) if f,g are continuous local sections over the same open set U C X such that
sup{f(u),g(u)} ezists for each u € U, then the set {sup{f(u),g(u)}|u e U}
s open in F.

Lemma 3.8. Let (F,X,0) be a sheaf space of po-quasigroups where fibres E,. are
lattice ordered quasigroups. Then (E, X, o) is a sheaf space of l-quasigroups if and
only if (E,X, o) satisfies the condition (C).

Proof. Suppose that (F, X, o) satisfies the condition (C). Firstly we will show
that V is continuous. Let (s,t) be an arbitrary point of EAFE, i.e., s,t € E,, for
some x € X. Let Wy, be an open set in F, sVt € W By Proposition 3.2(i)
there exist an open set U C X, = € U, and continuous local sections f,g over U
with f(z) = s, g(z) =t. By (C), the set Wyyp = {f(u) Vg(u)|u € U} is open in E.
Denote Wy = Waup N Wiy By Proposition 3.1(%), the set Uy = o(Wy) is open in
X which implies that f(Uy) and g(Up) are open in E, and {(f(u), g(u))|u € Up} =
(f(Uo) xg(Up))N(EAE) is open in EAFE containing the point (s,t) € EAE. Since
F(U0) vV g(Up) ={(f(u) Vg(u))|ue Uy} C Wy C Wy, we can conclude that V is
continuous.

We are going to show that A is continuous. Let s,t € E,. Let W,,s be
an open set in E, s At € Wya,. In view of Proposition 3.3(¢) for the proof of
the continuity of A we may suppose that o|w.,, is a homeomorphism. Denote
f = (o|lw.,,)"t. Clearly, f is a continuous local section over U = o(Wn;). By
Lemma 3.7, the mapping ¢; : Ey — Ey; E, > r — f(2)/r is a homeomorphism.
Thus W = ¢¢(f(U)) is open in E and f(z)/(s At) € W. By (L3), f(z)/(s ANt) =
(f(x)/s) vV (f(z)/t) and since V is continuous, there exist neighborhoods V, of
f(x)/s and V; of f(x)/t, o(Vs) = a(V;) C U, such that VvV, C W. Denote W, =
oy (V) and W,'= o1 (V). Since o (/(x)/s) = (7(2)/s)\[(x) = s, we have
s € W,. Analogously, t € W;. Further, if p € Wy, r € Wy, o(p) = o(r) = z, then
1 (O)V os(r) = (F()/p) v (f(2)/r) € VaV'V, C W, which yields £(z)/(pAr) € W.
Hence @}1(]”(2)/(}9 AT))=pAT € f(U) C Wspae. Thus Wy AW, C Wipe, and we
can conclude that A is continuous.

Conversely, let (E, X, o) be a sheaf space of [-quasigroups. Suppose that f,g
are continuous local sections over the same open set U C X. We are going to show
that Waup = {f(v)Vg(u) | w € U} is open in E. Let € U. By Proposition 3.3(i)
there exists an open set W in E, f(z) V g(z) € W, such that o|lw : W — o(W)
is a homeomorphism. Since V is continuous, there exist an open set Uy C U C X,
z € Uy, such that Wy = f(Up) Vv g(Uy) C W. Clearly, Wy C Wy, and, since
Wy = Ey, "W, by Lemma 3.4, Wy, is open. Thus we can conclude that Wy, can
be covered by open sets, which means that Wy, is open in the topology of £. [

The sheaf space of [-groups is defined as a triplet (E, X, o) such that each fibre
E, is an [-group, the mappings -, V, A are continuous from EAFE to E and ~! is
continuous from E to E (see [2]). In view of Lemma 3.7 and Lemma 3.8 we have
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Corollary 3.9. Let (E, X,0) be a sheaf space of po-quasigroups satisfying (C). If
E, is an l-group for each x € X, then (E, X,0) is a sheaf space of l-groups.

Proof. Clearly, - is continuous from EAFE to E and, by Lemma 3.8, the lattice
operations V and A are also continuous. Consider the global section e : X — Ej
e(z) = e;, where e, is the identity element of F,; e is a continuous global section
(see [4]). Since for s € E, we have s™! = e,/s = e(x)/s and, by Lemma 3.7,
s + e(x)/s is a homeomorphism, we can conclude that ~! is a continuous mapping
from F to F. O

Let (F, X, 0) be a sheaf space of po-quasigroups. Clearly, the direct product
[1.cx Ex of po-quasigroups E, is a po-quasigroup. Denote by R the set of all
continuous global sections of o and define the relation < on R by

g < h<g(x) <h(z)for all z € X. (4)

Let R # 0. Then R with the operations -, /, \ defined componentwise and the
relation < defined by (4) is a po-quasigroup. Moreover, it is easy to see that

Lemma 3.10. If R # (), then R is a po-subquasigroup of the direct product
HzEX Eﬂ?

The following theorem generalizes the analogous result valid for lattice ordered
groups (see [2, Theorem 49.4]).

Theorem 3.11. Let Q be a po-quasigroup and let X be a topological space. Sup-
pose that for each x € X there exists a convex congruence relation 6, on Q such
that the following conditions are satisfied

(3) for all g,h € Q, the set Uy, = {x € X | [g]0, = [h]0,} is open in X,
(79) if [g]0s < [h]Oy for each x € X, then g < h.

Then Q can be o-embedded into a po-quasigroup of the continuous global sections
of some sheaf space of po-quasigroups over X. Especially, if Q is an l-quasigroup
and 0, are directed convex congruence relations on Q satisfying (i) and (ii), then
Q can be o-embedded into an l-quasigroup of the continuous global sections of some
sheaf space of l-quasigroups over X.

Proof. Let Q be a po-quasigroup such that (i) and (ii) are valid. We follow the
idea of the construction of a sheaf space which was used for I-groups in the proof
of Theorem 49.4 in [2]. Denote

E=J E,

reX
where E, = Q/0, x {z} and define

c:E—X; ([g9)0z,2)— x.
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Clearly, o is a surjection. Further, for each g € ) we define
9: X —>E; z— ([9]0s,2)
and consider the finest topology 7 on E such that each g is continuous. Denote

B={g(U)|U is open in X, g € Q}.

~

Let (U),h(V) € B. By (i), T = {x € X |§(x) = h(z)} is an open set in X. Let
W =TNnUNV. Clearly, W is open in X, and §(W) = h(W) C g(U) N h(V).
Conversely, if t € G(U) N h(V), then t = ([g]0u, u) = ([h]0u, u), u € W, which
yields t € g(W). Therefore g(U) ﬂﬁ(V) = g(W) and, since W is open in X, we can
conclude that g(U) DE(V) € B. Thus B is a basis for some topology 75 on E. By
(i), for any h(U) € B and g € Q the set (§)~ (h(U)) = Un{z € X | [9)0. = [h]0.}
is open in X, which yields 75 C 7. On the other hand, let V' be a T-open set in E.
For every v = ([g]0., ) € V the set U = (g)~1(V) is open in X, g(U) C V and
v € g(U). Thus V is covered by 7p-open sets. Therefore 7 C 75 and so 7 = 75.

Let s € E, s = ([g]0s,x) and let U be a neighborhood of z = o(s) in X. Then
V=g(U)isopenin E, s € V and

olvoglv=idy, §lvoo|y=idy.

Thus 0 : E — X : ([9]0., ) — z is a continuous mapping and o |y: V — U is a
homeomorphism. We have that ¢ : E — X is a local homeomorphism with the
fibres E, = {g(z) | g € Q}. Each fibre E, is a po-quasigroup under the operations

o~

(@) - h(x) = (gh)(2); (G(x)/h(z) = (g/h)(x); G(x)\h(z) = (9\)(z)
and the partial order
G(z) < h(z) iff there exist ¢’ € [g]0,, 1 € [h]f, such that ¢’ < .

For every open set W in E such that ﬁ(m) € W there exists an open set U in X,
z € U, such that gh(U) C W. Since V = {(g(u), h(u))|u € U} is open in EAE
and g(u) B(u) = gﬁ(u) for each u € U, we can conclude that the operation - is
continuous. Analogously, the operations \,/ are continuous. Thus (E, X,0) is a
sheaf space of po-quasigroups.

Let R be a po-quasigroup of all continuous global sections of (F, X, c). Define

P:Q—>R; g—g.
Clearly, ® preserves the quasigroup operations. Further, by (i), we have
g < he (gl <[h]f, for all z € X < g(x) <ﬁ(x) forall z € X < § < h.

Thus @ is an o-embedding of Q into R.
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If Q is an l-quasigroup and 6, are directed convex congruence relations on Q,
then Q/6, are l-quasigroups, which yields that the fibres E, are lattice ordered
quasigroups under the lattice operations

9(x) V() = (g VR)(x); G(z) A(x) = (g AR)(2).

By the same way as in the case of the quasigroup operations we can see that the
mappings V and A are continuous. Thus (E, X, o) is a sheaf space of [-quasigroups.
Clearly, R is an l-quasigroup and @ : g — ¢ is an o-embedding of Q into R. [

Remark. Let (F, X,0) be the sheaf space constructed in the proof of Theorem
3.11. Let X be a Hausdorff space. Then F is a Hausdorff space if for all g, h € @,
the set Uy, = {& € X | [g]6, = [h]0,} is open and also close in X. To prove
this statement it suffices to use the same topological arguments as in the proof of
Theorem 49.4 in [2].
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