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On sheaf spaces of partially ordered quasigroups

Ján Brajer£ ík and Milan Demko

Abstract. The conditions under which a partially ordered quasigroup can be represented as
sections of a sheaf space of partially ordered quasigroups are investigated.

1. Introduction

There are known some characterizations of representable lattice ordered groups,
i.e., lattice ordered groups, shortly l-groups, which are l-isomorphic to a subdirect
product of totally ordered groups; see, e.g., [2]. One of these characterizations is
based on the theory of sheaf spaces of l-groups. The central theorem used for this
purpose gives the conditions (using ideals of l-groups) under which an l-group can
be represented as sections of a sheaf space of l-groups (see [2, Theorem 49.4]). In
this paper we generalize this result for partially ordered quasigroups.

2. Preliminaries

A quasigroup is an algebra (Q, ·, \, /) with three binary operations ·, \, / satisfying
the following identities

y\(y · x) = x; (x · y)/y = x; y · (y\x) = x; (x/y) · y = x. (1)

It is easy to see that

x/(y\x) = y; (x/y)\x = y (2)

follow from (1). Further, the identities (1) imply that, given a, b ∈ Q, the equations
b · x = a and y · b = a have unique solutions x = b\a and y = a/b, respectively.
Conversely, if G is a groupoid such that the equations b · x = a and y · b = a have
unique solutions x, y ∈ G, then G is a quasigroup, where b\a and a/b are de�ned
as the solution of the equation b · x = a or x · b = a, respectively. Clearly, every
group is a quasigroup with x/y = x · y−1 and y\x = y−1 · x. General information
concerning the properties of quasigroups can be found, e.g., in [1], [5].

A quasigroup (Q, ·, \, /) with a binary relation 6 is called a partially ordered

quasigroup (po-quasigroup) if
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(i) (Q,6) is a partially ordered set,

(ii) for all x, y, a ∈ Q, x 6 y implies

ax 6 ay, xa 6 ya, x/a 6 y/a, a\x 6 a\y, a/y 6 a/x, y\a 6 x\a.

For a po-quasigroup we will use the notation Q = (Q, ·, \, /, 6). Clearly, every
partially ordered group is a po-quasigroup.

A partially ordered quasigroup Q is called a lattice ordered quasigroup (shortly
l-quasigroup), if 6 is a lattice order. Analogously to the case of the lattice ordered
groups it can be proved that for l-quasigroups the following identities, determining
the relationship between the quasigroup operations and the lattice operations ∨,
∧, hold

(L1) a(b ∨ c) = ab ∨ ac; (b ∨ c)a = ba ∨ ca,
a(b ∧ c) = ab ∧ ac; (b ∧ c)a = ba ∧ ca.

(L2) (b ∨ c)/a = (b/a) ∨ (c/a); a\(b ∨ c) = (a\b) ∨ (a\c),
(b ∧ c)/a = (b/a) ∧ (c/a); a\(b ∧ c) = (a\b) ∧ (a\c).

(L3) a/(b ∨ c) = (a/b) ∧ (a/c); (b ∨ c)\a = (b\a) ∧ (c\a),
a/(b ∧ c) = (a/b) ∨ (a/c); (b ∧ c)\a = (b\a) ∨ (c\a).

Here we prove only the �rst identity from (L3); the proofs of remaining identities
are analogous. Since b, c 6 b ∨ c, we have a/(b ∨ c) 6 a/b, a/c, and therefore
a/(b ∨ c) 6 (a/b) ∧ (a/c). On the other hand, (a/b) ∧ (a/c) 6 a/b, a/c. Using (2)
we obtain c, b 6 ((a/b) ∧ (a/c))\a, which implies b ∨ c 6 ((a/b) ∧ (a/c))\a. Hence
(a/b)∧ (a/c) 6 a/(b∨ c). Therefore we can conclude that a/(b∨ c) = (a/b)∧ (a/c).

Let Q and H be the partially ordered quasigroups. We say that a mapping
Φ : Q → H is an o-embedding of Q into H if Φ is a quasigroup homomorphism
and

Φ(x) 6 Φ(y) ⇐⇒ x 6 y.

In that case we say that Q is o-embedded into H.
Let Q = (Q, ·, \, /, 6) be a partially ordered quasigroup. Let θ be a congruence

relation on (Q, ·, \, /). The congruence class of θ containing a ∈ Q will be denoted
by [a]θ, i.e., [a]θ = {x ∈ Q|xθa}. Clearly, every congruence class [a]θ is a partially
ordered set under the relation induced by 6. We say that θ is a convex congruence

relation on Q if θ is a congruence relation on (Q, ·, \, /) and there exists a ∈ Q
such that the congruence class [a]θ is a convex subset of Q. We say that θ is a
directed congruence relation on Q if θ is a congruence relation on (Q, ·, \, /) and
there exists a ∈ Q such that the congruence class [a]θ is a directed subset of Q
(i.e., for each x, y ∈ [a]θ there exist u, v ∈ [a]θ such that u 6 x, y and x, y 6 v).

Let Q be a po-quasigroup and let θ be a convex congruence relation on Q. Let
us put

[x]θ 6 [y]θ if and only if there exist x0 ∈ [x]θ, y0 ∈ [y]θ such that x0 6 y0. (3)
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A quotient-quasigroup (Q, ·, \, /)/θ with the relation de�ned by (3) is a partially
ordered quasigroup; it will be denoted by Q/θ (see [3, Theorem 2.6]). If Q is an
l-quasigroup and θ is a convex directed congruence relation on Q, then Q/θ is an
l-quasigroup with the lattice operations ∨ and ∧ de�ned by (see [3])

[x]θ ∨ [y]θ = [x ∨ y]θ; [x]θ ∧ [y]θ = [x ∧ y]θ.

3. Sheaf spaces of po-quasigroups

Let E and X be topological spaces. A continuous mapping σ : E → X is called a
local homeomorphism, if each point s ∈ E has a neighborhood V such that σ(V ) is
an open set in X and the restricted mapping σ|V : V → σ(V ) is a homeomorphism.
If x ∈ X is a point, the set Ex = σ−1(x) is called the �bre over x. Let U be an
open set in X. A continuous mapping f : U → E such that f(x) ∈ σ−1(x) for
all x ∈ U is called a continuous local section of σ over U . If σ is surjective and
U = X, f is called a continuous global section. The basic facts on sections of a
local homeomorphism can be �nd, e.g., in [4]. For the sake of convenience, we
summarize here some results which will be frequently used.

Proposition 3.1. (cf. [4, Lemma 1])

(i) A local homeomorphism is an open mapping.

(ii) The restriction of a local homeomorphism to a topological subspace is a local

homeomorphism.

Proposition 3.2. (cf. [4, Lemma 2]) Let σ : E → X be a local homeomorphism.

(i) To each point s ∈ E there exist a neighborhood U of x = σ(s) and a contin-

uous section f : U → E such that f(x) = s.

(ii) Let f be a continuous section of E over an open subset U of X. To each point

x ∈ U and each neighborhood V of f(x) such that σ(V ) is open and σ|V is

a homeomorphism, there exists a neighborhood U0 of x such that f(U0) ⊆ V
and f |U0 = (σ|V )−1|U0 .

(iii) If U , V are open sets in X, and f : U → E, g : V → E are continuous

sections, then the set {x ∈ U ∩ V | f(x) = g(x)} is open.

(iv) Every continuous section of E de�ned on an open set is an open mapping.

Proposition 3.3. (cf. [4, Lemma 3]) Let σ : E → X be a local homeomorphism.

(i) The open sets V ⊆ E such that σ|V : V → σ(V ) is a homeomorphism form

a basis of the topology of E.

(ii) The topology of E coincides with the �nal topology associated with the set of

all continuous sections of E.
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Let σ : E → X be a local homeomorphism. For any U ⊆ X we denote

EU =
⋃

x∈U

Ex.

Immediately from the de�nition of a local homeomorphism we obtain

Lemma 3.4. If U ⊆ X is open in X, then EU is an open set in E.

By E∆E we denote the set
⋃

x∈X(Ex × Ex) with the induced topology from
E × E.

De�nition 3.5. Let E and X be topological spaces and let σ : E → X be a
surjective local homeomorphism. We say that a triplet (E,X, σ) is a sheaf space

of po-quasigroups if

(i) each �bre Ex is a po-quasigroup,

(ii) the mappings (s, t) 7→ s · t, (s, t) 7→ t\s and (s, t) 7→ s/t from E∆E to E are
continuous.

De�nition 3.6. A sheaf space of po-quasigroups (E,X, σ) is said to be a sheaf

space of l-quasigroups if each �bre Ex is an l-quasigroup and the mappings

(s, t) 7→ s ∨ t, (s, t) 7→ s ∧ t

from E∆E to E are continuous.

Let (E,X, σ) be a sheaf space of po-quasigroups. Let f , g be continuous
sections de�ned over the same open set U ⊆ X. De�ne fg, g\f and f/g by

(fg)(x) = f(x) · g(x); (g\f)(x) = g(x)\f(x); (f/g)(x) = f(x)/g(x).

Since ·, \, / are continuous mappings from E∆E to E, fg, g\f and f/g are con-
tinuous sections over U .

Lemma 3.7. Let (E,X, σ) be a sheaf space of po-quasigroups and let f : U → E
be a continuous local section over an open set U ⊆ X. Then the mapping ϕf :
EU → EU ; Ex 3 s 7→ f(x)/s is a homeomorphism.

Proof. By Lemma 3.4, EU is an open set in E. Clearly, ϕf : EU → EU ; Ex 3
s 7→ f(x)/s is a bijection. Using (2) it is easy to verify that the inverse mapping
ϕ−1

f : EU → EU is de�ned by Ex 3 s 7→ s\f(x).
Let s ∈ EU , σ(s) = x ∈ U . Let W ⊆ EU be an open set, f(x)/s ∈ W . In view

of Proposition 3.3(i) for the proof of the continuity of ϕf we may suppose that
σ|W is a homeomorphism. Denote (σ|W )−1 = g. Clearly, g is a continuous local
section over U0 = σ(W ) and g(x) = f(x)/s. Put V = (g\f)(U0). Since g\f is a
continuous local section, by Proposition 3.2(iv), V is open in EU . Moreover, since
(g\f)(x) = g(x)\f(x) = (f(x)/s)\f(x) = s, we have s ∈ V . Further, if t ∈ ϕf (V ),
then there is u ∈ U0 such that t = ϕf (g(u)\f(u)) = f(u)/(g(u)\f(u)) = g(u) ∈ W .
Thus ϕf (V ) ⊆ W , and we can conclude that ϕf is continuous. The proof of the
continuity of ϕ−1

f is analogous.
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Let (E,X, σ) be a sheaf space of po-quasigroups. Consider the following con-
dition:

(C) if f, g are continuous local sections over the same open set U ⊆ X such that

sup{f(u), g(u)} exists for each u ∈ U , then the set {sup{f(u), g(u)}|u ∈ U}
is open in E.

Lemma 3.8. Let (E,X, σ) be a sheaf space of po-quasigroups where �bres Ex are

lattice ordered quasigroups. Then (E,X, σ) is a sheaf space of l-quasigroups if and
only if (E,X, σ) satis�es the condition (C).

Proof. Suppose that (E,X, σ) satis�es the condition (C). Firstly we will show
that ∨ is continuous. Let (s, t) be an arbitrary point of E∆E, i.e., s, t ∈ Ex for
some x ∈ X. Let Ws∨t be an open set in E, s ∨ t ∈ Ws∨t. By Proposition 3.2(i)
there exist an open set U ⊆ X, x ∈ U , and continuous local sections f, g over U
with f(x) = s, g(x) = t. By (C), the set Wsup = {f(u)∨g(u)|u ∈ U} is open in E.
Denote W0 = Wsup ∩Ws∨t. By Proposition 3.1(i), the set U0 = σ(W0) is open in
X which implies that f(U0) and g(U0) are open in E, and {(f(u), g(u))|u ∈ U0} =
(f(U0)×g(U0))∩(E∆E) is open in E∆E containing the point (s, t) ∈ E∆E. Since
f(U0) ∨ g(U0) ≡ {(f(u) ∨ g(u))|u ∈ U0} ⊆ W0 ⊆ Ws∨t, we can conclude that ∨ is
continuous.

We are going to show that ∧ is continuous. Let s, t ∈ Ex. Let Ws∧t be
an open set in E, s ∧ t ∈ Ws∧t. In view of Proposition 3.3(i) for the proof of
the continuity of ∧ we may suppose that σ|Ws∧t is a homeomorphism. Denote
f = (σ|Ws∧t

)−1. Clearly, f is a continuous local section over U = σ(Ws∧t). By
Lemma 3.7, the mapping ϕf : EU → EU ; Ez 3 r 7→ f(z)/r is a homeomorphism.
Thus W = ϕf (f(U)) is open in E and f(x)/(s ∧ t) ∈ W . By (L3), f(x)/(s ∧ t) =
(f(x)/s) ∨ (f(x)/t) and since ∨ is continuous, there exist neighborhoods Vs of
f(x)/s and Vt of f(x)/t, σ(Vs) = σ(Vt) ⊆ U , such that Vs∨Vt ⊆ W . Denote Ws =
ϕ−1

f (Vs) and Wt = ϕ−1
f (Vt). Since ϕ−1

f (f(x)/s) = (f(x)/s)\f(x) = s, we have
s ∈ Ws. Analogously, t ∈ Wt. Further, if p ∈ Ws, r ∈ Wt, σ(p) = σ(r) = z, then
ϕf (p)∨ϕf (r) = (f(z)/p)∨(f(z)/r) ∈ Vs∨Vt ⊆ W , which yields f(z)/(p∧r) ∈ W .
Hence ϕ−1

f (f(z)/(p ∧ r)) = p ∧ r ∈ f(U) ⊆ Ws∧t. Thus Ws ∧Wt ⊆ Ws∧t, and we
can conclude that ∧ is continuous.

Conversely, let (E,X, σ) be a sheaf space of l-quasigroups. Suppose that f, g
are continuous local sections over the same open set U ⊆ X. We are going to show
that Wsup = {f(u)∨ g(u) | u ∈ U} is open in E. Let x ∈ U . By Proposition 3.3(i)
there exists an open set W in E, f(x) ∨ g(x) ∈ W , such that σ|W : W → σ(W )
is a homeomorphism. Since ∨ is continuous, there exist an open set U0 ⊆ U ⊆ X,
x ∈ U0, such that W0 = f(U0) ∨ g(U0) ⊆ W . Clearly, W0 ⊆ Wsup and, since
W0 = EU0 ∩W , by Lemma 3.4, W0 is open. Thus we can conclude that Wsup can
be covered by open sets, which means that Wsup is open in the topology of E.

The sheaf space of l-groups is de�ned as a triplet (E,X, σ) such that each �bre
Ex is an l-group, the mappings ·, ∨, ∧ are continuous from E∆E to E and −1 is
continuous from E to E (see [2]). In view of Lemma 3.7 and Lemma 3.8 we have
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Corollary 3.9. Let (E,X, σ) be a sheaf space of po-quasigroups satisfying (C). If
Ex is an l-group for each x ∈ X, then (E,X, σ) is a sheaf space of l-groups.

Proof. Clearly, · is continuous from E∆E to E and, by Lemma 3.8, the lattice
operations ∨ and ∧ are also continuous. Consider the global section e : X → E;
e(x) = ex, where ex is the identity element of Ex; e is a continuous global section
(see [4]). Since for s ∈ Ex we have s−1 = ex/s = e(x)/s and, by Lemma 3.7,
s 7→ e(x)/s is a homeomorphism, we can conclude that −1 is a continuous mapping
from E to E.

Let (E,X, σ) be a sheaf space of po-quasigroups. Clearly, the direct product∏
x∈X Ex of po-quasigroups Ex is a po-quasigroup. Denote by R the set of all

continuous global sections of σ and de�ne the relation 6 on R by

g 6 h ⇐⇒ g(x) 6 h(x) for all x ∈ X. (4)

Let R 6= ∅. Then R with the operations ·, /, \ de�ned componentwise and the
relation 6 de�ned by (4) is a po-quasigroup. Moreover, it is easy to see that

Lemma 3.10. If R 6= ∅, then R is a po-subquasigroup of the direct product∏
x∈X Ex.

The following theorem generalizes the analogous result valid for lattice ordered
groups (see [2, Theorem 49.4]).

Theorem 3.11. Let Q be a po-quasigroup and let X be a topological space. Sup-

pose that for each x ∈ X there exists a convex congruence relation θx on Q such

that the following conditions are satis�ed

(i) for all g, h ∈ Q, the set Ugh = {x ∈ X | [g]θx = [h]θx} is open in X,

(ii) if [g]θx 6 [h]θx for each x ∈ X, then g 6 h.

Then Q can be o-embedded into a po-quasigroup of the continuous global sections

of some sheaf space of po-quasigroups over X. Especially, if Q is an l-quasigroup
and θx are directed convex congruence relations on Q satisfying (i) and (ii), then
Q can be o-embedded into an l-quasigroup of the continuous global sections of some

sheaf space of l-quasigroups over X.

Proof. Let Q be a po-quasigroup such that (i) and (ii) are valid. We follow the
idea of the construction of a sheaf space which was used for l-groups in the proof
of Theorem 49.4 in [2]. Denote

E =
⋃

x∈X

Ex,

where Ex = Q/θx × {x} and de�ne

σ : E → X; ([g]θx, x) 7→ x.
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Clearly, σ is a surjection. Further, for each g ∈ Q we de�ne

ĝ : X → E; x 7→ ([g]θx, x)

and consider the �nest topology τ on E such that each ĝ is continuous. Denote

B = {ĝ(U) |U is open in X, g ∈ Q}.

Let ĝ(U), ĥ(V ) ∈ B. By (i), T = {x ∈ X | ĝ(x) = ĥ(x)} is an open set in X. Let

W = T ∩ U ∩ V . Clearly, W is open in X, and ĝ(W ) = ĥ(W ) ⊆ ĝ(U) ∩ ĥ(V ).
Conversely, if t ∈ ĝ(U) ∩ ĥ(V ), then t = ([g]θu, u) = ([h]θu, u), u ∈ W , which

yields t ∈ ĝ(W ). Therefore ĝ(U)∩ĥ(V ) = ĝ(W ) and, since W is open in X, we can

conclude that ĝ(U)∩ ĥ(V ) ∈ B. Thus B is a basis for some topology τB on E. By

(i), for any ĥ(U) ∈ B and g ∈ Q the set (ĝ)−1(ĥ(U)) = U ∩{x ∈ X | [g]θx = [h]θx}
is open in X, which yields τB ⊆ τ . On the other hand, let V be a τ -open set in E.
For every v = ([g]θx, x) ∈ V the set U = (ĝ)−1(V ) is open in X, ĝ(U) ⊆ V and
v ∈ ĝ(U). Thus V is covered by τB-open sets. Therefore τ ⊆ τB and so τ = τB .

Let s ∈ E, s = ([g]θx, x) and let U be a neighborhood of x = σ(s) in X. Then
V = ĝ(U) is open in E, s ∈ V and

σ |V ◦ ĝ |U= idU , ĝ |U ◦σ |V = idV .

Thus σ : E → X : ([g]θx, x) 7→ x is a continuous mapping and σ |V : V → U is a
homeomorphism. We have that σ : E → X is a local homeomorphism with the
�bres Ex = {ĝ(x) | g ∈ Q}. Each �bre Ex is a po-quasigroup under the operations

ĝ(x) · ĥ(x) = (ĝh)(x); (ĝ(x)/ĥ(x) = (ĝ/h)(x); ĝ(x)\ĥ(x) = (ĝ\h)(x)

and the partial order

ĝ(x) 6 ĥ(x) i� there exist g′ ∈ [g]θx, h′ ∈ [h]θx such that g′ 6 h′.

For every open set W in E such that ĝh(x) ∈ W there exists an open set U in X,

x ∈ U , such that ĝh(U) ⊆ W . Since V = {(ĝ(u), ĥ(u)) |u ∈ U} is open in E∆E

and ĝ(u) · ĥ(u) = ĝh(u) for each u ∈ U , we can conclude that the operation · is
continuous. Analogously, the operations \, / are continuous. Thus (E,X, σ) is a
sheaf space of po-quasigroups.

Let R be a po-quasigroup of all continuous global sections of (E,X, σ). De�ne

Φ : Q → R; g 7→ ĝ.

Clearly, Φ preserves the quasigroup operations. Further, by (ii), we have

g 6 h ⇔ [g]θx 6 [h]θx for all x ∈ X ⇔ ĝ(x) 6 ĥ(x) for all x ∈ X ⇔ ĝ 6 ĥ.

Thus Φ is an o-embedding of Q into R.
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If Q is an l-quasigroup and θx are directed convex congruence relations on Q,
then Q/θx are l-quasigroups, which yields that the �bres Ex are lattice ordered
quasigroups under the lattice operations

ĝ(x) ∨ ĥ(x) = (ĝ ∨ h)(x); ĝ(x) ∧ ĥ(x) = (ĝ ∧ h)(x).

By the same way as in the case of the quasigroup operations we can see that the
mappings ∨ and ∧ are continuous. Thus (E,X, σ) is a sheaf space of l-quasigroups.
Clearly, R is an l-quasigroup and Φ : g 7→ ĝ is an o-embedding of Q into R.

Remark. Let (E,X, σ) be the sheaf space constructed in the proof of Theorem
3.11. Let X be a Hausdor� space. Then E is a Hausdor� space if for all g, h ∈ Q,
the set Ugh = {x ∈ X | [g]θx = [h]θx} is open and also close in X. To prove
this statement it su�ces to use the same topological arguments as in the proof of
Theorem 49.4 in [2].
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