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Green’s relations and the relation N

in ['-semigroups

Niovi Kehayopulu

Abstract. Let M be a I'-semigroup. For a prime ideal I of M, let o; be the relation on M
consisted of the pairs (x,y), where = and y are elements of M such that either both z and y are
elements of I or both x and y are not elements of I. Let A be the semilattice congruence on M
defined by xNy if and only if the filters of M generated by = and y coincide. Then the set N
is the intersection of the relations oy, where I runs over the prime ideals of M. If R, £, Z, H
are the Green’s relations of M and A the set of right ideals, B the set of left ideals and Z the set

of ideals of M, then we have HC RCZCN, HCLCZICNand LoRCZ, R= () oy,
IcA
L= () o5, ZT= () or. The relation Ro L (= Lo R) is the least -with respect to the
IzeB IeM
inclusion relation- equivalence relation on M containing both R and L. Finally, we characterize

the I'-semigroups which have only one £ (or R)-class or only one Z-class.

1. Introduction and prerequisites

An ideal I of a semigroup S is called completely prime if for any a,b € I, ab € I
implies that either a € I or b € I. Every semilattice congruence on a semigroup S
is the intersection of congruences oy where I is a completely prime ideal and for
all z,y € S, we have oy if and only if x,y € I or x,y ¢ I [6]. For semigroups, or-
dered semigroups or ordered I'-semigroups, we always use the terminology weakly
prime, prime (subset) instead of the terminology prime, completely prime given
by Petrich. For Green’s relations in semigroups we refer to [1, 6]. For Green’s
relations in ordered semigroups, we refer to [2]. In the present paper we mainly
present the analogous results of [2] in case of I'-semigroups.

The concept of a I'-semigroup has been introduced by M.K. Sen in 1981 as
follows: If S and I' are two nonempty sets, S is called a I'-semigroup if the following
assertions are satisfied: (1) aab € S and aaf € T and (2) (aad)Bec = a(abfB)c =
aa(bfc) for all a,b,c € S and all a,8 € T [8]. In 1986, M.K. Sen and N.K.
Saha changed that definition and gave the following definition of a I'-semigroup:
Given two nonempty sets M and I', M is called a I'-semigroup if (1) aab € M
and (2) (aad)Bec = aa(bfc) for all a,b,c € M and all o, € T [9]. Later, in
[7], Saha calls a nonempty set S a I'-semigroup (I' # ) if there is a mapping
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SxT'xS— S| (a,7v,b) — aybsuch that (aab)Bc = aa(bfc) for all a,b,c € S and
all a, 8 € I', and remarks that the most usual semigroup concepts, in particular
regular and inverse I'-semigroups have their analogous in I'-semigroups. Although
it was very convenient to work on the definition by Sen and Saha using binary
relations [9], the uniqueness condition was missing from that definition. Which
means that in an expression of the form, say aybuc€dpe or al'bl'cI'dle, it was not
known where to put the parentheses. In that sense, the definition of a I'-semigroup
given by Saha in [7] was the right one. However, adding the uniqueness condition
in the definition given by Sen and Saha in [9], we do not need to define it via
mappings. The revised version of the definition by Sen and Saha in [9] has been
introduced by Kehayopulu in [3] as follows:

For two nonempty sets M and I', define MT'M as the set of all elements of the
form miyms, where my,ms € M, v € I'. That is,

MTM = {miyms | my,mq € M,y €T'}.

Definition 1.1. Let M and I" be two nonempty sets. The set M is called a
I-semigroup if the following assertions are satisfied:
(1) MTM C M.
(2) If my,ma,m3,mg € M, v1,v2 € T such that m; = mg, v1 = 72 and
mo = My, then myy;ms = mgyamy.
(3) (mi1y1ma)yams = myy1 (mayams) for all mq, mae, ms € M and 1,7y, € I.

In other words, I' is a set of binary operations on M such that:

(m1y1ma)yams = mivy1(mayams) for all my,me, m3 € M and all vq,v2 € T
According to that "associativity" relation, each of the elements (mjy1ms)y2ms,
and mqv1(mavyams) is denoted by myy1mayams.

Using conditions (1) — (3) one can prove that for an element of M of the form
M1Y1M2Y2M3V3MA « -+ - Y 1 Y Mo -1
or a subset of M of the form
milimalomalsmy .. . Iypoympymy 4,

one can put a parenthesis in any expression beginning with some m; and ending
in some m; [3, 4, 5].
The example below based on Definition 1.1 shows what a I'-semigroup is.

Example 1.2. [4] Consider the two-elements set M := {a,b}, and let T = {~, u}
be the set of two binary operations on M defined in the tables below:

v a b m a b
a a b a b a
b b a b a b
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One can check that (zpy)wz = zp(ywz) for all x,y,z € M and all p,w € T'. So, M
is a I'-semigroup.

Example 1.3. [5] Consider the set M := {a,b,¢,d, e}, and let I' = {v, u} be the
set of two binary operations on M defined in the tables below:

0% a b c d e w a b c d e
a a b c d e a b c d e a
b b c d e a b c d e a b
c c d e a b c d e a b c
d d e a b c d e a b c d
e e a b c d e a b c d e

Since (zpy)wz = xp(ywz) for all z,y,z € M and all p,w € T', M is a T'-semigroup.

Let now M be a I’-semigroup. A nonempty subset A of M is called a sub-
semigroup of M if ATA C A, that is, if ayb € A for every a,b € A and every
v € I'. A nonempty subset A of M is called a left ideal of M if MT'A C A, that
is, if m € M, v € T" and a € A, implies mya € A. It is called a right ideal of
M if ATM C A, that is, if a € A, v € ' and m € M, implies aym € A. A is
called an ¢deal of M if it is both a left and a right ideal of M. For an element a
of M, we denote by R(a), L(a), I(a), the right ideal, left ideal and the ideal of
M, respectively, generated by a, and we have R(a) = aUal'M, L(a) = aU MTa,
I(a) =aUal' M UMTaU MTal'M. An ideal A of M is called a prime ideal of M
if a,b € M and v € T" such that ayb € A, then a € A or b € A. Equivalently, if B
and C' are subsets of M such that B # @) (or C # 0), v € I and ByC C A, then
B C Aor C C A. A subsemigroup F' of M is called a filter of M if a,b € M and
~v € T' such that ayb € F, implies a € F and b € F. For an element a of M, we
denote by N(a) the filter of M generated by a and by N the equivalence relation
on M defined by N := {(x,y) | N(z) = N(y)}. An ideal A of M is a prime ideal
of M if and only if M\ A = () or M\ A is a subsemigroup of M. A nonempty subset
F of M is a filter of M if and only if M\F = () or M\ F is a prime ideal of M. An
equivalence relation o on M is called a left congruence on M if (a,b) € o implies
(cya, cyb) € o for every ¢ € M and every v € T'. It is called a right congruence on
M if (a,b) € o implies (aye, bye) € o for every ¢ € M and every v € T'. Tt is called
a congruence on M if it is both a left and a right congruence on M. A semilattice
congruence o is a congruence on M such that

(1) (aya,a) € o for every a € M and every v € I" and

(2) (ayb,bya) € o for every a,b € M and every v € I.

The relation A/ defined above is a semilattice congruence on M.

2. Main results

For a I'-semigroup M, the Green’s relations R, L, Z, H are the equivalence
relations on M defined by:

R=A{(z,y) | R(z) = R(y)},  L={(z,y)[L(z)=L(y)},
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T={(wy) | I@)=1(y)}, H=RNL

The relation R is a left congruence and the relation £ is a right congruence on M.
Let now M be a I'-semigroup. For a subset I of M we denote by o the relation
on M defined by

or = {(f,y) ‘ T,y € I or z,y Q/I}
Exactly as in case of semigroups, for a I'- semigroup the following holds:

Lemma 2.1. Let M be a I'-semigroup. If F is a filter of M, then
(x) M\F =0 or M\F is a prime ideal of M.
In particular, any nonempty subset F' of M satisfying (x) is a filter of M. O

Proposition 2.2. Let M be a I'-semigroup and I a prime ideal of M. Then the
set oy is a semilattice congruence on M.

Proof. Clearly oy is a relation on M which is reflexive and symmetric. Let (a,b) €
or and (b,c) € or. Then a,b € I or a,b ¢ I and b,c € T or bjc & I. Ifa,be I
and b,c € I, then a,c € I, so (a,¢) € o;. The case a,b € I and b,c & I is
impossible and so is the case a,b € I and b,c € I. If a,b ¢ I and b,c & I, then
a,c & I, then (a,c) € oy, and o7 is transitive. Let (a,b) € o7, c€ M and v € T.
Then (aye,byc) € oy. Indeed: If a,b € I then, since I is an ideal of M, we have
aye, byc € I, so (aye,byce) € or. Let a,b & I. If ¢ € I then, since I is an ideal
of M, we have avye, byc € I, so (avye,byc) € or. If ¢ € I, then aye,bye & I.
This is because if ayb € I then, since [ is a prime ideal of M, we have a € [
or ¢ € I which is impossible. For byc € I, we also get a contradiction. Thus we
obtain (avyc,byc) € oy, and o7 is a right congruence on M. Similarly o; is a left
congruence on M, so o is a congruence on M.

oy is a semilattice congruence on M. In fact: Let a € M and v € I'. Then
(aya,a) € or. Indeed: If a & I, then avya ¢ I. This is because if aya € I then,
since [ is a prime ideal of M, we have a € I which is impossible. Since a,ava & I,
we have (a,aya) € or. If a € I then, since [ is an ideal of M, we have aya € I,
so (a,ava) € oy. Let now a,b € M and v € I'. Then (avb,bya) € or. In fact: If
ayb € I then, since [ is a prime ideal of M, we have a € I or b € I. Then, since
I is an ideal of M, we have bya € I. Since ayb,bya € I, we have (avyb,bya) € oy.
If avb & I, then bya ¢ I. This is because if bya € I then, since [ is a prime ideal
of M, we have b € I or a € I. Since [ is an ideal of M, we have ayb € I which is
impossible. Since ayb,bya ¢ I, we have (avb,bya) € oy. O

Theorem 2.3. Let M be a T'-semigroup and P(M) the set of prime ideals of M.
Then
NZ ﬂ gr.
1€P(M)
Proof. N C oy for every I € P(M). In fact: Let (a,b) € N and I € P(M).
Then (a,b) € or. Indeed: Let (a,b) & o7. Thena € T and b ¢ I or a ¢ I and
bel Letaelandbdb¢I. Sincebe M\I, we have ) # M\I C M. Since
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MN\(M\I) =1 and I is a prime ideal of M, the set M\(M\I) is a prime ideal of
M. By Lemma 2.1, M\I is a filter of M. Since b € M\I, we have N(b) C M\I.
Since N(a) = N(b), we have a € M\I which is impossible. If a ¢ I and b € I, we
also get a contradiction.

Let now (a,b) € oy for every I € P(M). Then (a,b) € N. In fact: Let
(a,b) € N. Then N(a) # N(b), from which a &€ N(b) or b ¢ N(a) (This is because
if @ € N(b) and b € N(a), then N(a) C N(b) C N(a), so N(a) = N(b)). Let
a ¢ N(b). Then a € M\N(b). Since b € N(b), b ¢ M\N(b). Since a € M\N(b)
and b ¢ M\N(b), we have (a,b) ¢ oap\n@p)- Since N(b) is a filter of M and
M\N(b) # 0, by Lemma 2.1, M\N(b) € P(M). We have M\N(b) € P(M)
and (a,b) ¢ oap\ Ny which is impossible. If b ¢ N(a), by symmetry we get a
contradiction. O

For two relations p and o on a set X, their composition p o ¢ is defined by

poo={(a,b)| Iz € X :(a,x) € pand (z,b) € o}.

” ”

If Bx is the set of relations on X, then the composition ” o” is an associative
operation on Bx, and so (Bx,o) is a semigroup.

Theorem 2.4. Let M be a T'-semigroup, A the set of right ideals, B the set of left
ideals and M the set of ideals of M. Then we have

(1) R:ﬂ()'], £=ﬂ0’1, 7= ﬂO'I.
IeA IeB IemM

(2) HCRCICN, HCLCI(CN) and LoRCT.
(3) In particular, if M is commutative, then L=R=H =7 =LoR.
Proof. (1). Let (z,y) € R and I € A. If x € I, then
y€R(y)=R(zx)=2zUzTM CITUITM =1,

soy € I. Then z,y € I, and (z,y) € o7. It © ¢ I, then y ¢ I. This is because
y € I implies « € I which is impossible. Since z,y ¢ I, we have (z,y) € oy.
Let now (x,y) € oy for every I € A. Since v € R(x) and (z,y) € Og(), we
have y € R(x), then R(y) C R(x). Since y € R(y) and (x,y) € op(y), we have
x € R(y), so R(z) C R(y). Then R(z) = R(y), and (z,y) € R. The rest of the
proof is similar.

(2). Let (x,y) € R. Then R(z) = R(y), so x UaI'M = yUyI'M. Then
MT(zU2TM) = MT(yUyl'M),
and MT'z U MT'2I'M = MTyU MT'yI’'M. Then we have
Iz)=2UaTM UMDz UMT2al'M =yUyI'M U MTy U MTyI'M = I(y),
and (z,y) € Z. Moreover, Z C A. Indeed: By Theorem 2.3, N = [\ oy, where

1€P(S)
P(S) is the set of prime ideals of M. Since P(M) C M, by (1), we have
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I= N orC () or= N.
IeM IeP(S)
LoR CZI. In fact: If (a,b) € Lo R, then there exists ¢ € M such that (a,c) € £
and (¢,b) € R. Then L(a) = L(¢) and R(c) = R(b), a € cUMTc and ¢ € bUI'M.
Then we get a € bUbIM UMT(bUBTM) = bU I M U MTbU MTOI'M = I(b),
and so I(a) C I(b). Since (b,c) € R and (c¢,a) € L, we have

becUcdM CaUMTaU(aUMIa)I'M =aUMI'aUael' M UMTal'M = I(a),
and I(b) C I(a). Then I(a) = I(b), and (a,b) € T.
(3). Let now M be commutative. Then we have
(a,b) € L <= L(a) = L(b) <= aUMTa=bUMTb
<= aUal'M =bUI'M < (a,b) € R.
7 C 'H. Indeed:
(a,b) e I = I(a) = I(b)

= aUMl'aUal'M UMTal' M =bU MI'bU'M U MTOI'M

= aUMlI'aUMTMT'a=bUMI'bUMIMIb

= aUMTla=bUMI'b= L(a) = L(b) = (a,b) e L=R ="H.
Since Z C 'H and H C 7 (by (2)), we have H = T.

Z C LoR. Indeed: If (a,b) € Z, then 7 = L = R. Since (a,b) € £ and (a,b) € R,
we have (a,b) € Lo R. Besides, by (2), LoR CZ. Thus we get Z = Lo R. O

Corollary 2.5. Let M be a I'-semigroup, A a right ideal, B a left ideal and I an

ideal of M. Then
A= U (@)=, B= U @)z, I = U (2)1.

€A reB zel
Proof. Let A be a right ideal of M. If t € A, thent € (t)g € U (z)r. Let
€A
t € (z)r for every x € A. Then, by Theorem 2.4, we have (t,2) € R = () or.

IcA
Since (t,z) € 04 and © € A, we have t € A. The proof of the rest is similar. [0
Finally, we prove that the relation R o £, which is equal to Lo R, is the least —
with respect to the inclusion relation — equivalence relation on M containing both
R and L.
For a set X, denote by F(X) the set of equivalence relations on X and by
supg(x){p, o} the supremum of p and o in E(X).

Lemma 2.6. If p and o are equivalence relations on a set X such that pooc = oop,
then po o is also an equivalence relation on X and poo = supE(X){p, o} O

Lemma 2.7. If p and o are symmetric relations on a set X such that poo C ogop,
then poo =0oop. O

Theorem 2.8. If M is a I'-semigroup, then R o L = supgn){R, L}.
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Proof. We prove that R o L = L o R, then the rest of the proof is a consequence
of Lemma 2.6. According to Lemma 2.7, it is enough to prove that Ro L C LoR.
Let (a,b) € R o L. Then there exists ¢ € M such that (a,c) € R and (c,b) € L.
Since R(a) = R(c) and L(c) = L(b), we have a € cUcI’'M and b € cU MTc. Then
a=cora=cyrand b= cor b=yuc for some x,y € M, v, u€T.

We consider the cases:

(A) Let a =c and b = ¢. Then (a,b) = (¢,c). Since ¢ € M, (¢,¢) € L and
(c,¢) € R, we have (¢,c) € LoR. So (a,b) € LoR.

(B) Let a = ¢ and b = yuc for some y € M, r € I'. Then (a,b) = (¢, yuc).
Since (b,b) € R, we have (b,yuc) € R. Since ¢ € M, (¢,b) € L and (b,yuc) € R,
we have (c,yuc) € Lo R, so (a,b) € LoR.

(C) Let a = cyx for some v € ', x € M and b = ¢. Then (a,b) = (cyz, ¢).
Since (a,a) € L, we have (cyz,a) € L. Since a € M, (¢yz,a) € £ and (a,c) € R,
we have (cyz,c¢) € LoR, s0 (a,b) € LoR.

(D) Let a = cyz and b = yuc for some x,y € M, y,u € I'. Then (a,b) =
(cyz,yuc) € Lo R. Indeed: We have byx = yucyr = ypa. Since (¢,b) € £ and L
is a right congruence on M, we have (cyz,byx) € L. Since (a,c) € R and R is a
left congruence on M, we have (yua, yuc) € R, so (byx,yuc) € R. Since byx € M,
(eyz,byz) € L and (byz,yuc) € R, we have (cyz,ypuc) € Lo R. O

Each I'-semigroup M has an L-class, an R-class, and an Z-class. The set M
is nonempty and, for each x € M, (x), is a nonempty L-class of M, (z)r is a
nonempty R-class of M and (x)z is a nonempty Z-class of M.

Definition 2.9. A T'-semigroup M is called left (resp. right) simple if M has only
one L (resp. R)-class. M called simple if M has only one Z-class.

A right ideal, left ideal or ideal A of a I'-semigroup M is called properif A # M.
By Theorem 2.4, we have the following:

Corollary 2.10. A I'-semigroup M is left (resp. right) simple if and only if M
does not contain proper left (resp. right) ideals. M is simple if and only if does
not contain proper ideals.

Proof. (=) Let M be left simple, A a left ideal of M and = € M. Then x € A.
Indeed: Suppose z &€ A. Take an element a € A(A # ). Since (x,a) & o4,
by Theorem 2.4(1), we have (z,a) ¢ L. Then z # a and (z), # (a)r which is
impossible.

(<) Suppose M does not contain proper left ideals. Let x € M (M # 0). Then,
for each t € M such that ¢t # z, we have (t)z = (z)z. In fact: Let ¢t € M,
t # x. By the assumption, we have L(z) = M and L(t) = M, then (z,t) € L, so
(t)z = (x)z. Then (). is the only L-class of M, and M is left simple. The other
cases are proved in a similar way. O

Corollary 2.11. Let M be a I'-semigroup. Then M is left (resp. right) simple if
and only if MT'a = M (resp. al'M = M) for every a € M. M is simple if and
only if MT'al' M = M for every A C M.
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Proof. Let M be left simple and a € M. Since MTa is a left ideal of M, by
Corollary 2.10, we have MTa = M. Conversely, let MT'a = M for every a € M
and A a left ideal of M. Take an element z € A (A # 0). Then M = MTz C
MTAC A, so A= M. By Corollary 2.10, M is left simple. U

Remark 2.12. If M is a I'-semigroup, then we have MT'a = M for every a € M
if and only if MT'A = M for every nonempty subset A of M. We have aI'M = M
for every a € M if and only if AT'M = M for every nonempty subset A of M. Also
MTal'M = M for every a € M if and only if MT'AT'M = M for every nonempty
subset A of M. Let us prove the third one: =. Let a € M. Since {a} C M, by
hypothesis, we have MT{a}I'M = M, so MTal'M = M. <. Let ) # A C M.
Take an element a € A. By hypothesis, we have M = MTal'M C MTAT'M C
(MTM)TM C MT'M C M, so MTATM = M.

Conclusion. In this paper we mainly gave the analogous results of [3] in case of I'-
semigroups. Analogous results of [3] for ordered I'-semigroups can be also obtained.
If we want to get a result on a I'-semigroup or an ordered I' semigroup, then we
have to prove it first on a semigroup or on an ordered semigroup, respectively. We
never work directly in I'-semigroups or in ordered I'-semigroups. The paper serves
as an example to show the way we pass from semigroups to I'-semigroups (also
from ordered semigroups to ordered I'-semigroups).
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