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Structure and representations of �nite dimensional

Malcev algebras

E. N. Kuzmin

Abstract. The paper [6] is devoted to the study of the basic structure theory of �nite dimensional
Malcev algebras. Similarly to the structure of �nite dimensional Lie algebras, this theory has
attracted a lot of attention and stimulated further research in this area. However, for the sake of
brevity, detailed proofs of some results were omitted. Some authors experienced some di�culty
owing to the lack of detailed proofs (see, for example [14]). The present work mostly follows the
outline of [6] and �lls the gaps in the literature.

Editors' Preface
This is an English translation of Structure and representations of �nite dimensional Malcev
algebras by E. N. Kuzmin, originally published in Akademiya Nauk SSSR, Sibirskoe Otdelenie,
Trudy Instituta Matematiki (Novosibirsk), Issledovaniya po Teorii Kolets i Algebr 16 (1989), 75�
101. The translation by Marina Tvalavadze was edited by Murray Bremner and Sara Madariaga.
A brief survey of recent developments is included at the end of the paper.

1. Representations of nilpotent Malcev algebras.

Cartan subalgebras

1.1. Malcev algebras were �rst introduced in [10] as Moufang-Lie algebras. They
are de�ned by the identities,

x2 = 0, (1)

J(x, y, xz) = J(x, y, z)x, (2)

where J(x, y, z) is the so-called Jacobian of x, y, z:

J(x, y, z) = (xy)z + (yz)x + (zx)y.

In any anticommutative algebra, the Jacobian J(x, y, z) is a skew-symmetric func-
tion of its arguments. Expanding the Jacobian, the Malcev identity (2) can be
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rewritten as follows,

xyzx + yzxx + zxxy = (xy)(xz), (3)

where, for convenience, we omit parentheses in left-normed products: ((xy)z)x.
Following [11] let us establish some basic identities which hold in all Malcev

algebras. If A is a Malcev algebra, x ∈ A and Rx : a 7→ ax is the operator of
right multiplication by the element x, then the associative algebra A∗ generated
by {Rx | x ∈ A} is called the multiplication algebra of A. Identity (3) implies that
the following identities hold in A∗:

RyR2
x = R2

xRy + RyxRx + RxRyx, (4)

RxRzRx = RzR
2
x −RxRzx −Rzxx. (5)

Linearizing identity (2) in x we obtain

J(x, y, uz) + J(u, y, xz) = J(x, y, z)u + J(u, y, z)x. (6)

Hence the following identity holds in A∗:

Rxyz + Ryzx = RyRzRx −RzRxRy −RyzRx −RzxRy + RyRzx + RzRxy. (7)

Adding the three identities obtained by cyclic permutations of the variables in (7),
and assuming we work in characteristic di�erent from 2, we obtain

RJ(x,y,z) = [Ry, Rzx] + [Rz, Rxy] + [Rx, Ryz], (8)

where the square brackets denote the commutator of two operators:

[X, Y ] = XY − Y X.

Subtracting (7) from (8) we obtain

Rzxy = RzRxRy −RyRzRx + RxRyz −RxyRz,

or equivalently,

Rxyz = RxRyRz −RzRxRy + RyRzx −RyzRy. (9)

Identity (9) implies that the following identity holds in A:

xyzt + yztx + ztxy + txyz = (xz)(yt); (10)

this becomes identity (3) when setting t = x. If the characteristic of the �eld is
other than 2 then identity (10) (also known as the Sagle identity) is equivalent to
identity (3). Identity (10) presents some advantages: it is linear in each variable
and invariant under cyclic permutations of the variables. Therefore, it is reasonable
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to use it (together with the anticommutative identity x2 = 0) as the de�nition of
the class of Malcev algebras in characteristic 2.

It is easy to check that Lie algebras in particular satisfy identity (10). On the
other hand, it is easy to show that any Malcev algebra is binary-Lie: if u, v, w
are arbitrary nonassociative words in two variables then, using induction on the
length of u, v, w and identities (1), (2) and (6), it can be shown that J(u, v, w) = 0
when substituting for the variables any two elements of A. Therefore, the class
of Malcev algebras can be regarded as an intermediate class between Lie algebras
and binary-Lie algebras.

If we set ∆(x, y) = [Rx, Ry] − Rxy then z∆(x, y) = J(z, x, y). From (8) we
obtain

∆(y, zx) + ∆(z, xy) + ∆(x, yz) = [Ry, Rzx] + [Rz, Rxy] + [Rx, Ryz] + RJ(x,y,z)

= 2RJ(x,y,z),

which can be written in the form

2wJ(x, y, z) = J(w, y, zx) + J(w, z, xy) + J(w, x, yz). (11)

De�ne D(x, y) = Rxy + [Rx, Ry]. Since (9) is symmetric in x and y we obtain

2Rxyz = [[Rx, Ry], Rz] + [Ry, Rzx] + [Rx, Ryz]. (12)

Subtracting (12) from (8) we obtain

Ryzx+zxy−xyz = RzD(x,y) = [Rz, Rxy] + [Rz, [Rx, Ry]] = [Rz, D(x, y)],

which can be written in the form

(tz)D(x, y) = (tD(x, y)) z + t (zD(x, y)) . (13)

This means that D(x, y) is a derivation of A. If we set R(x, y) = 2Rxy + [Rx, Ry]
then it follows from (12) that

[R(x, y), Rz] = 2[Rxy, Rz] + 2Rxyz − [Ry, Rzx]− [Rx, Ryz]. (14)

Adding (14) to (12) multiplied by 2 we obtain

[R(x, y), Rz] + 2Ryzx + 2Rzxy = [Ry, Rzx] + [Rx, Ryz],

which can be written in the form

[R(x, y), Rz] = R(xz, y) + R(x, yz). (15)

Note that the identity

RxRyRx = R2
xRy + RyxRx −Ryxx, (16)
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is a consequence of (4) and (5). A more general identity follows from (16) using
induction on n:

Rn
xRyRx = Rn+1

x Ry + Rn
xRyx −RxRyxn −Ryxn+1 + RyxnRx. (17)

To perform the inductive step it su�ces to multiply both sides of (17) by Rx on
the left and then substitute the term RxRyxnRx using (16).

1.2. Let A be a Malcev algebra over a �eld F . According to [1], by a representation
of A on a vector space V over F we understand a linear map ρ : A → End(V ) which
provides the direct sum of vector spaces V ⊕ A with the structure of a Malcev
algebra by setting

(v1 + x)(v2 + y) = v1ρ(y)− v2ρ(x) + xy (v1, v2 ∈ V, x, y ∈ A).

The algebra de�ned this way is called the semidirect or split extension of A by
V , in which V (resp. A) appears as an abelian ideal (resp. Malcev subalgebra) of
V ⊕A. The identities satis�ed by ρ are similar to (9):

ρ(xyz) = ρ(x)ρ(y)ρ(z)− ρ(z)ρ(x)ρ(y) + ρ(y)ρ(zx)− ρ(yz)ρ(x).

A vector space V on which a representation is de�ned is called Malcev A-module.
There is a special representation of the form x 7→ Rx (the regular representation).
We will denote an arbitrary representation by Rx instead of ρ(x). This will not lead
to any confusion because it should be clear from the context which representation
we mean† . It is easy to check that identities (12), (15)�(17) hold not only for the
regular representation but also for arbitrary representations of a Malcev algebra
A.

If a linear representation ρ : A → End(V ) satis�es

Rxy = [Rx, Ry], (18)

for any x, y ∈ A then (9) follows from (18). Therefore, ρ is a representation of A
(a homomorphism from A to the Lie algebra of endomorphisms of V ). Represen-
tations of this type play a special role in the theory of Lie algebras. However, in
the theory of Malcev algebras they are not very signi�cant.

Generally speaking, the kernel Kerρ of a representation ρ of a Malcev algebra
A is not necessarily an ideal of A. Obviously, there exists a maximal ideal of A
contained in Kerρ: the sum of all ideals of A contained in Kerρ. This ideal will be
called the quasi-kernel of the representation ρ and it will be denoted by K̃erρ = I.
For every representation ρ of a Malcev algebra A with quasi-kernel K̃erρ = I there
exists an induced nearly faithful representation of the quotient algebra A/I in the
same vector space. Sometimes it can be useful to consider an arbitrary associative

† Translator's note: The author denotes the representation map by ρ and the image of an
element x of the Malcev algebra under ρ by Rx.
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algebra with identity E instead of End(V ), where the right regular representation
of E is isomorphic to† the algebra of endomorphisms of E.

Furthermore, we will restrict our attention to �nite dimensional Malcev alge-
bras, so we also assume that their representations are �nite dimensional. We will
denote by A∗

ρ the associative enveloping algebra of the representation ρ, i.e., the
associative algebra generated by {Rx | x ∈ A}.

1.3. It is well-known that Engel's theorem plays an important role in the theory of
�nite dimensional Lie algebras. An analogue of this theorem holds for binary-Lie
algebras [4]. The following theorems for the regular representation are found in
[16].

Theorem 1.1. Let ρ be a representation of a Malcev algebra A by nilpotent oper-
ators. Then A∗

ρ is nilpotent, and if ρ is a nearly faithful representation then A is
also nilpotent.

Proof. Let us �rst prove that A∗
ρ is nilpotent. To a subalgebra B ⊆ A we assign

the subalgebra B∗ ⊆ A∗
ρ generated by {Rx | x ∈ B}. Let B be a maximal

subalgebra of A for which B∗ is nilpotent and assume that B 6= A. Let x /∈ B.
Then for some natural number n we have xn = xb1b2 · · · bn ∈ B for any bi ∈ B.
Indeed, using (9), Rxn can be written as a linear combination of �R-words� from
A∗

ρ, each of them having su�ciently many operators Rb (b ∈ B) if n is large
enough. By our assumption, B∗ is nilpotent, hence for some n we have Rxn

= 0
and Rxnb = 0 (b ∈ B). If now xn /∈ B then B is a proper subalgebra of B1

generated by {xn, B} and B∗
1 = B∗. Therefore, B∗

1 is nilpotent, which contradicts
the maximality of B. Hence we can choose u from the sequence {xk | k ≥ 0} such
that u /∈ B, uB ⊆ B. We write C = (u) + B and show that C is nilpotent, which
contradicts the maximality of B. For this we consider �long� R-words depending
on Ru, Rbi

(bi ∈ B). It follows from the nilpotency of Ru that such words are either
trivially equal to 0 in A∗

ρ or have many operators Rb (b ∈ B). For de�niteness
we assume that Rm

u = 0, (B∗)n = 0. Then, nontrivial words of R-length N ≥ mt
contain at least t operators Rbi . We apply the following transformations to these
words:

(a) Transformations of subwords of the form Rbi
R2

u, RuRbi
Ru using identities

(4) and (16) in which x = u and y = bi. Operators Ru either shift to the left
or disappear and the total number t of operators Rbi remains invariant.

(b) If we run out of transformations of the �rst type then we consider the right-
most operator Ru and assume that Rb1 , Rb2 precede it. By setting x = b1,
y = b2, z = u in (9) we transform Rb1Rb2Ru. Then the operator Ru ei-
ther shifts to the left or disappears and the total number of operators Rbi

decreases by 1 only in the term Rb1b2u. At the same time, the rightmost
operator Ru disappears.

† Translator's note: In other words, the right regular representation x 7→ Rx is an isomor-
phism between E and End(E).
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If we write N ≥ 2mn then t ≥ 2n. Using transformations of the �rst and second
types (note that if both transformations are possible then transformations of the
�rst type will be applied) we obtain a linear combination of words and at the
right side of each of them will be at least n operators Rbi

. However, such words
are equal to 0 because the nilpotency index of B∗ is n. Hence nilpotency of C is
proved and therefore A∗

ρ is nilpotent. Let (A∗
ρ)

n = 0. In the same way as when we
chose the element u, we have to ensure that AN ⊆ Kerρ when N ≥ 2n. However,
AN is an ideal of A so if the representation R is nearly faithful then AN = 0, i.e.,
A is nilpotent.

The following is a useful generalization of Theorem 1.1.

Theorem 1.2. Let B be an ideal of a Malcev algebra A, let ρ be a nearly faithful
representation of A, and for every x ∈ B assume that the operator Rx is nilpotent.
Then the ideal B is nilpotent and the algebra B∗ generated by {Rx | x ∈ B} lies
in the radical of A∗

ρ.

Proof. By Theorem 1.1, B∗ is nilpotent of index n. To every R-word from A∗
ρ

that has at least 2n operators Rbi
(bi ∈ B) we can apply a transformation similar

to transformations (a) and (b) from Theorem 1.1. Using (9) we change subwords
RbRa1Ra2 and Ra1RbRa2 (b ∈ B) shifting Rb to the right and keeping the total
number of them unchanged in each term. If we run out of transformations of this
type then we consider the rightmost operator Ra where a /∈ B. Let Rb1 and Rb2

precede it. Using (9) we transform Rb1Rb2Ra so that Rbi
shifts to the right and

the total number of them remains invariant. In the term with a factor Rb1b2a the
total number of operators Rbi decreases by 1 and a factor Ra disappears. As a
result all terms can be reduced to 0 and B∗ generates a nilpotent ideal of A∗

ρ with
nilpotency index less than or equal to 2n, i.e., B∗ ⊆ RadA∗

ρ. The subalgebra B4n

generates the ideal B0 of A, whose elements are represented by zero operators.
However, Kerρ contains nonzero ideals B4n = 0, so the theorem is proved.

It follows from the proof above that the sum of nilpotent ideals in an arbitrary
(not necessarily �nite dimensional) Malcev algebra is a nilpotent ideal and any
�nite dimensional Malcev algebra contains the largest nilpotent ideal N(A) which
is called the nil-radical of the algebra A [16].

1.4. In the general case, operators of a representation of a Malcev algebra are
not necessarily nilpotent. The theory of such representations is based on lemmas
which are analogues to some well-known lemmas from the theory of Lie algebras
[3].

Lemma 1.3. Let ρ be a representation of a Malcev algebra A in the vector space
V , let x, y ∈ A and let yxm = 0 for some m > 0. Then the Fitting components V0

and V1 of V with respect to Rx are invariant with respect to Ry.
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Proof. First note that V0 and V1 coincide with the kernel and image of Rn
x respec-

tively, for su�ciently large n, for example n ≥ dimV . For convenience, we use
induction on m. If m = 1 then the lemma follows from identity (4). If m > 1 then
we can use identity (4) and we also note that the operators Rx and Ryx leave V0

and V1 invariant. To the decomposition of the characteristic polynomial f(λ) of
the operator Rx into irreducible factors π(λ) corresponds a decomposition of V
into the direct sum of primary components Vπ annihilated by certain powers of
the operator π(Rx).

Lemma 1.4. Under the hypotheses of Lemma 1.3, let V be decomposed into its
primary components Vπ with respect to the operator Rx. Then the subspaces Vπ

are invariant with respect to Ry.

Proof. By Lemma 1.3 it su�ces to consider subspaces Vπ on which Rx acts as a
non-singular transformation. Let us again use induction on m. If m = 1 then for
any polynomial P (λ) we use identity (16),

VπRyP (Rx) = VπRxRyP (Rx) = VπRxP (Rx)Ry = VπP (Rx)Ry,

which proves our lemma. If m > 1 then using (16) we note that the operators Rx,
Ryx and Ryxx leave the subspace Vπ invariant.

Proposition 1.5. Let A be a nilpotent Malcev algebra, let ρ be a representation of
A in a vector space V , let V x

0 and V x
1 be the Fitting components of V with respect

to Rx, and let x ∈ A. Then V = V0 + V1, where

V0 =
⋂

x∈A

V x
0 , V1 =

∑
x∈A

V x
1 =

∞∑
k=1

V (A∗
ρ)

k.

Proof. The proof is standard: we only need to note that if V = V x
0 for all x ∈ A,

i.e., ρ is a representation of A by nilpotent transformations of V , then A∗
R is

nilpotent, so (A∗
R)k = 0 for some k > 0 (by Theorem 1.1 this fact is even true

without the assumption that A is nilpotent). If V x
1 6= 0 for some x ∈ A then

V can be decomposed into the direct sum of A-submodules V x
0 + V x

1 . Moreover,
V x

1 ⊆ V1, dimV x
0 < dimV , and then we use induction on the dimension of V x

0 .

Proposition 1.6. Under the same hypotheses of Proposition 1.5, V can be decom-
posed into a direct sum of A-submodules Vi. Moreover, the minimal polynomial of
a transformation induced by any operator Rx on Vi is some power of an irreducible
polynomial.

Proof. The proof trivially follows from Lemma 1.4 and it uses induction on the
dimension of V . Here we remark that every subspace Vi can be constructed as an
intersection of primary components for a �nite number of operators Rx (x ∈ A)
and the decomposition of Proposition 1.6 is uniquely determined.
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A representation ρ is called split if the characteristic roots of each operator Rx

belong to the base �eld F . The next theorem follows from Proposition 1.6.

Theorem 1.7. Let ρ be a split representation of a nilpotent Malcev algebra A.
Then the representation space V can be decomposed into the direct sum of subspaces
Vα characterized by the following conditions:

1) Vα is invariant with respect to A∗
ρ (it is an A-submodule of V ).

2) Each operator Rx has a unique characteristic root α(x).

3) If α 6= β then there exists an element x ∈ A such that α(x) 6= β(x).

As we did in the proof of Proposition 1.6, we remark that each subspace Vα

coincides with the intersection of root subspaces of V with respect to operators
Rx for some �nite number of elements x ∈ A. A map α : A → F is called a weight
of the algebra A with respect to the given representation ρ, and the corresponding
subspaces Vα are called weight spaces.

In the case where H is a nilpotent subalgebra of a Malcev algebra A, and the
given representation of H in A is split and induced by the regular representation
of A, the subspaces Aα are said to be root spaces and the map α : H → F is called
a root of H in A. Below we will see that split representations of nilpotent Malcev
algebras over �elds of characteristic 0 can be completely described. In particular
the weights are linear maps.

1.5. Let H be a nilpotent subalgebra of a Malcev algebra A whose regular repre-
sentation on A is split. We now want to study relations between the root spaces
Aα. The technique used to obtain these relations is similar to that used in [11]
where they were derived for the case dim H = 1. Using the results of the previous
section we o�er a simpler proof for a more general case. We will identify operators
of scalar multiplication with elements of the base �eld F of arbitrary characteristic.

Let h be an arbitrary nonzero element of H and let A = Ah
0 + Ah

α + · · · be
the decomposition of A into root spaces with respect to the operator Rh. Then
Lemma 1.4 implies that Ah

0Ah
α ⊆ Ah

α. In particular Ah
0 is a subalgebra of A. By

setting x = h, y = xα ∈ Ah
α in (2) we obtain

J(h, xα, hxβ) = J(h, xα, xβ)h, or J(h, xα, xβ(β−Rh)) = J(h, xα, xβ)(β+Rh).

By induction,

J(h, xα, xβ(β−Rh)n) = J(h, xα, xβ)(β+Rh)n,

and so J(h, xα, xβ) ∈ Ah
−β . Similarly, J(h, xα, xβ) ∈ Ah

−α. Thus

J(h, xα, xβ) = 0 (α 6= β). (19)

Substituting u = x0 ∈ Ah
0 in (6) we obtain

J(x0, xα, hxβ) + J(h, xα, x0xβ) = J(x0, xα, xβ)h + J(h, xα, xβ)x0,

J(x0, xα, hxβ) = J(x0, xα, xβ)h.
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Therefore, similarly to (19) we get

J(Ah
0 , Ah

α, Ah
β) = 0 (α 6= β). (20)

If α, β are di�erent roots of H in A, and Aα, Aβ are the corresponding root spaces,
then there exists an element h ∈ H such that α(h) 6= β(h). Then

Aα ⊆ Ah
α(h), Aβ ⊆ Ah

β(h), A0 ⊆ Ah
0 ,

and it follows from (20) that

J(A0, Aα, Aβ) = 0 (α 6= β). (21)

In particular, J(H,Aα, Aβ) = 0 (α 6= β) or

(xαxβ)h = (xαh)xβ + xα(xβh) (α 6= β), (22)

for any xα ∈ Aα, xβ ∈ Aβ , h ∈ H. Identity (22) shows that each operator Rh

(h ∈ H) is a derivation of the linear space AαAβ . Thus

AαAβ ⊆ Aα+β (α 6= β). (23)

Here α + β is not necessarily a root. If γ : H → F is not a root of H in A then we
can assume that Aγ = 0. Reasoning in the same way when α = β we obtain

J(h, Ah
α, Ah

α) ⊆ Ah
−α, J(Ah

0 , Ah
α, Ah

α) ⊆ Ah
−α,

and in particular J(A0, Aα, Aα) ⊆ Ah
−α(h). Any vector from J(A0, Aα, Aα) appears

as a root vector for the operator Rh (h ∈ H) with eigenvalue −α(h). Therefore,

J(A0, Aα, Aα) ⊆ A−α. (24)

In particular, for any h ∈ H the following identity holds:

(xαyα)h = (xαh)yα + xα(yαh) + z−α. (25)

Decomposing xαyα into a sum of components from di�erent root spaces of A gives

xαyα = u2α + uβ + · · · . (26)

Then for any β 6= 2α there exists an element h ∈ H such that β(h) 6= 2α(h). If
we apply the operator (Rh−2α(h))n, where n is su�ciently large, to (26) then we
obtain on one side an element of A−α by (25) and on the other side an element
uβ(Rh−2α(h))n + · · · . Moreover, the component u′β = uβ(Rh−2α(h))n ∈ Aβ

is nonzero if uβ 6= 0, and the restriction of (Rh−2α(h)) to Aβ has as its only
characteristic root β(h)−2α(h) 6= 0, and it acts on Aβ as a nonsingular map.
Therefore the only nonzero component uβ in (26) except for u2α is u−α:

xαyα ∈ A2α + A−α. (27)
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In particular, A2
0 ⊆ A0, which is clear since A0 is the intersection of subspaces Ah

0 ,
each of which is a subalgebra of A, and an intersection of subalgebras is itself a
subalgebra.

Let α, β, γ be pairwise distinct weights of H in A. We show that J(Aα, Aβ , Aγ) =
0. If one of the weights α, β, γ is 0 then this follows from (21). Thus it is enough
to consider the case αβγ 6= 0. We �rst assume that α + β 6= γ, α + γ 6= β. Then
it follows from (6), (21) and (23) that J(xα, xβ , hxγ) = J(xα, xβ , xγ)h, which im-
plies J(xα, xβ , xγ) ∈ A−γ . Interchanging β and γ we obtain J(xα, xβ , xγ) ∈ A−β ,
which implies J(xα, xβ , xγ) = 0. Further let α + β = γ and charF 6= 2. Then
γ + α 6= β, γ + β 6= α, and we go back to the previous case if we interchange α
and γ. Finally let α + β = γ and charF = 2. Then β + γ = α is symmetric in α,
β and γ. It follows from (6), (21), (23) and (24) that

J(xα, xβ , hxγ) = J(xα, xβ , xγ)h + zβ , (28)

where zβ = J(h, xβ , xαxγ) ∈ Aβ . Similar to (27), (28) implies that J(xα, xβ , xγ) ∈
Aγ + Aβ . By symmetry,

J(xα, xβ , xγ) ∈ Aα + Aβ , J(xα, xβ , xγ) ∈ Aα + Aγ ,

which implies that J(xα, xβ , xγ) = 0. Thus the proof is complete.
We now consider the Jacobian J(xα, yα, xβ) where α, β 6= 0. We �rst assume

that β 6= α,−α, 2α. Using (6) repeatedly and also (21), (23) and (27) we ob-
tain J(xα, xβ , hyα) = J(xα, xβ , yα)h. Therefore, J(xα, yα, xβ) ∈ A−α. On the
other hand, J(xα, yα, hxβ) = J(xα, yα, xβ)h. Therefore, J(xα, yα, xβ) ∈ A−β .
Therefore, J(xα, yα, xβ) ∈ A−β and thus J(xα, yα, xβ) = 0. Let β = 2α and
2α 6= 0, α,−α (in particular, this implies that charF 6= 2, 3). The identity
J(xα, yα, hx2α) = J(xα, yα, x2α)h implies that u = J(xα, yα, x2α) ∈ A−2α. On
the other hand,

J(x2α, xα, hyα) = J(x2α, xα, yα)h + zα,

where zα = J(h, xα, yα)x2α ∈ Aα. Consequently, u ∈ Aα + A−α. Taking into
account that −2α 6= α,−α, we conclude that u = 0.

Assume that charF 6= 2. It follows from

J(xα, yα, hx−α) = J(xα, yα, x−α)h,

for any xα, yα ∈ Aα, x−α ∈ A−α (α 6= 0), h ∈ H, that J(xα, yα, x−α) ∈ Aα.
Moreover, J(xα, yα, hzα) = J(xα, yα, zα)h + u0, where u0 = J(h, yα, zα)xα ∈
A−αAα ⊆ A0. Therefore J(xα, yα, zα) ∈ A−α +A0. On the other hand, expanding
the Jacobian J(xα, yα, zα) and taking into account formulas (23) and (27) for
multiplication of root spaces we note that J(xα, yα, zα) ∈ A3α +A0. Since 3α 6= α,
J(xα, yα, zα) ∈ A0.

To sum up, we state the above results in the following lemma:
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Lemma 1.8. Let H be a nilpotent subalgebra of a Malcev algebra A over a �eld F .
Assume that the regular representation of H in A is split and A = A0 + A1 + . . .
is the corresponding decomposition of A into root spaces. Then

AαAβ ⊆ Aα+β (α 6= β), A2
α ⊆ A2α + A−α, (29)

J(Aα, Aβ , Aγ) = 0 (α 6= β 6= γ 6= α), (30)

J(Aα, Aα, Aβ) = 0 (β 6= 0, α,−α), (31)

J(Aα, Aα, A0) ⊆ A−α. (32)

If charF 6= 2 then

J(Aα, Aα, A−α) ⊆ Aα, (33)

J(Aα, Aα, Aα) ⊆ A0. (34)

1.6. Let us introduce the important notion of a Cartan subalgebra of Malcev
algebra.

De�nition 1.9. A subalgebra H of a Malcev algebra A is said to be a Cartan
subalgebra if it is nilpotent and coincides with the Fitting component A0 of A with
respect to H.

The de�nition above is similar to the usual de�nition of Cartan subalgebra
of a Lie algebra. Any Cartan subalgebra of A is obviously a maximal nilpotent
subalgebra of A. If Ω is an extension of the base �eld F , then AΩ = AF ⊗Ω is the
corresponding tensor extension of A, and if H is a Cartan subalgebra of A then
HΩ = HF ⊗ Ω is a Cartan subalgebra of AΩ (to prove this it su�ces to note that
H = A0 coincides with the intersection of root subspaces Ah

0 for a �nite number
of h ∈ H).

The normalizer N(H) of a subalgebra H ⊆ A is the set of elements x ∈ A such
that xH ⊆ H.

Proposition 1.10. A subalgebra H of a Malcev algebra A is a Cartan subalgebra
of A if and only if it is nilpotent and coincides with its normalizer.

Proof. For any nilpotent subalgebra H of A we have H ⊆ N(H) ⊆ A0. If H is
a Cartan subalgebra then these inclusions become equalities. To prove the other
implication, let H ⊂ A0. Since the regular representation of H in A0 is nilpotent,
by Theorem 1.1 we have H has an induced nilpotent representation in A0/H.
Therefore there exists an element ξ 6= 0 in A0/H annihilated by all operators Rh

(h ∈ H). The preimage x of ξ in A0 is an element of N(H). Moreover, x ∈ H.

As for Lie algebras, there exists a simple way of constructing a Cartan subalge-
bra of a Malcev algebra A if the base �eld F is su�ciently large, say |F | ≥ dimA.

De�nition 1.11. An element x ∈ A is said to be regular if the dimension of the
Fitting 0 component of A with respect to the operator Rx is minimal.
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Proposition 1.12. If A is a �nite dimensional Malcev algebra over a �eld F with
dim A ≤ |F | and x is a regular element of A, then the Fitting 0 component Ax

0 of A
with respect to Rx is a Cartan subalgebra. Conversely, if H is a Cartan subalgebra
of A that contains a regular element h then H = Ah

0 .

This can be proved in the same way as in the case of Lie algebras [3]. Note
that in the case of binary Lie algebras the proposition does not make sense because
Ax

0 is not a subalgebra of A. In [13] the de�nition of a Cartan subalgebra of a
binary Lie algebra is more restrictive than that given in De�nition 1.9. However,
it is not very good because it requires too many conditions to hold; following this
de�nition, Cartan subalgebras might not even exist for Malcev algebras or binary
Lie algebras.

2. Generalization of Lie's theorem.

Criteria for solvability and semisimplicity of

Malcev algebras

2.1. In this section, unless otherwise stated, we assume that the base �eld F has
characteristic 0.

To every representation ρ of a Malcev algebra A we associate the bilinear trace
form (x, y) = tr(RxRy). It is clear that (x, y) is symmetric, that is (x, y) =
(y, x). It follows from (4) after canceling the 2s that (yx, x) = 0. Linearizing this
expression in x gives (yx, z) + (yz, x) = 0 or

(xy, z) = (x, yz), (35)

for any x, y, z ∈ A. We call a bilinear form (x, y) satisfying this condition invari-
ant. The bilinear form (x, y) associated to the regular representation of a Malcev
algebra is called the Killing form. Using the trace technique we can obtain a num-
ber of results about Malcev algebras over �elds of characteristic 0. The following
lemma generalizes Jacobson's well-known lemma [3] about nilpotent elements of a
Lie algebra of linear transformations.

Lemma 2.1. Let A be a Malcev algebra over a �eld of characteristic 0 such that
for some c ∈ A this relation holds:

c =
r∑

i=1

aibi, cai = 0 (i = 1, . . . , r).

Then the operator Rc is nilpotent in any representation ρ : x 7→ Rx in A.

Proof. Let us show that ac = 0 for some a, c ∈ A implies trRk
c Rab = 0 for some

k ≥ 1 and for all b ∈ A. Setting a = ai, b = bi and summing over i we obtain
trRk+1

c = 0 (k ≥ 1), which implies nilpotency of Rc.
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Note that by (12), trRxyz = 0 for all x, y, z ∈ A. Taking this into account
and comparing traces of operators on both sides of (17) we obtain trRn

xRyx = 0
(n ≥ 1). In particular,

trRn
c Rbac = 0 (n ≥ 0). (36)

It follows from (9) that Rbac = RbRaRc−RcRbRa +RaRcb. Substituting this into
(36) we obtain

trRn
c RaRcb = 0 (n ≥ 0). (37)

On the other hand,

0 = Rcab = RcRaRb −RbRcRa + RaRbc −RabRc.

Multiplying this relation by Rn
c on the left and taking into account (37) we obtain

trRn
c RabRc = tr(Rn+1

c RaRb −Rn
c RbRcRa)

= tr(Rn+1
c Ra −RcRaRn

c )Rb (n ≥ 0).

This remains to show that Rn+1
c Ra − RcRaRn

c = 0 when n ≥ 0. It follows easily
from (16) so the proof is complete.

In the case of Malcev algebras, the notion of solvability de�ned for arbitrary
nonassociative algebras admits a useful modi�cation. We remark that it follows
from (10) that if I CA then L(I) = I2 + I2 ·ACA. For an arbitrary ideal I of a
Malcev algebra A we de�ne the chain of ideals Ik = Lk(I), k ≥ 0, by setting I0 = I
and Ik = L(Ik−1), k ≥ 1. We also de�ne the derived series I(k) by I(0) = I and
I(k) = I(k−1) · I(k−1), k ≥ 1. The ideal I is said to be solvable (resp. L-solvable)
if I(k) = 0 (resp. Ik = 0) for some k ≥ 0. Since Ik ⊇ I(k) for any k, it follows that
any L-solvable ideal of a Malcev algebra A is solvable. The converse is also true.

Proposition 2.2. [5] Every solvable ideal of a Malcev algebra A is also L-solvable.

Proof. Yamaguti [15] gives a similar de�nition of solvability for Malcev algebras.
However he did not note that this de�nition is equivalent to the usual de�nition
of solvability. For the sake of completeness we prove Proposition 2.2. Let I C A.
Let us show that I2 ⊆ I(1) = I2. Since I1 ⊆ I, it su�ces to show that I2

1 ·A ⊆ I2

or (I2 + I2A)2A ⊆ I2, which can be reduced to the proof of (I2 · I)A ⊆ I2 and
((I2A)I)A ⊆ I2. Obviously, the �rst inclusion follows from (10). If c1 ∈ I2, c2 ∈ I,
a1, a2 ∈ A then

c1a1c2a2 + a1c2a2c1 + c2a2c1a1 + a2c1a1c2 = (c1c2)(a1a2).

Moreover, a1c2a2c1, a2c1a1c2 ∈ I2 and c2a2c1a1, c1c2 · a1a2 ∈ I3 ·A. Note that we
have already seen that I3 ·A ⊆ I2. Suppose that I2k ⊆ I(k) for some k ≥ 1. Then
I2k+2 = L2(I2k) ⊆ I2

2k ⊆ I(k+1). Consequently, I(n) = 0 implies I2n = 0, i.e., we
have L-solvability of the ideal I.
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Since all elements of the sequence {Ik | k ≥ 0} are ideals of A, it follows from
Proposition 2.2 that:

Corollary 2.3. In any nonzero solvable ideal of a Malcev algebra there exists a
nonzero abelian ideal of the algebra.

A maximal solvable ideal S(A) of an algebra A is said to be the radical of the
algebra A. If S(A) = 0 then A is called semisimple. According to the previous re-
marks, semisimple Malcev algebras can be equivalently de�ned as Malcev algebras
without nontrivial abelian ideals.

In some sense, reductive Lie algebras, i.e., Lie algebras whose regular represen-
tation is completely reducible, are close to semisimple Lie algebras. More generally,
they are de�ned as algebras with a faithful completely reducible representation.
Theorem 8 in [4] gives a description of such algebras. Results about them are
similar to results about Lie algebras.

Theorem 2.4. Let A be a Malcev algebra which has a nearly faithful representa-
tion ρ with semisimple enveloping algebra A∗

ρ. Then A = A1 + C where A1 is a
semisimple subalgebra and C is the center (annihilator) of the algebra A.

Proof. Let S be the radical of the algebra A. We show that S coincides with
the center of A. Otherwise, S1 = S · A ⊆ S is a nonzero solvable ideal of A.
Let S2 be a nonzero abelian ideal in S1 (which exists by Corollary 2.3) and set
S3 = S2 ·A ⊆ S2. By Lemma 2.1 each element of the ideal S3 can be represented
by a nilpotent operator, and by Theorem 1.2, S∗3 is in the radical of A∗

ρ, so S∗3 = 0.
Then S3 ⊆ kerρ and thus, since ρ is nearly faithful, S3 = 0. Hence S2 lies in the
center of A. Also S2 ⊆ S ·A. Using again Lemma 2.1 and repeating the reasoning
we can show that S2 = 0. This contradicts the assumption that S2 is nonzero and
thus S ·A = 0. For the same reason S∩A2 = 0 and therefore A = S+A1 where A1

is a complementary subspace of S containing A2. Since A1 ⊇ A2 we immediately
have A1 CA. Moreover, A1

∼= A/S so A1 is semisimple.

De�nition 2.5. The Lie algebra generated by the operators Rx, x ∈ A is said to
be the Lie enveloping algebra Lρ(A) of a representation ρ.

Identity (12) shows that Lρ(A) and ρ(A) + [ρ(A), ρ(A)] coincide as vector
spaces. If the algebra A is abelian then Lρ(A) is at least metabelian. The as-
sociative enveloping algebra of Lρ(A) coincides with A∗

ρ.

Corollary 2.6. Under the hypothesis of Theorem 2.4, if A is a solvable Malcev
algebra then A is abelian and the algebra A∗

ρ is commutative. More generally, if
ρ is a nearly faithful representation of a solvable Malcev algebra A, and R is the
radical of A∗

ρ, then the quotient algebra A∗
ρ/R is commutative.

Proof. The algebra A is abelian by Theorem 2.4, so Lρ(A) is at least metabelian.
However, since the associative enveloping algebra A∗

ρ of Lρ(A) is semisimple, then
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Lρ(A) is indeed abelian. Therefore A∗
ρ is commutative. To prove the second claim

by analogy with Lie algebras [3] we consider the sequence

A → A∗
ρ → A∗

ρ/R,

which is a representation of a solvable Malcev algebra, so its associative enveloping
algebra is the semisimple algebra A∗

ρ/R.

The following theorem based on Theorem 2.4 and Corollary 2.6 has an impor-
tant application.

Theorem 2.7. Let ρ be a nearly faithful representation of a Malcev algebra A in
a vector space V , let S be the radical of A, let R be the radical of A∗

ρ, and let ρ̄ be

the induced representation A → A∗
ρ/R with I = k̃erρ̄. Then I is a nilpotent ideal

of A which coincides with the set S0 consisting of all the elements of S which are
nilpotent with respect to ρ. Moreover, S ·A ⊆ S0.

Proof. Let R0 be the radical of the subalgebra S∗ ≤ A∗
ρ. Then by Corollary 2.6,

S∗/R0 is semisimple and commutative. The set S0 coincides with the kernel of the
representation S → S∗/R0, so S0 is a subspace of S. Consider the representation
ρ̄; its enveloping algebra is the semisimple algebra A∗

ρ/R. Elements of the ideal I
are represented by nilpotent operators with respect to ρ. Then by Theorem 1.2, I
is a nilpotent ideal in A, i.e., I ⊆ S and by de�nition of S0, I ⊆ S0. The radical
of the algebra Ā = A/I equals S/I and the induced representation Ā → A∗

ρ/R

is nearly faithful. By Theorem 2.4, the radical of Ā coincides with its center, so
S ·A ⊆ I ⊆ S0, where S0 is an ideal of A. Again by Theorem 1.2 we have S∗0 ⊆ R

and therefore S0 ⊆ k̃erρ̄ = I . The other inclusion was already proved.

Corollary 2.8. If S is the radical and N is the nil-radical of an algebra A then
S ·A ⊆ N . In particular, if A is solvable then A2 is nilpotent.

Lemma 2.9. Let ρ be a split representation of a solvable algebra A and let V be
irreducible. Then V is one-dimensional.

Proof. The algebra A∗
ρ is semisimple and owing to solvability of A it is also com-

mutative. The rest of the proof is obvious.

Theorem 2.10. Let ρ be a split representation of a Malcev algebra A. Then all
matrices Rx can be simultaneously reduced to triangular form. In other words, in
the vector space V there exists an A-invariant �ag of subspaces.

The same is true for split representations of nilpotent Malcev algebras. How-
ever, in this case the subspace of a representation is a direct sum of weight spaces
by Theorem 1.7 and therefore the matrices Rx have a more speci�c form, as in the
case of Lie algebras.
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Theorem 2.11. Let ρ be a representation of a nilpotent Malcev algebra A in a
vector space V . Then V can be decomposed into the direct sum of weight spaces Vα,
and all matrices corresponding to the restriction of Rx to Vα can be simultaneously
reduced to triangular form with α(x) on the main diagonal.

Corollary 2.12. Under the hypothesis of Theorem 2.11 the weights α : A → F
are linear maps that are 0 on A2.

This last corollary implies that elements from A2 are represented by nilpotent
operators. Moreover, this is true even in the case of a solvable algebra A. Indeed,
by Theorem 2.7 we have S ·A = A2 ⊆ S0.

2.2. The following is the proof of solvability and semisimplicity criteria for Malcev
algebras over �elds of characteristic 0, which is similar to the well-known Cartan
criteria for Lie algebras [3].

Let F be an algebraically closed �eld, let H be a Cartan subalgebra of the
Malcev algebra A over F , and let ρ be a representation of A in V . Then V can be
decomposed into the sum of weight spaces Vα with respect to the representation
of H in V induced by ρ. On the other hand, A has a decomposition into the sum
of subspaces Aβ with respect to the subalgebra H (A0 = H). Let us show that

VαAβ ⊆ Vα+β (α 6= β), VαAα ⊆ V2α + V−α, (38)

where as usual we assume that Vα = 0 if α is not a weight of H in V . Consider the
semidirect extension E = V + A of A given by ρ and the regular representation
of H in E. Since H is a nilpotent subalgebra of E, we can decompose E into the
sum of root spaces with respect to H. These subspaces are of the form Vα + Aα

where one of the terms can be absent (for example Vα, if a root α of H in A is
not a weight of H in V ). Indeed, a system of such spaces satis�es the conditions
of Theorem 1.7. By Lemma 1.8 we have

VαAβ ⊆ Eα+β ∩ V = (Vα+β + Aα+β) ∩ V = Vα+β .

The second formula of (38) can be proved in a similar way.

Lemma 2.13. If α, β, γ are pairwise distinct weights then the identity vα(xβxγ) =
(vαxβ)xγ holds for any vα ∈ Vα, xβ ∈ Aβ and xγ ∈ Aγ . The same is true if α 6= 0,
β = γ = 0.

Proof. The proof is similar to that of (38). For the algebra E = V + A this
lemma claims that J(Vα, Aβ , Aγ) = 0, J(Vα, A0, A0) = 0. It su�ces to apply
Lemma 1.8.

Note that A2 =
∑

AαAβ . Formulas for multiplication of root spaces show that

H ∩A2 =
∑
α

AαA−α.
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Lemma 2.14. Let A be a Malcev algebra over an algebraically closed �eld F of
characteristic 0, let H be a Cartan subalgebra of A, and let ρ be a representation
of A in a vector space V . Suppose that α,−α are roots of H, eα ∈ Aα, e−α ∈ A−α

and hα = eα · e−α. Then for any weight ϕ of H in V the value of ϕ(hα) is a
rational multiple of α(hα).

Proof. If ϕ is an integer multiple of α then the claim is obviously true for any h ∈
H, in particular, for any hα. Let ϕ be a non-multiple of α. Consider the direct sum
U of subspaces of the form Vϕ+kα, where k runs over the set of integers (of course,
we assume that this sum has a �nite number of nonzero terms). The subspace U
is invariant with respect to eα and e−α. The hypothesis of Lemma 2.13 holds for
the weights ϕ + kα, α and −α, hence Rhα restricted to U equals [Reα , Re−α ], and
therefore the trace of Rhα

restricted to U equals 0. The rest of the proof is similar
to that of Lemma 1.3 in [3].

Note that if nα = dim Vα then

0 = trURhα
=
∑

k

nϕ+kα · (ϕ + kα)(hα),

ϕ(hα) = rϕ,α · α(hα),

where rϕ,α = −
∑

k

knϕ+kα

/∑
k

nϕ+kα.

Theorem 2.15. Let A be a Malcev algebra over a �eld of characteristic 0, and let
ρ be a nearly faithful representation of A such that the bilinear form on A′ = A2

associated to ρ is trivial. Then A is solvable.

Proof. Replacing the base �eld F by an algebraic extension if necessary, we use
induction on the dimension of A. As in [3], it can be shown that A′ is strictly
contained in A. If A = A2 then H =

∑
α Aα·A−α and by Lemma 2.14 the condition

trR2
hα

= 0 implies ϕ(hα) = 0 for any weight ϕ of H in V . It follows from linearity
of weights that ϕ = 0 is the only weight of H, that is, V = V0. Then V Aα = 0
for any α 6= 0, and the representation ρ of A can be reduced to a representation
of H with weight 0, i.e., ρ is a representation of A by nilpotent operators. By
Theorem 1.1 A is nilpotent, but this contradicts A = A2. Let ρ′ be the restriction
of ρ to A′, I = k̃erρ′ ⊆ kerρ. Then A′/I satis�es the induction hypothesis and
is solvable. By Proposition 2.2 it is also L-solvable, i.e., Lm(A′) ⊆ I ⊆ kerρ for
some m ≥ 0. Since Lm(A′) C A and the representation of ρ is nearly faithful,
Lm(A′) = 0 and it follows that A is solvable.

Corollary 2.16. A Malcev algebra A over a �eld of characteristic 0 is solvable if
and only if trR2

x = 0 for all x ∈ A2 (here Rx is the operator of right multiplication
by x ∈ A).

To prove the necessary condition it su�ces to note that in the regular repre-
sentation of a Malcev algebra A the operators Rx, for x ∈ A2 ⊆ N , are nilpotent.
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Theorem 2.17. Let ρ be a nearly faithful representation of a semisimple Malcev
algebra A. Then the form associated with ρ is non-degenerate. If the Killing form
of an algebra A is non-degenerate then A is semisimple.

Proof. The proof of the �rst claim, like the proof of Theorem 2.15, uses L-solvability
speci�cally. It follows from invariance of the form associated to the representation
ρ that its kernel B is an ideal of A. Assume that B 6= 0 and let ρ′ be the restriction
of ρ to B and let I = k̃erρ′. Then B/I satis�es the hypothesis of Theorem 2.15
and thus it is solvable; therefore, it is L-solvable: Lm(B) ⊆ I ⊆ kerρ. However,
Lm(B)CA so Lm(B) = 0 and B is a solvable ideal of A, a contradiction.

The second claim of the theorem was proved by Sagle [11] and it is clearly a
consequence of Dieudonné's theorem [3] (it follows from this theorem that a nonas-
sociative algebra with non-degenerate invariant Killing form can be decomposed
into the direct sum of simple ideals; therefore, this algebra is semisimple). How-
ever, taking into account Corollary 2.6, it is possible to prove this second claim
by repeating the arguments from the Lie algebra case: if A is not semisimple then
A contains a nonzero abelian ideal and such an ideal is contained in the kernel of
the Killing form.

Corollary 2.18. Any nearly faithful representation of a semisimple Malcev algebra
is faithful.

Since the non-degeneracy of the Killing form does not depend on extensions of
the base �eld, the following holds:

Corollary 2.19. A Malcev algebra A over a �eld F of characteristic 0 is semisim-
ple if and only if AΩ is semisimple over any extension Ω of the �eld F .

Below are a few more facts whose proofs are standard.

Structure Theorem. If A is a �nite dimensional semisimple Malcev algebra over a
�eld of characteristic 0 then A can be decomposed into the direct sum of ideals
which are simple algebras.

Corollary 2.20. If A is a semisimple algebra then any ideal of A is a semisimple
subalgebra.

Corollary 2.21. If A is semisimple then A = A2.

Corollary 2.22. If S is the radical of an algebra A and B CA then B ∩ S is the
radical of B.

Proposition 2.23. If N is the nil-radical of an algebra A and BCA then B ∩N
is the nil-radical of B.

Proof. If N1 is the nil-radical of B and S1 is the radical of B then N1 ⊆ S1 ⊆ S
and N1A ⊆ S · A ∩ B ⊆ N ∩ B ⊆ N1. Therefore N1 is a nilpotent ideal of A and
N1 ⊆ N ∩B.
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Proposition 2.24. The radical S of a Malcev algebra A coincides with the or-
thogonal complement in A of the subalgebra A2 with respect to the Killing form of
A.

Corollary 2.25. Any solvable (resp. nilpotent) subinvariant subalgebra of an
algebra A lies in the radical (resp. nilradical) of A.

Remark 1. The solvability and semisimplicity criteria for Malcev algebras are
similar to the Cartan criteria. (Theorems 2.15 and 2.17 were �rst obtained only for
the regular representation in [9] by using the connection between Malcev algebras
and Lie triple systems (LTS) and their embeddings into Lie algebras.)

In ��4 and 5 we will return to the study of Malcev algebras of characteristic 0.

3. Simple Malcev algebras over a �eld of

arbitrary characteristic

In this section we assume that the base �eld F has either characteristic 0 or p > 3.
We consider the classi�cation of non-Lie simple Malcev algebras over F .

3.1. Let A be a non-Lie simple Malcev algebra, let H be a Cartan subalgebra
of A, and assume that the regular representation of H in A is split. (If such a
subalgebra exists, then it is called a split Cartan subalgebra and A is called split.
Proposition 1.12 shows that in order for Cartan subalgebras to exist the base �eld
F must be in�nite; if F is algebraically closed then any Lie subalgebra is split.)
Note that there exist nonzero roots α of H in A. Indeed, otherwise we would have
A = A0 = H and A would be nilpotent, which is not possible. Identity (11) shows
that the subspace J(A,A, A) is an ideal of A. Thus

A = J(A,A, A). (39)

Lemma 3.1. [12] If for some x, y ∈ A we have

J(x, y,A) = 0, (40)

then xy = 0.

Proof. Equation (40) can be written as Rxy = [Rx, Ry]. Then D(x, y) = 2Rxy and
the identity RxD(x,y) = [Rz, D(x, y)] implies that either Rz(xy) = [Rz, Rxy] for any
z ∈ A or

J(xy,A,A) = 0. (41)

This argument shows, in particular, that the set of elements x ∈ A such that
J(x, A,A) = 0 (the so-called center of A) is a Lie ideal in A. In a simple algebra
A this ideal must be equal to 0 and, in particular, xy = 0.
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Lemma 3.2. [12] For any nonzero root α of a subalgebra H in A we have A2
α ⊆

A−α. Moreover, A = A0 + Aα + A−α and A0 = AαA−α.

Proof. Let xαyα = z2α + z−α; see (27). Then by (21) we have J(h, xβ , z2α) = 0
for all β 6= 2α. If β = 2α, then by Lemma 1.8 we have

J(h, x2α, z2α) = J(h, x2α, xαyα)
= −J(xα, x2α, hyα) + J(h, x2α, yα)xα + J(xα, x2α, yα)h = 0.

Therefore J(h, z2α, A) = 0 and hz2α = 0, and since h ∈ H was chosen arbitrarily,
we have z2α = 0. Using what was just proved, the subspace

B = AαA−α + Aα + A−α ⊆ A0 + Aα + A−α,

is invariant under multiplications by Aα and A−α. Invariance of AαA−α with
respect to multiplication by A0 follows from the relation J(A0, Aα, A−α) = 0.
Thus B is a subalgebra. Let us show that B is an ideal of A. By (30) and (31), for
any β 6= 0, α,−α we have J(A,Aα, Aβ) = 0 and AαAβ = 0. Similarly, A−αAβ = 0.
It follows from J(Aα, A−α, Aβ) = 0 that (AαA−α)Aβ = 0. Hence BA ⊆ B and
B CA. Therefore B = A and, in particular, A0 = AαA−α.

Lemma 3.2 shows that the system of roots of A has a very simple structure.

Lemma 3.3. The subalgebra H = A0 is abelian. A root α : A → F is a linear
map.

Proof. Using for example (11) we can show that the subspace J(A0, A0, A0) is
invariant under multiplications by A0, Aα and A−α, i.e., it is an ideal of A. There-
fore

J(A0, A0, A0) = 0, J(A0, A0, A) = 0, A2
0 = 0. (42)

By (42), for any x, y ∈ H we have Rxy = RxRy −RyRx = 0. Therefore, the oper-
ators Rx and Ry have a common eigenvector eα in Aα: eα(x+y) = [α(x), α(y)]eα.
However, the operator Rx+y has the unique eigenvalue α(x + y). Thus α(x + y) =
α(x) + α(y) and the lemma is proved.

Let us choose an element h0 ∈ H such that α(h0) = 1. Then any element
h ∈ H can be represented in the form h = α(h)h0 + h1 where α(h1) = 0. For any
x ∈ Aα, y ∈ A−α, h ∈ H we have

0 = J(h, x, y) = hx · y + yh · x, xh · y = −x · yh,

x[α(h)−Rh] · y = x · y[α(h) + Rh]. (43)

Lemma 3.4. Let h ∈ H, h 6= 0 and let U be any cyclic subspace of Aα (or A−α)
with respect to Rh. Then for any u1, u2 ∈ U we have u1u2 = 0.
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Proof. Let us choose any element u of maximal height in U . For all h′ ∈ H we
have J(h′, h, u) = 0, i.e., the triple of elements {h′, h, u} is Lie. By [10] it generates
a Lie subalgebra B ≤ A. In particular, J(U,U, h′) = 0. Therefore, the operator
Rh′ is a derivation of the linear subspace U · U and, since h′ ∈ H was arbitrary,
U · U ⊆ A2α. However, 2α is not a root, so U · U = 0.

Formula (39) shows that

A−α = J(A0, Aα, Aα) + J(A−α, A−α, Aα). (44)

Using identity (11) and the known relations for root subspaces we can show that

A0J(A0, Aα, Aα) ⊆ J(A0, Aα, Aα),

A0J(A−α, A−α, Aα) = J(A0, Aα, A2
−α) ⊆ J(A0, Aα, Aα).

Multiplying both sides of (44) on the left by A0 we obtain A−α ⊆ J(A0, Aα, Aα).
Since the converse inclusion also holds we have

A−α = J(A0, Aα, Aα) ⊆ A2
α + A2

α ·A0.

Similarly Aα = J(A0, A−α, A−α). In particular, A2
α 6= 0 and A2

−α 6= 0.

Lemma 3.5. For all x, y ∈ Aα, h ∈ A0 we have

yx · x = 0, hx · x = 0. (45)

Proof. Set y = J(a0, a−α, b−α). Then by (6)

yx = J(b−α, a0, a−α)x
= −J(x, a0, a−α)b−α + J(b−α, a0, xa−α) + J(x, a0, b−αa−α)
= J(x, a0, b−αa−α) = J(x, a0, cα),

yx · x = J(x, a0, xcα) ∈ J(A0, Aα, A−α) = 0.

The second claim follows from Lemma 3.4.

Let us denote the system of roots of H in A by ∆; then ∆ = {0, α,−α}. We
denote by (x, y) the symmetric bilinear form on A given by

(x, y) =


0 x ∈ Aβ ; y ∈ Aγ ; β, γ ∈ ∆; β + γ 6= 0;
α(x)α(y) x, y ∈ A0;
α(x · y1) x ∈ Aα; y1 ∈ A−α; y = y1h0.

(46)

Since the restriction of Rh0 to A−α is non-degenerate, the form (46) is well-
de�ned. In all previous lemmas the expressions were symmetric in α and −α;
however, in the de�nition of the form (46) this symmetry is lost. Let us show that
this apparent asymmetry does not in fact hold. We change α to α′ = −α and h0
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to h′0 = −h0 so that α′(h′0) = 1. Then for x, y ∈ A0 we have (x, y) = α(x)α(y) =
α′(x)α′(y). For x ∈ Aα, y ∈ A−α the de�nition of the form (46) can be written as
(xh0, yh0) = α(xh0 · y). Let us check that (yh′0, xh′0) = α′(yh′0 · x). Indeed,

(yh′0, xh′0) = (yh0, xh0) = (xh0, yh0) = α(xh0 · y) = α(−x · yh0) = α(yh0 · x)
= α′(yh′0 · x).

Lemma 3.6. The form (46) is invariant; i.e., for all x, y ∈ A (35) holds.

Proof. Taking into account the linearity of (35) in x, y, z, it su�ces to consider
the cases when x, y, z are in the root subspaces. Omitting the trivial relations,
we need to check that (xh, y) = (x, hy) and (xy, h) = (x, yh) only when x ∈ Aα,
y ∈ A−α, h ∈ H, and the cases x, y, z ∈ Aα and x, y, z ∈ A−α.

(a) Let x ∈ Aα, y ∈ A−α. Setting y = y1h0 (y1 ∈ A−α) we obtain by de�nition
(xh, y) = α(xh · y1) and (x, hy) = (x, hy1 · h0) = α(x · hy1); then the equality
(xh, y) = (x, hy) follows from xh · y1 = x · hy1.

(b) For the same x, y, h, y1 we have (xy, h) = α(xy)α(h) = α(x · y1h0)α(h) and
(x, yh) = α(x · y1h). Let us show that the following identity holds:

α(x · yh0)α(h) = α(x · yh), x ∈ Aα, y ∈ A−α. (47)

Note that (47) is linear in h; if h = h0 then it is trivial. It remains to consider the
case α(h) = 0. Write x·yh = h1. Since α(h) = 0, the operator Rh is nilpotent. Let
xRm−1

h = x1 6= 0, x1h = 0 (m ≥ 1). It follows from J(x, y, h) = 0 that x, y, h, x1

belong to the same Lie subalgebra of A. In particular,

0 = J(x, x1, yh) = xx1 · yh + (x1 · yh)x + x1h1 = x1h1,

since xx1 = 0 by Lemma 3.4, and x1 · yh = −x1h · y = 0 since x1h = 0. It follows
from x1h1 = 0 that α(h1) = 0.

(c) Let x, y, z ∈ Aα. We rewrite identity (35) in the form (yx, z) + (yz, x) = 0,
so it su�ces to prove that (yx, x) = 0 (x, y ∈ Aα) and then linearize in x. Setting
x = x1h0 (x1 ∈ Aα) and using the previous arguments we get (yx, x) = (yx ·
x1, h0) = α(yx ·x1). Let us prove that yx ·x1 = 0. Linearizing the second identity
in (45) we obtain yx = y · x1h0 = −x1 · yh0 = yh0 · x1. Using the �rst relation
in (45) we have yx · x1 = (hy0 · x1)x1 = 0 as desired. The case x, y, z ∈ A−α

is immediate owing to the symmetry of the roots α and −α, so the lemma is
proved.

The form (x, y) is non-trivial since, for example (h0, h0) = 1. It follows from its
invariance and the simplicity of A that the form is non-degenerate. If α(h) = 0 for
some h ∈ H then by (46) we have (h, A) = 0 and therefore h = 0. Consequently
the subalgebra H is one-dimensional: H = (h0). The subspaces Aα and A−α are
dual to each other with respect to (x, y); in particular, dim Aα = dim A−α. If
x ∈ Aα and y ∈ A−α then xy = λh0 where λ = (xy, h0) = (x, yh0). Hereafter we
will denote the element h0 simply by h.
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Lemma 3.7. All cyclic subspaces with respect to Rh in Aα (and A−α) are one-
dimensional.

Proof. Let U be a cyclic subspace in Aα with dim U = n > 0, let x1, . . . xn be
a cyclic basis of U (here xk is a vector of height k), and let y be an eigenvector
(with respect to Rh) from A−α. Then it follows from (43) that xy = 0 for any
vector x ∈ U of height less than n; in particular, x1 · y = 0. Let V be an arbitrary
cyclic subspace of A−α. Let us show that x1 · V = 0. If dim V = 1 then this is
already known, so let dim V = m > 1 and let y1, . . . , ym be a cyclic basis of V .
Then x1yi = 0 for i = 1, . . . ,m − 1. If x1ym 6= 0 then, without loss of generality,
x1ym = h. Since A is binary Lie, the elements x1 and ym generate a Lie subalgebra
in A with basis x1, y1, . . . , ym, h. Then 0 = J(x1, ym, y1) = x1ym · y1 = y1, which
is impossible. Consequently, x1A−α = 0 and (x1, A−α) = 0, which contradicts the
non-degeneracy of (x, y). The lemma is then proved.

Lemma 3.7 shows that the operator Rh acts diagonally on Aα and A−α. Its
restriction to Aα is the identity operator 1 and its restriction to A−α is −1. In
particular, for all x ∈ Aα, y ∈ A−α we have xy = −(x, y)h.

Further arguments can be made as in the case of characteristic 0 [16]. For all
x, y, z ∈ Aα we have xy · z = yz · x = zx · y = (xy, z)h; furthermore, J(x, y, h) =
−3xy. If x, y ∈ Aα, z′ ∈ A−α then

J(x, y, z′h) + J(z′, y, xh) = J(x, y, h)z′ = −3xy · z′. (48)

Also, the left side of (48) equals −2J(x, y, z′); therefore, 3xy · z′ = 2J(x, y, z′) or

xy · z′ = 2(yz′ · x + z′x · y). (49)

According to (49), for any elements x, y, z, t ∈ Aα we have

xz · yt = 2 [(z · yt)x + (yt · x)z] = 2yztx + 2txyz.

Comparing this identity with (10) we obtain

xyzt = yztx− ztxy + txyz. (50)

We now have enough identities to construct a basis and a multiplication table for
A. Taking into account that A2

α 6= 0, we choose two arbitrary elements x, y ∈ Aα

for which xy = z′ 6= 0. Then xz′ = yz′ = 0. If z ∈ Aα such that zz′ = 1
2h then

x, y, z are linearly independent and (50) shows that any element t ∈ Aα is a linear
combination of x, y, z. Therefore, dim Aα = dim A−α = 3. Write yz = x′ and
zx = y′. Then xx′ = yy′ = zz′ = 1

2h, and it follows from the orthogonality of
elements {x, y, z} and {x′, y′, z′} that {x′, y′, z′} is a basis of A−α. In order to �nd
the multiplication formulas for Aα we use identity (49):

x′y′ = yz · zx = 2 [(z · zx)y + (zx · y)z] = 2(zx · y)z = 2y′y · z = −hz = z.
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Similarly y′z′ = x and z′x′ = y. Thus the multiplication table for A is complete.
Note that dim A = 7. We can �nd an explicit automorphism of order 2 which
interchanges Aα and A−α. This automorphism sends x to x′, y to y′, z to z′ and
h = 2xx′ to 2x′x = −h.

There is a close relation between A and a split Cayley-Dickson algebra C over
F . Recall that C is a simple alternative algebra whose elements are matrices(

α a
b β

)
,

where α, β ∈ F and a, b are arbitrary vectors of a 3-dimensional vector space over
F . If a × b is the ordinary vector product and (a, b) is the dot product with the
identity matrix as the Gram matrix for the chosen basis, then the product of two
elements of C is given by the formula(

α a
b β

)(
γ c
d δ

)
=
(

αγ − (a, d) αc + δa + b× d
γb + βd + a× c βδ − (b, c)

)
.

We de�ne a new multiplication in C by x ∗ y = 1
2 [x, y], slightly di�erent from the

commutator; C becomes a Malcev algebra C(−) with respect to this operation.
Elements of the form diag(α, α) form the 1-dimensional center of C(−). The com-
plementary subspace for the center consists of the matrices of trace 0. In fact, this
subspace is a subalgebra denoted by C(−)/F . Multiplication in C(−)/F is given
by (

α a
b −α

)
∗
(

β c
d −β

)
=
(

1
2 [(b, c)− (a, d)] αc− βa + b× d
βb− αd + a× c 1

2 [(a, d)− (b, c)]

)
. (51)

Comparing (51) with the known multiplication table of the algebra A shows that
A is isomorphic to C(−)/F . To the element h corresponds the matrix(

1 0
0 −1

)
,

and to the element α1x + α2y + α3z + β1y
′ + β2y

′ + β3z
′ corresponds the matrix(

0 b
a 0

)
, a = (α1, α2, α3), b = (β1, β2, β3).

This correspondence is the isomorphism A → C(−)/F .

Theorem 3.8. If F is an arbitrary �eld of characteristic not 2 or 3, then there
exists a unique non-Lie split simple Malcev algebra A over F . This algebra is
isomorphic to the algebra C(−)/F obtained from the Cayley-Dickson algebra C
over F using the operation x ∗ y = 1

2 (xy − yx) and factoring out the center.

The following proposition clari�es the meaning of the bilinear form (46) on A.
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Proposition 3.9. For all x, y ∈ A we have

xy · y = (y, y)x− (x, y)y. (52)

Proof. The proof is based on the multiplication table for A. Using the isomorphism
A ∼= C(−)/F , computations can be performed using the matrix form. It should be
noted that if

x 

(
α a
b −α

)
, y  

(
β c
d −β

)
,

then by the above isomorphism we have (x, y) = αβ − 1
2 [(a, d) + (b, c)].

Identity (52) shows that the bilinear form (46) on A can be de�ned indepen-
dently of the choice of the Cartan subalgebra H. Moreover, it follows from (52)
that for all x, y ∈ A the subspace spanned by x, y, xy is a subalgebra, i.e., any two
elements x, y ∈ A generate a subalgebra which is at most 3-dimensional.

Lemma 3.10. We have

(xy, xy) = (x, y)2 − (x, x)(y, y). (53)

Proof. This claim is trivial if x = 0, so let x 6= 0. Replacing y by xy in (52) we
get (x · xy)(xy) = (xy, xy)x. On the other hand,

(x · xy)(xy) = [(x, x)y − (x, y)x] (xy) =
[
(x, y)2 − (x, x)(y, y)

]
x,

hence the assertion follows.

Linearizing (53) on y we obtain

(xy, xz) = (x, y)(x, z)− (x, x)(y, z). (54)

It is well known that the problem of the classi�cation of �nite dimensional
simple algebras over the �eld F can be reduced to the description of central simple
algebras over F and over �nite extensions of F . Let us describe central simple
non-Lie Malcev algebras over a �eld F of characteristic not 2 or 3. Let A be an
algebra as above. If F is algebraically closed then A is split and its structure is
well known. In general, let F̄ be the algebraic closure of F and Ā = AF ⊗ F̄
be the corresponding extension of A. Then Ā is a central simple Malcev algebra
over F̄ and dimF A = dimF̄ Ā = 7. Let (x, y) be the bilinear form (46) de�ned
on Ā. Identity (52) shows that the restriction of this form to A is de�ned over
F , and it is a non-singular bilinear form, which we also denote by (x, y). We
construct a basis {e1, . . . , e7} of the algebra A as follows. We choose e1, e2 to
be two arbitrary non-isotropic elements of A which are orthogonal with respect
to (x, y) and write (e1, e1) = −α, (e2, e2) = −β, e1e2 = e3. Then e1, e2, e3 are
pairwise orthogonal and it follows from (52) and (53) that e2e3 = βe1, e3e1 = αe2

and (e3, e3) = −αβ 6= 0. The subspace (e1, e2, e3) is non-singular. Its orthogonal
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complement (e1, e2, e3)⊥ has the same property. We choose as e4 any non-isotropic
element of (e1, e2, e3)⊥ and write (e4, e4) = −γ, e1e4 = e5, e2e4 = e6, e3e4 =
e7. Then by (54) for any i, j = 1, 2, 3 we have (ei, eje4) = (eiej , e4) = 0 and
(eie4, eje4) = −(e4, e4)(ei, ej), which implies that e5, e6e7 are non-isotropic and
e1, . . . , e7 are mutually orthogonal. Therefore ei (i = 1, . . . , 7) form a basis of A.
Using the linearization of (52) we obtain for i, j = 1, 2, 3 that

eie4 · ej + eiej · e4 = −(ei, ej)e4, e4ei · e4ej + (e4 · e4ej)ei = 0.

As a result, the multiplication table of A in the chosen basis is as follows, where
i, j = 1, 2, 3 (i 6= j):

e1e2 = e3, e2e3 = βe1, e3e1 = αe2,

eie4 = ei+4, eiei+4 = (ei, ei)e4, e4ei+4 = γei, (55)

ei+4ej = −eiej · e4, ei+4ej+4 = −γeiej ;

we write (e1, e1) = −α, (e2, e2) = −β and (e3, e3) = −αβ.
We denote by M(α, β, γ) any anticommutative algebra with multiplication ta-

ble (55). It can be de�ned over a �eld of arbitrary characteristic and it is a Malcev
algebra (i.e., it satis�es the identity (10)) for any α, β, γ ∈ F . If charF 6= 3 then
M(α, β, γ) is a non-Lie algebra. If αβγ 6= 0 then it is central simple. Hence we
have proved the following theorem.

Theorem 3.11. The class of non-Lie central simple Malcev algebras over an
arbitrary �eld F of characteristic not 2 or 3 coincides with the class M(α, β, γ)
for any α, β, γ 6= 0 ∈ F .

If, for example, A is the split simple Malcev algebra with basis h, x, y, z, x′, y′, z′

constructed above, then we can set

e1 = h, e2 = x + x′, e3 = e1e2 = x′ − x, e4 = y + y′,

e5 = e1e4 = y′ − y, e6 = e2e4 = z + z′, e7 = e3e4 = z − z′.

The parameters α, β and γ take the following values: α = −1, β = 1 and γ = 1,
i.e., A = M(−1, 1, 1).

Isomorphic algebras M(α, β, γ) may correspond to di�erent values α, β, γ ∈ F
(αβγ 6= 0). The solution to the isomorphism problem for M(α, β, γ) follows from
the method of constructing the basis described above and the Witt theorem on
extension of partial isometries of bilinear metric spaces.

Theorem 3.12. Two algebras of type M(α, β, γ) (αβγ 6= 0) over the same �eld F
of characteristic not 2 are isomorphic if and only if their corresponding quadratic
forms f(x) = (x, x) are equivalent.

Note that if x =
∑

i tiei (ti ∈ F ) then

(x, x) = −αt21 − βt22 − αβt23 − γt24 − αγt25 − βγt26 − αβγt27. (56)
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To every M(α, β, γ) over F we can associate C(α, β, γ) = F + M(α, β, γ), whose
multiplication is given by

(α + x) · (β + y) = αβ + αy + βx + x · y,

for any α, β ∈ F and x, y ∈ M(α, β, γ) where x · y = (x, y) + xy. If αβγ 6= 0
and charF 6= 2 then C(α, β, γ) is a simple alternative algebra (Cayley-Dickson
algebra) which is related to M(α, β, γ) in the same way as C(−)/F is related to
the split Cayley-Dickson algebra M(−1, 1, 1). Clearly, two algebras M(α, β, γ) and
M(α′, β′, γ′) are isomorphic if and only if the corresponding alternative algebras
C(α, β, γ) and C(α′, β′, γ′) are isomorphic.

Let us discuss the question of Cartan subalgebras of a central simple Malcev
algebra A = M(α, β, γ). Let y be an arbitrary nonzero element in A. If (y, y) 6= 0
then the subspace V = (y)⊥ is invariant with respect to Ry and identity (52)
shows that for all x ∈ V we have

xy · y = (y, y)x, (57)

that is, Ry restricted to V is non-degenerate, Ay
0 = (y) and y is a regular element

in the sense of De�nition 1.11. If (y, y) = 0 then it follows from (52) that R3
y = 0

and Ay
0 = A. Therefore, an element y ∈ A is regular if and only if (y, y) 6= 0, and

hence any Cartan subalgebra H of A coincides with the intersection of subspaces
Ay

0 (y ∈ H); then H contains a regular element y and therefore coincides with
the 1-dimensional subalgebra generated by y. Conversely, any regular element
in A generates a (1-dimensional) Cartan subalgebra of A, independently of the
cardinality of the �eld F .

It follows from (57) that nonzero characteristic roots of Ry coincide with
quadratic roots of (y, y), and that a Cartan subalgebra H = (y) is split if and
only if (y, y) is the square of a nonzero element of F . Therefore, the following
holds.

Proposition 3.13. An algebra M(α, β, γ) is split, thus isomorphic to M(−1, 1, 1),
if and only if the quadratic form (56) represents the identity in F .

Theorem 3.12 shows that the classi�cation of central simple Malcev algebras
over F is related to the theory of quadratic forms over F . For example, let F
be the �eld Q of rational numbers. If not all α, β, γ are positive then (56) is
unde�ned. Since an inde�nite (or positive de�nite) quadratic form of rank n ≥ 4
over Q represents 1, the form −(x, x) is also positive de�nite, and using the above
properties of quadratic forms over Q we have M(α, β, γ) ≡ M(1, 1, 1). Therefore,
there are only two distinct non-Lie central simple Malcev algebras over Q. The
same is true if F = R, the �eld of the real numbers. If the base �eld F is the �eld
of p-adic numbers Qp then any algebra of the form M(α, β, γ) over F is split, as
in the case of an algebraically closed �eld, although Qp is not algebraically closed.
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4. Conjugacy of Cartan subalgebras of

Malcev algebras

If A is an arbitrary (nonassociative) algebra over a �eld of characteristic 0, and D
is a nilpotent derivation of A, then expD is an automorphism of A. A derivation
D is said to be inner if it belongs to the algebra A∗ of multiplications of A, where
A∗ is generated by the operators of left and right multiplication. Consider the
group Φ of all automorphisms of A generated by all expD where D is an inner
nilpotent derivation. Elements of Φ will be called special automorphisms of A.

4.1. Let F be an algebraically closed �eld of characteristic 0, let A be a Malcev
algebra over F , let H be a Cartan subalgebra of A, and let α1, . . . , αn be the
nonzero roots of H in A. To each pair of elements x, y ∈ A we associate the inner
derivation D(x, y) = Rxy + [Rx, Ry]; see equation (13). Let us show that any
element eα ∈ Aα (α 6= 0) and any element h ∈ H de�ne a nilpotent derivation
D(eα, h). Indeed, if eβ ∈ Aβ and β 6= kα for any integer k, then for every k > 0
we have eβDh(eα, h) = 0 for k su�ciently large. The same is true for β = kα for
k ≥ 2. The case β = −α is of special interest; then J(h, eα, e−α) = 0. It follows
that the elements h, eα, e−α generate a Lie subalgebra in A. The restriction of
D(eα, h) to this subalgebra coincides with Re′α , where e′α = 2eαh ∈ Aα. Thus

e−αDk+1(eα, h) = [(e−α e′α) · · · ] e′α︸ ︷︷ ︸
k+1

. (58)

For any h1 ∈ H the elements eα, e−α, h1 form a Lie triple, i.e., J(eα, e−α, h1) = 0.
Therefore, the right side of (58) belongs to Akα for any k ≥ 0, and since α 6= 0 we
conclude that e−αDh(eα, h) = 0 for k > 0 su�ciently large. By (29) the remaining
cases can be reduced to the cases considered above.

We choose a basis {h1, . . . , hs, es+1, . . . , em} of A in such a way that the el-
ements {h1, . . . , hs} form a basis of H and {es+1, . . . , em} lie in root spaces Aα,
α 6= 0. We choose an element h0 ∈ H such that αi(h0) 6= 0 for all i = 1, . . . , n.
This can be done owing to the linearity of the roots: the product α1α2 . . . αn

is a polynomial function H → F which is not identically 0. Let λ1, . . . , λm be
independent variables and let

x = λ1h1 + · · ·+ λshs + λs+1es+1 + · · ·+ λmem,

be an element of A. Then the element

xP =

(
s∑

i=1

λihi

)
expD(λs+1es+1, h0) · · · expD(λmem, h0),

de�nes a polynomial map P of the algebra A into itself (the coordinates of xP
are polynomial functions of the coordinates of x). Let us compute the di�erential
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dh0P of this map at the point h0. Set

x = h + e, h ∈ H, e ∈
∑
α6=0

Aα.

Then

(h0 + tx)P = [(h0 + th) + te]P ≡ (h0 + th) [1 + tD(e, h0)] (mod t2)

≡ h0 + t [h + h0D(e, h0)] (mod t2),

which implies that dh0P is a map

h + e 7→ h + h0D(e, h0) = h− 2(eh0)h0.

Since h 7→ h and e 7→ −2(eh0)h0 are non-degenerate, we see that dh0P is an
epimorphism. Arguing in the same way as [3] we can show the following:

Theorem 4.1. If H1 and H2 are Cartan subalgebras of a �nite dimensional Malcev
algebra A over an algebraically closed �eld of characteristic 0 then there exists a
special automorphism η of A such that Hη

1 = H2.

In the proof it is shown that a Zariski open set consisting of regular elements of
A is the image of the regular elements from an arbitrary Cartan subalgebra H ≤ A
with respect to a special automorphism. In particular, all Cartan subalgebras of
A have the same dimension and contain regular elements. When extending the
base �eld F ⊂ Ω, the Fitting 0 component Ax

0 of A with respect to Rx for any
x ∈ A becomes the Fitting 0 component Ax

0 ⊗ Ω of AΩ = A ⊗ Ω with respect to
the same operator, and a Cartan subalgebra H ≤ A becomes a Cartan subalgebra
Hω = H ⊗ Ω of AΩ. Therefore, the following holds:

Corollary 4.2. If A is a �nite dimensional Malcev algebra over an arbitrary �eld
of characteristic 0 then all Cartan subalgebras of A have the same dimension.
Moreover, each Cartan subalgebra contains a regular element.

Proof. We only need to prove the second claim. Let x = λ1h1 + · · · + λshs be
an element of a Cartan subalgebra H, and let f(λ, x) = det(λ − Rx) be the
characteristic polynomial of Rx. If the multiplicity of 0 as eigenvalue of Rx (i.e.,
the dimension of Ax

0) is greater than dim H = s for any specialization of λ1, . . . , λs

in the base �eld F then f(λ, x) has the form

f(λ, x) = λm − τ1(x)λm−1 + · · ·+ (−1)m−1τm−1(x)λ`,

where ` > s. However, the same is true for any extension Ω of F ; this contradicts
the existence of a regular element in HΩ = H⊗Ω when Ω is algebraically closed.
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5. Representations of semisimple Malcev algebras

of characteristic 0

The results of this section are based on the connection between Malcev algebras
and Lie triple systems pointed out by Loos [9]. The main result is the theo-
rem about complete reducibility of representations of semisimple Malcev algebras
(Theorem 5.5) which is similar to Weyl's theorem for Lie algebras.

5.1. We recall the de�nition and basic properties of Lie triple systems (LTS) [8, 2].
A vector space T over a �eld F is called an LTS if a ternary operation [xyz] de�ned
on it is linear in each variable and satis�es the following identities:

[aab] = 0,

[abc] + [bca] + [cab] = 0,

[ab[xyz]] = [[abx]yz] + [x[aby]z] + [xy[abz]].

The last identity shows that the map Da,b : x 7→ [abx] is a derivation of T . Such
derivations are called inner and they generate a Lie algebra D0(T ) which is called
the algebra of inner derivations. Any Lie algebra L with triple product [xyz] = xy ·
z (or any subspace of L closed under the iterated product) is an example of an LTS.
On the other hand, any LTS can be realized as a subspace of a Lie algebra with the
iterated product; in this case we say that the LTS is embedded into the Lie algebra.
If an LTS T is embedded into a Lie algebra L then the subalgebra of L generated
by T is called the enveloping Lie algebra of the embedding. For an arbitrary LTS we
can de�ne the notions of ideal, solvability, radical, and semisimplicity. If an LTS T
is semisimple then its enveloping Lie algebra is also semisimple for any embedding
T → L. Among all embeddings of an LTS into a Lie algebra there are two special
ones: the standard and the universal. The underlying vector space of the standard
enveloping algebra Ls(T ) has the form T +D0(T ) and the multiplication in Ls(T )
is de�ned in the obvious way. In particular, if a, b ∈ T then ab = Da,b. The
universal Lie enveloping algebra Lu(T ) is characterized by the property that any
homomorphism T → L, where L is an arbitrary Lie algebra, can be uniquely
extended to a homomorphism Lu(T ) → L. If an LTS T is semisimple then its
standard and universal enveloping algebra coincide.

We now assume that the characteristic of the base �eld F is 0. If A is a
semisimple algebra then TA is also semisimple† ; in general, the radical of A coin-
cides with the radical of TA [9]. The set of inner derivations of TA is generated by
the operators of the form R(x, y) = 2Rxy +[Rx, Ry]. Identities (15) show that each
operator Rx is a derivation of the LTS TA. Therefore, the Lie enveloping algebra
L(A) of the regular representation of A is a subalgebra of the algebra D(TA) for
all derivations of T (A):

D0(TA) ⊆ L(A) ⊆ D(TA). (59)
† Translator's note: TA is the Lie triple system associated to the Malcev algebra A as in the

paper by Loos [9].
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Since all derivations of a semisimple LTS are inner [8], for any semisimple Malcev
algebra the inclusions in (59) become equalities [9].

Proposition 5.1. If A is a simple (respectively semisimple) Malcev algebra then
the Lie enveloping algebra L(A) of its regular representation is also simple (respec-
tively semisimple).

Proof. To the decomposition of A into a direct sum of ideals Ai corresponds a
decomposition of L(A) into a direct sum of ideals isomorphic to L(Ai). If Ai is a
simple Lie algebra then L(Ai) is also a simple Lie algebra isomorphic to Ai. Let
A be a simple non-Lie Malcev algebra; we show that L(A) is again a simple Lie
algebra. It su�ces to consider the case when A is a central simple algebra. Indeed,
if A is not central then A can be regarded as a central simple algebra AΓ over its
centroid Γ ⊃ F [3]. Since all operators Rx (x ∈ A) are Γ-linear and Rγa = γRa for
a ∈ A, γ ∈ Γ, we see that the Lie algebra L(A) can be regarded as an algebra (of
smaller dimension) over the �eld Γ, which, obviously, coincides with L(AΓ). If we
prove that L(AΓ) is a central simple algebra (over Γ), it would imply that L(A)
is also simple and its centroid is isomorphic to Γ. Using the same arguments we
can restrict our attention to the case of an algebraically closed �eld F . In the case
that the algebra has dimension 7 its structure is known (see �3). Inner derivations
D(x, y) = Rxy + [Rx, Ry] generate a subalgebra L0 of dimension 14 in L(A) which
is a simple Lie algebra of type G2 [2]. The underlying vector space of L(A) can
be decomposed into the sum of the subspaces L0 and R(A), where R(A) is the
subspace generated by the operators Rx; the sum is direct since Rx is a derivation
of A if and only if x lies in the Lie center of A, which is 0 in a simple non-Lie
Malcev algebra (compare Lemma 3.1). Therefore, dim L(A) = 21. The Killing
form on A is non-degenerate and each operator Rx (x ∈ A) is skew-symmetric
with respect to this form. Therefore, L(A) is a subalgebra of a simple Lie algebra
of type B3 (the orthogonal algebra of a 7-dimensional vector space). Comparing
the dimensions of L(A) and B3 we see that L(A) = B3. The proof is complete.

Corollary 5.2. If A is a simple (respectively semisimple) Malcev algebra over
a �eld of characteristic 0 then the algebra D(TA) of derivations of the Lie triple
system TA is also simple (respectively semisimple). In particular, if A = C(−)/F
then D(TA) = L(A) = B3.

Theorem 5.3. Let A be a Malcev algebra over a �eld of characteristic 0, let S be
its radical and N its nil-radical. Then every derivation D of A maps S to N .

Proof. As shown in [9], S coincides with the radical of TA. However, for any LTS T ,
the radical of Ls(T ) is generated as an ideal by the radical of T ; if R is the radical
of T then the radical of Ls(T ) equals R + [R, T ] [8]. In particular, S lies in the
radical of Ls(TA). A derivation D of the algebra A is also a derivation of the LTS
TA, i.e., D can be regarded as an element of the algebra D(TA). Since Ls(TA) is
an ideal of the Lie algebra TA+D(TA), (S)D lies in the nil-radical of Ls = Ls(TA).
In order to distinguish the operators of right multiplication by x (x ∈ A) in Ls
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from the operators Rx in A, we will denote them by adx. Thus, for any x ∈ (S)D,
adx is a nilpotent operator. Furthermore, (adx)2 leaves the subspace TA ⊂ Ls

invariant, and since [[ax]x] = [axx] = 3(ax)x for any a ∈ A, (adx)2 coincides
with 3R2

x in TA. Therefore, Rx is a nilpotent operator. However, it follows from
Theorem 2.7 that the nil-radical of A coincides with the set of all elements from
S which are nilpotent with respect to the regular representation. Hence x ∈ N .
(We assume that it is known that the radical S is closed under all derivations of
A. Any solvable radical of a �nite dimensional algebra of characteristic 0 has this
property.)

The following theorem gives important information about the structure of the
representations of semisimple Malcev algebras.

Theorem 5.4. Let A be a semisimple Malcev algebra of characteristic 0, let ρ be
a representation of A in a vector space V , and let Lρ(A) be the enveloping algebra
of the representation ρ. Then Lρ(A) is a semisimple algebra.

Proof. Let E = V + A be the semidirect extension of A by means of V de�ned
by ρ. If ρ̃ is the regular representation of A in E, and L̃(A) is the enveloping
algebra of ρ̃, then V is invariant under the action of L̃(A) (V CE); the restriction
of ρ to V induces an epimorphism π : L̃(A) → Lρ(A). Consider the LTS TA and
TE ; there exists a unique embedding ι : TA → TE ⊂ Ls(TE). Since the LTS TA

is semisimple, the standard embedding for TA coincides with the universal em-
bedding; therefore ι can be extended to a homomorphism ι∗ : Ls(TA) → Ls(TE).
The operators R̃(x, y) = 2R̃xy + [R̃x, R̃y] ∈ L̃(A) are the images of the elements
[x, y] = R(x, y) ∈ D0(TA) under ι∗. The restriction of ι∗ to D0(TA) = D(TA) de-
�nes a homomorphism ι′ : D(TA) → L̃(A) and the composition of ι′ and π de�nes
a homomorphism from D(TA) onto the subalgebra I ⊆ Lρ(A) generated by the
operators ρ(x, y) = 2ρ(xy) + [ρ(x), ρ(y)], x, y ∈ A. Identity (15), which is true
for arbitrary representations, shows that I is an ideal of Lρ(A). By Corollary 5.2,
D(TA) is a semisimple algebra, therefore its homomorphic image I is also semisim-
ple. Consider the quotient algebra L̄ = Lρ(A)/I, and denote by ρ̄(x) the image
of ρ(x) ∈ Lρ(A) under the canonical homomorphism Lρ(A) → L̄. The underlying
vector space of L̄ is generated by the elements ρ̄(x) and they satisfy

either 2ρ̄(xy) + [ρ̄(x), ρ̄(y)] = 0, or − 1
2
ρ̄(xy) = [− 1

2 ρ̄(x),− 1
2 ρ̄(y)].

Then the map x 7→ −1
2ρ(x) 7→ −1

2 ρ̄(x) is a homomorphism of A onto L̄. Since
A is a semisimple algebra, it follows from the structural theorem (�2) that L̄ is
semisimple (or trivial). Then Lρ(A) is also a semisimple Lie algebra because the
extension of a semisimple Lie algebra by a semisimple algebra is also semisimple.
The proof is complete.

Since each representation ρ of a semisimple algebra A in a vector space V can
be regarded as the natural representation of the Lie algebra Lρ(A) in the same
vector space, the next theorem follows directly from Theorem 5.4.
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Theorem 5.5. Any representation of a semisimple Malcev algebra of character-
istic 0 is completely reducible.

Corollary 5.6. If the radical of a Malcev algebra A coincides with its center C
then A = A1 + C, where A1 is a semisimple subalgebra which coincides with A2.

Proof. It su�ces to consider the regular representation of A and note that it
induces a completely reducible representation of A/C in A. An invariant subspace
A1 complementary to C is the desired subalgebra (even ideal).
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Editors' Comments on Recent Developments

In this section we brie�y summarize research on Malcev algebras since the publication
of Kuzmin's paper [6] in 1968 which contained the �rst statement (in some cases without
detailed proofs) of the results in the present English translation.

Kuzmin's papers provide a complete theory for �nite-dimensional semisimple Malcev
algebras and their �nite-dimensional representations over a �eld F of characteristic 0;
in particular, such representations are completely reducible. With these assumptions, a
simple Malcev algebra is either a Lie algebra or a 7-dimensional non-Lie Malcev algebra.
Gavrilov [G] has recently given a detailed proof of the classi�cation by Kuzmin [K] of
5-dimensional Malcev algebras.

If we regard a simple Lie algebra L as a Malcev algebra, then Carlsson [C1] showed
that every Malcev module for L is a Lie module, with one exception: there is an irre-
ducible 2-dimensional non-Lie Malcev module for sl(2, F). The same author gave a di�er-
ent proof [C2] of the Wedderburn decomposition of a Malcev algebra into a semisimple
subalgebra and the solvable radical. She also showed [C3] that in every characteristic
any �nite-dimensional Malcev module over a 7-dimensional central simple non-Lie Malcev
algebra is completely reducible.

Elduque [E1] classi�ed the maximal subalgebras of central simple non-Lie Malcev
algebras over a �eld of characteristic not 2. The same author studied [E2] the lattice of
subalgebras of a Malcev algebra, and showed that two semisimple Malcev algebras over
an algebraically closed �eld are isomorphic if and only if their lattices are isomorphic.
He also extended Carlsson's result on Malcev modules to characteristic not 2 or 3, and
obtained a new 4-dimensional irreducible non-Lie Malcev module over a nonsplit simple
3-dimensional Lie algebra. The classi�cation of non-Lie Malcev modules was completed
by Elduque and Shestakov [ES] in the more general setting of Malcev superalgebras with
no restriction on the dimension of the modules and only the condition that 1

6
∈ F.

In 2004, an important breakthrough was made by Pérez-Izquierdo and Shestakov
[PS], who constructed universal nonassociative enveloping algebras for Malcev algebras.
For any Malcev algebra M over a �eld F of characteristic not 2 or 3, there exists a nonas-
sociative algebra U(M) and an injective map from M to U(M) such that the image
of M lies in the generalized alternative nucleus of U(M), and U(M) is universal with
respect to such maps. The algebra U(M) has a basis of Poincaré-Birkho�-Witt type,
so U(M) is linearly isomorphic to the polynomial algebra P (M); moreover, U(M) has
a natural (nonassociative) Hopf algebra structure, and the image of M can be charac-
terized as the primitive elements of U(M) with respect to the diagonal homomorphism
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∆: U(M) → U(M) ⊗ U(M). The paper [PS] also proved an analogue of the Ado-
Iwasawa theorem: every �nite-dimensional Malcev algebra is isomorphic to a subalgebra
of the generalized alternative nucleus of a �nite-dimensional unital nonassociative al-
gebra. Zhelyabin and Shestakov [ZS] established analogues for Malcev algebras of the
Chevalley and Kostant theorems on centers of universal enveloping algebras of Lie alge-
bras. The nonassociative bialgebra structure of the enveloping algebras U(M) has been
studied by Zhelyabin [Z]; see also [M]. Structure constants for U(M) when dim M ≤ 5
have been obtained by various authors; see [B1,B2,TB] and the survey [B3].

The theory of free Malcev algebras has been developed primarily by Filippov, who
showed (over a �eld of characteristic not 2 or 3) that free Malcev algebras have zero-
divisors [F1]; that free Malcev algebras with 5 or more generators are not semiprime
[F3], have nonzero annihilator, and are not separated [F4]; and that the base rank of the
variety of Malcev algebras is in�nite [F4]. Shestakov and Kornev [SK] showed that the
prime radical of a free Malcev algebra on two or more generators coincides with the set
of all its universally Engelian elements.

Simple Malcev superalgebras have been studied by Shestakov [S1], who showed that
a prime Malcev superalgebra of characteristic not 2 or 3 with a nontrivial odd part is a
Lie superalgebra. The same author in collaboration with Zhukavets has developed the
theory of free Malcev superalgebras; see [S3,SZ1,SZ2].

The speciality problem for Malcev algebras asks whether every Malcev algebra is
�special�; that is, isomorphic to a subalgebra of the commutator algebra of some alterna-
tive algebra. Filippov [F2] proved that over a �eld containing 1

2
every semiprime Malcev

algebra is special. Sverchkov [Sv] proved that every Malcev algebra in the variety gen-
erated by the 7-dimensional simple non-Lie Malcev algebra is special. Recent progress
on this problem, and the corresponding problem for Malcev superalgebras, is primarily
the work of Shestakov and Zhukavets. There is a close relation between this problem
and the deformation theory of algebras [S2]. It has been shown that the free Malcev
superalgebra on one odd generator is special [SZ3]; more generally, this holds for any
Malcev superalgebra generated by one odd element.

For a generalization of Malcev algebras to the setting of dialgebras; see [B4,Sa].

[B1] M. R. Bremner, I. R. Hentzel, L. A. Peresi, H. Use�, Universal enveloping algebras
of the four-dimensional Malcev algebra, Algebras, Representations and Applica-
tions, pp. 73 − 89. Contemp. Math., 483, Amer. Math. Soc., Providence, 2009.

[B2] M. R. Bremner, H. Use�, Enveloping algebras of the nilpotent Malcev algebra of

dimension �ve, Algebr. Represent. Theory 13 (2010), 407− 425.
[B3] M. R. Bremner, I. R. Hentzel, L. A. Peresi, M. Tvalavadze, H. Use�, Enveloping

algebras of Malcev algebras, Comment. Math. Univ. Carolin. 51 (2010), 157−174.

[B4] M. R. Bremner, L. A. Peresi, J. Sánchez-Ortega, Malcev dialgebras, Linear Multi-
linear Algebra 60 (2012), 1125− 1141.

[C1] R. Carlsson, Malcev-Moduln, J. Reine Angew. Math. 281 (1976), 199− 210.

[C2] R. Carlsson, The �rst Whitehead lemma for Malcev algebras, Proc. Amer. Math.
Soc. 58 (1976), 79− 84.

[C3] R. Carlsson, On the exceptional central simple non-Lie Malcev algebras, Trans.
Amer. Math. Soc. 244 (1978), 173− 184.

[E1] A. Elduquem, On maximal subalgebras of central simple Malcev algebras, J. Algebra
103 (1986), 216− 227.



132 E. N. Kuzmin

[E2] A. Elduque, Lattice isomorphisms of Malcev algebras, Proc. Roy. Soc. Edinburgh
Sect. A 109 (1988), 37− 50.

[ES] A. Elduque, I. P. Shestakov, Irreducible non-Lie modules for Malcev superalgebras,
J. Algebra 173 (1995), 622− 637.

[F1] V. T. Filippov, Zero-divisors and nil-elements in Malcev algebras, Algebra i Logika
14 (1975), 204− 214.

[F2] V. T. Filippov, On the theory of Malcev algebras, Algebra i Logika 16 (1977),
101− 108.

[F3] V. T. Filippov, Nilpotent ideals in Malcev algebras, Algebra i Logika 18 (1979),
599− 613.

[F4] V. T. Filippov, On the theory of �nitely generated Malcev algebras, Algebra i Logika
19 (1980), 480− 499.

[G] A. V. Gavrilov, Malcev extensions, Southeast Asian Bull. Math. 34 (2010), 417−
424.

[K] E. N. Kuzmin, Malcev algebras of dimension �ve over a �eld of characteristic zero,
Algebra i Logika 9 (1970), 691− 700.

[M] S. Madariaga, J. M. Pérez-Izquierdo, Non-existence of coassociative quantized uni-

versal enveloping algebras of the traceless octonions, Comm. Algebra 40 (2012),
1009− 1018.

[PS] J. M. Pérez-Izquierdo, I. P. Shestakov, An envelope for Malcev algebras, J. Algebra
272 (2004), 379− 393.

[Sa] J. Sánchez-Ortega, On the de�nitions of nucleus for dialgebras, J. Algebra 392
(2013), 244− 264.

[S1] I. P. Shestakov, Simple Malcev superalgebras, Mat. Sb. 182 (1991), 1357− 1366.

[S2] I. P. Shestakov, Speciality problem for Malcev algebras and Poisson Malcev algebras,
Nonassociative Algebra and Its Applications (São Paulo, 1998), 365−371. Lecture
Notes in Pure and Appl. Math., 211, Dekker, New York, 2000.

[S3] I. P. Shestakov, Free Malcev superalgebra on one odd generator, J. Algebra Appl.
2 (2003), 451− 461.

[SK] I. P. Shestakov, A. I. Kornev, On the radical of a free Malcev algebra, Proc. Amer.
Math. Soc. 140 (2012), 3049− 3054.

[SZ1] I. P. Shestakov, N. Zhukavets, The universal multiplicative envelope of the free

Malcev superalgebra on one odd generator, Comm. Algebra 34 (2006), 1319−1344.

[SZ2] I. P. Shestakov, N. Zhukavets, The Malcev Poisson superalgebra of the free Malcev

superalgebra on one odd generator, J. Algebra Appl. 5 (2006), 521− 535.

[SZ3] I. P. Shestakov, N. Zhukavets, Speciality of Malcev superalgebras on one odd gen-

erator, J. Algebra 301 (2006), 587− 600.

[Sv] S. Sverchkov, Varieties of special algebras, Comm. Algebra 16 (1988), 1877−1919.

[TB] M. Tvalavadze, M. R. Bremner, Enveloping algebras of solvable Malcev algebras of

dimension �ve, Comm. Algebra 39 (2011), 2816− 2837.

[Z] V. N. Zhelyabin, Universal envelopes of Malcev algebras: pointed Moufang bialge-

bras, Sibirsk. Mat. Zh. 50 (2009), 1285− 1304.

[ZS] V. N. Zhelyabin, I. P. Shestakov, Chevalley and Kostant theorems for Malcev al-

gebras, Algebra Logika 46 (2007), 560− 584.


