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Pentagonal quasigroups

Stipe Vidak

Abstract. The concept of pentagonal quasigroup is introduced as IM-quasigroup satisfying
the additional property of pentagonality. Some basic identities which are valid in a general
pentagonal quasigroup are proved. Four di�erent models for pentagonal quasigroups and their
mutual relations are studied. Geometric interpretations of some properties and identities are
given in the model C(q), where q is a solution of the equation q4 − 3q3 + 4q2 − 2q + 1 = 0.

1. Introduction

A quasigroup (Q, ·) is called IM-quasigroup if it satis�es the identities of idempo-
tency and mediality :

aa = a (1)

ab · cd = ac · bd. (2)

Immediate consequences of these identities are the identities known as elastic-
ity, left distributivity and right distributivity :

ab · a = a · ba, (3)

a · bc = ab · ac, (4)

ab · c = ac · bc. (5)

Adding an additional identity to identities of idempotency and mediality some
interesting subclasses of IM-quasigroups can be de�ned. For example, adding the
identity a(ab ·b) = b golden section quasigroup or GS-quasigroup is de�ned (see [9],
[2]). Adding the identity of semi-symmetricity, ab · a = b, hexagonal quasigroup is
de�ned (see [10], [1]).

In this paper we study IM-quasigroups satisfying the identity of pentagonality :

(ab · a)b · a = b. (6)

Such quasigroups are called pentagonal quasigroups.
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Example 1.1. Let (F,+, ·) be a �eld such that the equation

q4 − 3q3 + 4q2 − 2q + 1 = 0 (7)

has a solution in F . If q is a solution of (7), we de�ne binary operation ∗ on F by

a ∗ b = (1− q)a+ qb. (8)

Then (F, ∗) is a pentagonal quasigroup.

Idempoteny follows trivially:

a ∗ a = (1− q)a+ qa = a.

To prove mediality, we write

(a ∗ b) ∗ (c ∗ d) = ((1− q)a+ qb) ∗ ((1− q)c+ qd)
= (1− q)((1− q)a+ qb) + q((1− q)c+ qd)

= (1− q)2a+ q(1− q)b+ q(1− q)c+ q2d.

This expression remains unchanged applying b↔ c and we conclude that

(a ∗ b) ∗ (c ∗ d) = (a ∗ c) ∗ (b ∗ d).

Since

(((a ∗ b) ∗ a) ∗ b) ∗ a = (1− q)((a ∗ b) ∗ a)b+ qa

= (1− q)((1− q)((a ∗ b) ∗ a) + qb) + qa

= (1− q)2((a ∗ b) ∗ a) + (1− q)qb+ qa

= (1− q)2((1− q)(a ∗ b) + qa) + (1− q)qb+ qa

= (1− q)3(a ∗ b) + (1− q)2qa+ (1− q)qb+ qa

= (1− q)4a+ (1− q)3qb+ (1− q)2qa+ (1− q)qb+ qa

= (q4 − 3q3 + 4q2 − 2q + 1)a+ (−q4 + 3q3 − 4q2 + 2q)b,

using (7) we get
(((a ∗ b) ∗ a) ∗ b) ∗ a = b,

which proves pentagonality.

Example 1.2. We put F = C in the previous example, and q is a solution of the
equation (7). Since we are in the set C, that equation has four complex solutions.
These are:

q1,2 =
1
4
(3 +

√
5± i

√
2(5 +

√
5))i,

q3,4 =
1
4
(3−

√
5± i

√
2(5−

√
5)).
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Now C(q) = (C, ∗), where q ∈ {q1, q2, q3, q4}, and ∗ is de�ned by

a ∗ b = (1− q)a+ qb

is also a pentagonal quasigroup.

Previous example C(q) motivates the introduction of many geometric concepts
in pentagonal quasigroups. We can regard elements of the set C as points of the
Euclidean plane. For any two di�erent points a, b ∈ C the equality (8) can be
written in the form

a ∗ b− a

b− a
=
q − 0
1− 0

.

Figure 1. Right distributivity (5) in C(q1)

That means that the points a, b and a ∗ b are vertices of a triangle directly
similar to the triangle with vertices 0, 1 and q. In C(q1) the point a ∗ b is the
third vertex of the regular pentagon determined by adjacent vertices a and b.
Any identity in the pentagonal quasigroup C(q) = (C, ∗) can be interpreted as a
theorem of the Euclidean geometry which can be proved directly, but the theory
of pentagonal quasigroups gives a better insight into the mutual relations of such
theorems. Figure 1 gives an illustration of the right distributivity (5).

In this paper we study di�erent identities in pentagonal quasigroups and their
mutual relations. We prove Toyoda-like representation theorem for pentagonal
quasigroups, where they are caracterized in terms of Abelian groups with a certain
type of automorphism. In the last section, motivated by quasigroups C(qi), i =
1, 2, 3, 4, we study four di�erent models for pentagonal quasigroups.
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2. Basic properties and identities

In pentagonal quasigroups, along with pentagonality and the identities which are
valid in any IM-quasigroup, some other very useful identities hold.

Theorem 2.1. In the IM-quasigroup (Q, ·) identity (6) and the identities

(ab · a)c · a = bc · b, (9)

(ab · a)a · a = ba · b, (10)

ab · (ba · a)a = b (11)

are mutually equivalent and they imply the identity

a(b · (ba · a)a) · a = b (12)

for every a, b, c ∈ Q.

Proof. First, we prove (6) ⇔ (9). We have

bc · b (6)
= bc · ((ab · a)b · a) (2)

= (b · (ab · a)b) · ca (3)
= (b(ab · a) · b) · ca

(2)
= (b(ab · a) · c) · ba (5)

= (bc · (ab · a)c) · ba (2)
= (bc · b) · ((ab · a)c · a)

Since we have bc · b (1)
= (bc · b) · (bc · b) and

(bc · b) · ((ab · a)c · a) = (bc · b) · (bc · b),

using cancellation in the quasigroup we get (ab · a)c · a = bc · b.

Then, we prove (6) ⇔ (10). We have

ba · b (6)
= ba · ((ab · a)b · a) (2)

= (b · (ab · a)b) · aa (3)
= (b(ab · a) · b) · aa

(2)
= (b(ab · a) · a) · ba (5)

= (ba · (ab · a)a) · ba (2)
= (ba · b) · ((ab · a)a · a)

Since we have ba · b (1)
= (ba · b) · (ba · b) and

(ba · b) · ((ab · a)a · a) = (ba · b) · (ba · b),

cancellation again gives (ab · a)a · a = ba · b.

Next, we prove (6) ⇔ (11):

ab · (ba · a)a (2)
= a(ba · a) · ba (3)

= (ab · a)a · ba (5)
= (ab · a)b · a.
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It remains to prove (6), (10) ⇒ (12). We get successively:

a(b · (ba · a)a) · a (4)
= (ab · (a · (ba · a)a))a (3)

= (ab · ((ab · a)a · a))a
(10)
= (ab · (ba · b))a (5)

= (a · ba)b · a (3)
= (ab · a)b · a (6)

= b.

The identity (9) generalises identity (6), so it is called generalised pentagonality.

In a pentagonal quasigroup (Q, ·) it is often very useful to know how to "solve
the equations" of the types ax = b and ya = b for given a, b ∈ Q. The next
theorem follows immediately from the identities (12) and (6).

Theorem 2.2. In the pentagonal quasigroup (Q, ·) for a, b ∈ Q the following
implications hold:

ax = b ⇒ x = (b · (ba · a)a)a,
ya = b ⇒ y = (ab · a)b.

3. Representation theorem

A more general example of the pentagonal quasigroup C(q), where q is a solution
of the equation (7) can be obtained by taking an Abelian group (Q,+) with an
automorphism ϕ which satis�es

ϕ4 − 3ϕ3 + 4ϕ2 − 2ϕ+ 1 = 0. (13)

The equation ax = b is equivalent with

a+ ϕ(x− a) = b,

ϕ(x) = ϕ(a) + b− a,

x = a+ ϕ−1(b− a),

which means that ax = b has the unique solution.
The equation ya = b is equivalent with

y + ϕ(a− y) = b,

y − ϕ(y) = b− ϕ(a).

Let us check that y0 = a + 2ϕ(b − a) − 2ϕ2(b − a) + ϕ3(b − a) satis�es the last
equality:

y0 − ϕ(y0) =
= a+ 2ϕ(b)− 2ϕ(a)− 2ϕ2(b) + 2ϕ2(a) + ϕ3(b)− ϕ3(a)
−ϕ(a)− 2ϕ2(b) + 2ϕ2(a) + 2ϕ3(b)− 2ϕ3(a)− ϕ4(b) + ϕ4(a)
= (a− 3ϕ(a) + 4ϕ2(a)− 3ϕ3(a) + ϕ4(a)) + (2ϕ(b)− 4ϕ2(b) + 3ϕ3(b)− ϕ4(b))
(1)
= −ϕ(a) + b = b− ϕ(a).
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Now let us assume that there exist y1, y2 ∈ Q such that y1a = b and y2a = b.
That means that we have

y1a = y2a

y1 + ϕ(y1)− ϕ(a) = y2 + ϕ(y2)− ϕ(a)
(1 + ϕ)(y1) = (1 + ϕ)(y2).

Applying automorphism ϕ and multiplying by constants we get

(1 + ϕ)(y1) = (1 + ϕ)(y2)

−3(ϕ+ ϕ2)(y1) = −3(ϕ+ ϕ2)(y2)

7(ϕ2 + ϕ3)(y1) = 7(ϕ2 + ϕ3)(y2)

−10(ϕ3 + ϕ4)(y1) = −10(ϕ3 + ϕ4)(y2)

11(ϕ4 + ϕ5)(y1) = 11(ϕ4 + ϕ5)(y2).

Adding up all these equalities we get

(1− 2ϕ+ 4ϕ2 − 3ϕ3 + ϕ4 + 11ϕ5)(y1) = (1− 2ϕ+ 4ϕ2 − 3ϕ3 + ϕ4 + 11ϕ5)(y2),

from which using (13) and dividing by 11 we get ϕ5(y1) = ϕ5(y2). Since ϕ is
an automorphism, so is ϕ5, and we can conclude y1 = y2. That shows that the
equation ya = b has the unique solution. Hence, (Q, ·) is a quasigroup.
Since a · a = a+ ϕ(0) = a, idempotency is valid. Moreover,

ab · cd = (a+ ϕ(b− a)) · (c+ ϕ(d− c))
= a+ ϕ(b− a) + ϕ(c+ ϕ(d− c)− (a+ ϕ(b− a)))
= a+ ϕ(b− a+ c− a) + ϕ(ϕ(d− c− b+ a))

Interchanging b and c that expression remains unchanged, which gives mediality.
If we put a · b = a+ ϕ(b− a), we get successively:

ab · a = a+ ϕ(b− a) + ϕ(a− a− ϕ(b− a))

= a+ ϕ(b− a)− ϕ2(b− a),

(ab · a)b = a+ ϕ(b− a)− ϕ2(b− a) + ϕ(b− a− ϕ(b− a) + ϕ2(b− a))

= a+ ϕ(b− a)− ϕ2(b− a) + ϕ(b− a)− ϕ2(b− a) + ϕ3(b− a)

= a+ 2ϕ(b− a)− 2ϕ2(b− a) + ϕ3(b− a),

(ab · a)b · a = a+ 2ϕ(b− a)− 2ϕ2(b− a) + ϕ3(b− a)

+ ϕ(a− a− 2ϕ(b− a) + 2ϕ2(b− a)− ϕ3(b− a))

= a+ 2ϕ(b− a)− 2ϕ2(b− a) + ϕ3(b− a)− 2ϕ2(b− a)

+ 2ϕ3(b− a)− ϕ4(b− a)

= a+ 2ϕ(b− a)− 4ϕ2(b− a) + 3ϕ3(b− a)− ϕ4(b− a)
(13)
= b.
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That proves pentagonality in (Q, ·).

Based on Toyoda's representation theorem [4], next theorem shows that this is
in fact the most general example of pentagonal quasigroups.

Figure 2. Four characteristic triangles for pentagonal quasigroups

Theorem 3.1. For every pentagonal quasigroup (Q, ·) there is an Abelian group
(Q,+) with an automorphism ϕ such that (13) and a · b = a + ϕ(b − a) for all
a, b ∈ Q.

Proof. Since (Q, ·) is a pentagonal quasigroup, it is also an IM-quasigroup. Ac-
cording to the version of Toyoda's theorem for IM-quasigroups, there is an Abelian
group (Q,+) with an automorphism ϕ such that a ·b = a+ϕ(b−a) for all a, b ∈ Q.
The identity of pentagonality (6) is equivalent to (13), which is proved by compu-
tation done prior to this theorem.

4. Four models for pentagonal quasigroups

Depending on the choice of q ∈ {q1, q2, q3, q4} and if we regard complex numbers
as points of the Euclidean plane, we can get four di�erent characteristic triangles
in C(q) with vertices 0, 1 and qi, i = 1, 2, 3, 4, see Figure 2. Each of the C(qi),
i = 1, 2, 3, 4, gives one model for pentagonal quasigroups.

Points q1 and q2 are the third vertices of two regular pentagons determined by
its two adjacent vertices 0 and 1, while q3 and q4 are intersection points of two
diagonals of the same two pentagons.

Let us observe a pentagonal quasigroup (Q, ·) in the model C(q1). In the Figure
3 we can spot characteristic triangles from the models C(q2), C(q3) and C(q4).
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Figure 3. Models for pentagonal quasigroups
Characteristic triangle of the model C(q2) has vertices a, b and (ba · b)a. We

will denote
a ◦ b = (ba · b)a.

Characteristic triangle of the model C(q3) has vertices a, b and b · (ba · a)a. We
will denote

a ∗ b = b · (ba · a)a.
Characteristic triangle of the model C(q4) has vertices a, b and (ab · b)b. We will
denote

a � b = (ab · b)b.
The main goal of this section is to prove that (Q, ◦), (Q, ∗) i (Q, �) are also pen-
tagonal quasigroups. It will be enough to prove that if (Q, ·) is a pentagonal
quasigroup, then so is (Q, ∗), because we will show

b ∗ (((b ∗ a) ∗ a) ∗ a) = (ba · b)a = a ◦ b,

b ◦ (((b ◦ a) ◦ a) ◦ a) = (ab · b)b = a � b.
b � (((b � a) � a) � a) = ab.

In a quasigroup (Q, ·) operations of left and right division are de�ned by

a\c = b ⇔ ab = c ⇔ c/b = a.

Formula is an expression built up from variables using the operations ·, \ and /.
More precisely:

(1) elements of the set Q (variables) are formulae;

(2) if ϕ and ψ are formulae, then so are ϕ · ψ, ϕ\ψ and ϕ/ψ.

A formula ϕ containing at most two variables gives rise to a new binary operation
Q×Q→ Q, which will also be denoted by ϕ.

In [3] the next corollary was proved. We will use it in the proof of the next
theorem.
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Corollary 4.1. If (Q, ·) is a medial quasigroup, then binary operation de�ned by
the formula ϕ is also medial.

Theorem 4.2. Let (Q, ·) be a pentagonal quasigroup and let ∗ : Q×Q→ Q be a
binary operation de�ned by

a ∗ b = b · (ba · a)a.

Then (Q, ∗) is a pentagonal quasigroup.

Proof. First we prove that (Q, ∗) is a quasigroup, i.e., that for given a, b ∈ Q there
exist unique x, y ∈ Q such that a∗x = b and y ∗a = b. If we put x = ab ·a, we get

a ∗ x = x · (xa · a)a = (ab · a) · ((ab · a)a · a)a (10)
= (ab · a) · (ba · b)a

(5)
= (ab · (ba · b))a (5)

= (a · ba)b · a (3)
= (ab · a)b · a (6)

= b.

Let us now assume that there exist x1, x2 ∈ Q such that a ∗ x1 = a ∗ x2. That
means that we have

x1 · (x1a · a)a = x2 · (x2a · a)a.
Multiplying by a from the left and applying (4) we get

ax1 · (a · (x1a · a)a) = ax2 · (a · (x2a · a)a).

Now using (3) and (10) we get

ax1 · (x1a · x1) = ax2 · (x2a · x2).

After applying (5) and (3) the equality becomes

(ax1 · a)x1 = (ax2 · a)x2,

so multiplying from the right by a and using (6), we �nally get x1 = x2.
If we now put y = (ba · a)a, we get

y ∗ a = a · (ay · y)y = a(((a · (ba · a)a) · (ba · a)a) · (ba · a)a)
(3),(10)

= a(((ba · b) · (ba · a)a) · (ba · a)a)
(2)
= a(((ba · (ba · a)) · ba) · (ba · a)a) (5)

= a(((b · ba)a · ba) · (ba · a)a)
(5)
= a(((b · ba)b · a) · (ba · a)a) (5)

= a · ((b · ba)b · (ba · a))a
(2)
= a · (((b · ba) · ba) · ba)a (4)

= a · (b(ba · a) · ba)a (4),(3)
= a(b · (ba · a)a) · a

(4),(3),(10)
= (ab · (ba · b))a (5)

= (a · ba)b · a (3)
= (ab · a)b · a (6)

= b.

Let us now assume that there exist y1, y2 ∈ Q such that y1 ∗ a = y2 ∗ a. We get

a · (ay1 · y1)y1 = a · (ay2 · y2)y2.
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Using cancellation we get

(ay1 · y1)y1 = (ay2 · y2)y2.

Multiplying by y1a from the left and using (11) we get

a = y1a · (ay2 · y2)y2.

Applying (11) once again gives

y2a · (ay2 · y2)y2 = y1a · (ay2 · y2)y2,

wherefrom cancelling �rst with (ay2 ·y2)y2 and then with a, we �nally get y2 = y1.
Idempotency of ∗ follows immediately from idempotency of ·.
Mediality of ∗ follows from Corollary 4.1 by putting ϕ = ∗.
Let us now prove (a ∗ b) ∗ a = (a · (ab · b)b)b.

(a ∗ b) ∗ a = a · (a(a ∗ b) · (a ∗ b))(a ∗ b)
= a · (a(b · (ba · a)a) · (b · (ba · a)a))(b · (ba · a)a)
(4),(3),(10)

= a · ((ab · (ba · b)) · (b · (ba · a)a))(b · (ba · a)a)
(4),(3)

= a · ((ab · a)b · (b · (ba · a)a))(b · (ba · a)a)
(4),(3),(10)

= (a · (ab · a)b)(ab · (ba · b)) · (ab · (ba · b))
(4),(3)

= ((a · (ab · a)b) · (ab · a)b) · (ab · a)b
(2)
= ((a · (ab · a)b) · (ab · a))((ab · a)b · b)
(2),(6)

= (a · ab)b · ((ab · a)b · b)
(5)
= ((a · ab) · (ab · a)b)b (2)

= (a(ab · a) · (ab · b))b
(3)
= ((a · ab)a · (ab · b))b (2)

= (((a · ab) · ab) · ab)b
(4)
= (a(ab · b) · ab)b (4)

= (a · (ab · b)b)b

Now we prove ((a ∗ b) ∗ a) ∗ b = (ba · a)a. Let us denote c = (a ∗ b) ∗ a. We have

((a ∗ b) ∗ a) ∗ b = b · (bc · c)c
= b(((b · (a · (ab · b)b)b) · (a · (ab · b)b)b) · (a · (ab · b)b)b)
(3)
= b(((b(a · (ab · b)b) · b) · (a · (ab · b)b)b) · (a · (ab · b)b)b)
(4)
= b((((ba · (b · (ab · b)b)) · b) · (a · (ab · b)b)b) · (a · (ab · b)b)b)
(4),(11)

= b((((ba · b)a · b) · (a · (ab · b)b)b) · (a · (ab · b)b)b)
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(6)
= b((a · (a · (ab · b)b)b) · (a · (ab · b)b)b)
(4),(1)

= (ba · (ba · (b · (ab · b)b))b) · (ba · (b · (ab · b)b))b
(4),(11)

= (ba · ((ba · b)a · b))((ba · b)a · b) (6)
= (ba · a)a.

Finally, we prove (((a ∗ b) ∗ a) ∗ b) ∗ a = b. If we put d = ((a ∗ b) ∗ a) ∗ b, we have

(((a ∗ b) ∗ a) ∗ b) ∗ a = a · (ad · d)d
= a(((a · (ba · a)a) · (ba · a)a) · (ba · a)a)
(3)
= a((((ab · a)a · a) · (ba · a)a) · (ba · a)a)
(10)
= a(((ba · b) · (ba · a)a) · (ba · a)a)
(3)
= a(((b · ab) · (ba · a)a) · (ba · a)a)
(5),(11)

= a((b · (ba · a)a)b · (ba · a)a)
(4)
= ((ab · (a · (ba · a)a)) · ab)(a · (ba · a)a)
(4),(11),(3)

= ((ab · a)b · ab)((ab · a)a · a)
(5)
= ((ab · a)a · b)((ab · a)a · a)
(4)
= (ab · a)a · ba (5)

= (ab · a)b · a (6)
= b.

In the end we state three more theorems which express multiplications in quasi-
groups (Q, ∗), (Q, ◦) and (Q, �) in terms of multiplication in quasigroup (Q, ·).
First statements in these theorems follow immediately from Theorem 4.2. Second
statements can be proved by rather tedious calculations similar to those in the
proof of Theorem 4.2 or using some automated theorem prover. We omit these
proofs in this paper.

Theorem 4.3. Let (Q, ∗) be a pentagonal quasigroup and let ◦ : Q×Q→ Q be a
binary operation de�ned by

a ◦ b = b ∗ (((b ∗ a) ∗ a) ∗ a).

Then (Q, ◦) is a pentagonal quasigroup. Furthermore

a ◦ b = (ba · b)a.

Theorem 4.4. Let (Q, ◦) be a pentagonal quasigroup and let � : Q×Q→ Q be a
binary operation de�ned by

a � b = b ◦ (((b ◦ a) ◦ a) ◦ a).
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Then (Q, �) is a pentagonal quasigroup. Furthermore

a � b = (ab · b)b.

Theorem 4.5. Let (Q, �) be a pentagonal quasigroup and let � : Q×Q→ Q be a
binary operation de�ned by

a� b = b � (((b � a) � a) � a).

Then (Q,�) is a pentagonal quasigroup. Furthermore

a� b = ab.
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