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The filter theory in quotients of complete lattices

Shahabaddin Ebrahimi Atani, Reza Ebrahimi Atani,

Amir Hassani Karbasi

Abstract. We study a partitioning filter F' of a distributive complete lattice (L, V,A). Specifi-
cally, the properties and possible basic structures of the quotient L/F are investigated.

1. Introduction

P. J. Allen [1] introduced the notion of a @-ideal and a construction process was
presented by which one can build the quotient structure of a semiring modulo a Q-
ideal. The present authors introduce the notion of a Q-filter F' in the distributive
complete lattice L and constructed the quotient semiring L/F. Since then, there
has been a lot of interest in this subject and various papers were published estab-
lishing different properties of this semirings as well as relations between semirings
of various extensions [2, 3, 4]. In this paper, we extend the definition and some
results given in [1] and [2] to a more general Q-filter case.

An upper bound of a subset X of a poset (L, <) is an element a € L containing
every ¢ € X. The least upper bound is an upper bound contained in every other
upper bound; it is denoted l.u.b. X or supX (supX is unique if it is exists). The
notions of lower bound of X and greatest lower bound (g.1.b. X or infX) of X are
defined dually (infX is unique if it is exists). A lattice is a poset (L, <) in which
every couple elements x,y has a g.l.b. (called the meet of  and y, and written
x Ay) and a Lu.b. (called the join of x and y, and written x V y). A lattice L is
complete when each of its subsets X has al.u.b. and a g.l.b. in L. Setting X = L,
we see that any nonempty complete lattice contains a least element 0 and greatest
element 1. A lattice L is called a distributive lattice if (aVbO)Ac= (aAc)V (bAc)
for all a,b,c in L. First we need the following well-known lemma.

Lemma 1.1. In a complete lattice L we have
(1) aha=a, aVa=na,
(2) aAb=bAa, aVb=bVa,
(B) (anb)Ac=aA(bAc), aV(bVe)=(aVb)Ve,
(4) aNO=0and aV0=aq,
(5) aVb=0impliesa=b=0,
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(6) avli=1land aAl=a.

2. Quotient of lattices

Let (L,V, A) be a distributive complete lattice with a least element 0 and greatest
element 1. Then (L,V) and (L,A) are commutative semigroups, connected by
aN(®bVe)=(aAb)V(aAc)forall a,b,c € L, and there exist 0,1 € L such that
rVO=rand rA0=0Ar=0andrV1=1Vr=rforall r € L. Thus L is a
commutative semiring with nonzero identity.

Remark 2.1. Throughout this paper we shall assume, unless otherwise stated,
that (L,V, ) is a distributive complete lattice semiring with a least element 0 and
greatest element 1.

Definition 2.2. Let L be as in Remark 2.1. A nonempty subset F' of L is called
a filter if it is closed under A and satisfies the condition a Vb € F for all a € F and
be L (sole€F and {1} is a filter of L. Moreover, 0 € F' if and only if L = F').

Let L be as in Remark 2.1. A filter F' of L is called subtractive if z,x Ay € F
imply y € Y (so {1} is a subtractive filter of L). If F'is a filter of L and z Ay € F
(r,y € L), then VvV (z Ay) =z A(xVy) =z € F. Similarly, y € F. Thus we have
the following lemma:

Lemma 2.3. Let L be as in Remark 2.1. Then every filter of L is subtractive.

Definition 2.4. Let L be as in Remark 2.1. A filter F' of L is called a partitioning
filter (or a Q-filter denoted by Fy) if there exists a subset @ of L such that

(1) L=U{gAF:qeQ}, whereaNF={aAt:te F}forallacl,

(2) for g1,42 € Q (1 AF)N (g2 ANF) # 0 if and only if g1 = go.

Example 2.5. Let A = {1,2,3}. Then theset L = {X : X C A} forms a distribu-
tive complete lattice under set inclusion with greatest element A and least element
(0. It is clear that F = {A,{1,2}} is a Q-filter, where Q = {{3}, {1, 3},{2,3}, A}
(note that if z,y € L, then x Vy =z Uy and z Ay =z Ny).

Proposition 2.6. Let L be as in Remark 2.1. If F is a filter of L and z € L,
then there exists a unique q € Q such that xt NF C q A\ F. In particular, . = qAa
for some a € F.

Proof. Let x € L. Since {qg A F}4eq is a partition of L, there exists ¢ € @ such
that z € gAF. If y € x A F, there exists a € F' such that y = xAa. Since x € gAF,
there exists b € F such that t = ¢Ab; hencey=xAa=gANaAbecgAF. Thus
x AN F C g A F. The uniqueness follows from (2) of Definition 2.4. O

If Fisa Qfilter of L and ¢,¢' € @, then ¢V ¢ € (¢gANF)V (¢ AN F) and
(GgANF)YV (¢ NF)#0. So,on L/F = {gANF : g € Q} we can define the binary
operations V and A as follows:



The filter theory in quotients of complete lattices 211

(1) (g1 ANF)V(q2 AN F) = g3 A F, where g3 is the unique element in Q such that
(@1Va@)ANF CgsAF,

(2) (@ AF)A(g2 AN F) = g3 A F, where g3 is the unique element in @ such that
(g1 N@2) NF C g3 A F (note that g1 A F' = ga A F if and only if ¢; = ¢2).

Proposition 2.7. Let L be as in Remark 2.1. If F is a Q-filter of L, then (L/F,V)
and (L/F,AN) are commutative monoids.

Proof. Clearly, V and A are well-defined and they are commutative operations.
Now we show that

(g1 AF)V[(g2 A F)V(gs A F)] = [(1 AF)V(ga A F)[V(gs A F).

There exists the unique element ¢’ of @ such that (g1 A F)V|[(g2 A F)V(q3 A F)] =
(g1 NF)V(¢' A F), where
(2Vagzs) NFCq AF. (1)

Also we have (g1 A F)V(¢' ANF) = t1 A F, where t; is the unique element of @) such
that (g1 V¢ )ANF Ct; A F, and set e = q1 V g2 V ¢g3. Now (1) gives

ee(V@EVE)ANFC((AF)V(@Va@E)ANFC(AF)V(@ANF)CtAF. (2)

By assumption, [(¢1 A F)V(g2 A F)|V(gs AN F) = (t2 AF)V(g3s AN F) = t3 A F, where
to and t3 are the unique elements of Q such that (q1 V ¢g2) A F C (t2 A F and
(ta Vg3) AN F C itz AF. It follows that

e€(@V@EVEBIFC(@V@E)ANFV(ggANF)C (a2 ANF)V(gsANF CtsAF. (3)

Now (2) and (3) give t; = t3, and so V is an associative operation.

Next, we will show that (L/F, V) has a zero element. By Proposition 2.6, there
is a unique element gy € @ such that 0AF' C gg A F'; so 0 = go Aa for some a € F.
We show that goAF is the zeroin L/F. If gAF € L/F, then (qAF)V(qgAF = ¢'AF,
where ¢’ is the unique element of @ such that (¢Vgo)) AF C ¢ AF,80 qVqo = ¢ Ac
for some ¢ € F. Thus gAa=¢ AcAa;hence gha € (gAF)N (¢ AF). It follows
that ¢ = ¢/, and so (¢ A F)V(go A F) = g A F. Similarly, (go A F)V(gANF) =gqAF.
By an argument like that case V above, A is an associative operation. Finally,
let go € @ be a unique element such that 1A F C g. A F; so 1 = ¢g. Ad for
some d € F. We show that ¢, A F' is the identity in L/F. Let g A F € L/F
and (¢ A F)A(qe A F) = ¢’ A F, where ¢ is the unique element of @ such that
(gANg)NF C ¢ ANF. Since IANF Cg.ANF,wehave gAF C (qANqg. ) NF C ¢ ANF}
thus ¢ = ¢'. It follows that (gAF)A(ge AF) = gAF for all gANF € L/F. Similarly,
(ge NF)A(gAF) =gqAPF. O

Theorem 2.8. Let L be as in Remark 2.1. If F is a Q-filter of L, then (L/F,V, )
18 a commutative semiring with identity.
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Proof. Assume that g1 A F,qgo A F,q3 N F € L/F; we show that
(1 ANF)A[(g2 A F)WV(gs AF)] = [(q1 A F)A(g2 A F)V[(@1 A F)A(gs A F)).

There exists a unique element go3 of @ such that (g1 A F)A[(g2 A F)V(gs A F)] =
(g1 N F)A(g23 A\ F), where

(©2V@3) NF C qag N F, (4)

so 1 A[(@2V g3) ANF] C (g1 Ages) AN F. Also we have (g1 A F)A(qas ANF) =¢ N F,
where ¢’ is the unique element of @ such that (¢1 A gas) AF C ¢ A F. Now (4)
gives

N (@2Vas)eqAN(gaVas) NF]C (i Ages) NF C ¢ NF. (5)

By assumption, [(¢1 A F)A(g2 A F)V[(¢1 A F)A(gz A F)] =
(g2 N F)V(q13 AN F) = q' ANF,

where g2, q13 and ¢” are the unique elements of @ such that (g1 Ag2)ANF C q12AF,
(I AN@)ANF C qusAF, and (g1aVq13) AF C ¢" AF. Thus [(g1 Ag2) AF]V (g1 Ag3) A
F] € ¢" AF. Now by (5), a1 A (62 V as) = (m Aa2) V (@ Ags) € (¢ AF) (g A F;
hence ¢’ = ¢”, and so we have equality. Thus A distributes over V from the left.
Likewise, A distributes over V from the right. Assume that gy A F' is the zero in
L/F and let (¢ A F)A(go AN F) = ¢’ A F, where ¢ is the unique element of @) such
that (A g) AF C ¢ AF. But OANF C (g0 Ag) AF C ¢ AF, hence qo = ¢'. Thus
(GANEF)N(@ANF)=qoNF for all gANF € L/F. Similarly, (g AF)A(GAF) =g AF
for all ¢ A F € L/F. Now the assertion follows from Proposition 2.7. O

Theorem 2.9. Assume that L is as in Remark 2.1 and let F' be a partitioning
filter of L with respect to two subsets Q1 and Qo of L. Then

(1) L/Fg, and L/Fg, are equal as sets,

(2) L/FQl %L/FQW

Proof. (1). Let ¢ ANF € L/Fg,. Since ¢; € L, there exists a unique ¢g» € Q2 such
that ¢1 A F' C g2 A F by Proposition 2.6. Again there exists a unique ¢; € @ such
that g A F C gy A F. It follows that 1 AF = g ANF = ¢, NF € R/Ig,. Thus
L/Fy, € L/Fy,. Likewise, L/Fo, C L/Fo,.

(2). Define ¢ : L/Fg, — L/Fg, by ¢(¢ AF) = ¢ A F, where ¢’ is the unique
element of Q2 such that ¢ A F C ¢’ A F. Clearly, ¢ is well-defined.

Let ¢t A F,g2 N F € L/Fg,. Then

e AWV (2 ANF)) =@z AN F) =qas N F, (6)

where g3 € @ is the unique element such that (g1 Vg) AF C g3 AF and ¢4 € Q2
is the unique element such that gs A F C g4 AF. Now qg1 Vg2 € gsNF C gy N F.
Also,

el NF)WVolga NF) = (g5 N F)V(ge AN F) = qr A F, (7)
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where ¢5,q6 € Q2 are unique elements such that ¢ AF C gs AN F, gg N F C
gs N F, and ¢; € Q2 is the unique element such that (g5 V ¢s) A F C g7 A F.
Now ¢1 Vg2 € (ga AN F)N (g7 ANF). Thus g4 = q7. Therefore, by (6) and (7),
o((ga AN F)V(g2 A F)) = olq1 A F)Ve(ga A F). Similarly, it can be shown that
(a1 ANF)Ag2 AN F)) = o(qi A F)Ap(g2 A F).

Let g2 A F € L/Fg,. Since g2 € R, there is a unique element ¢; of 1 such
that go A F C q1 A F by Proposition 2.6. But then there exists a unique ¢} € Q2
such that ¢ AF C gh A F. Now q2 = ¢, gives go A F = ¢5 A F, and hence
p(@a ANF) =g2 ANF. Thus ¢ is onto. Suppose that ¢(qg1 AF) = (o ANF) =qgAF
say, where ¢ € 2 is a unique such that ¢y AF CgA F and g AF C g A F. Since
q € L, there exists a unique ¢’ € Q1 such that g A F C ¢’ A F; hence q1 = ¢ = ¢o.
Soq1 ANF =gy ANF. Thus ¢ : L/Fgy, — L/Fg, is an isomorphism. O

Lemma 2.10. Assume that L is as in Remark 2.1 and let F' be a Q-filter of L.
(1) There ewxists a unique qe € Q such that F = g. A F. In particular, g N F
is the identity element of L/F.
(2) If F' is a filter of L with F C F', then F is a F' N Q-filter of F'.

Proof. (1). Since 1 € L, by Proposition 2.6, there exists a unique ¢. € @ such
that F = 1A F C g¢ A F; hence 1 = g. A a for some a € F. Now it suffices to
show that g AN F C F. Let ¢ € go AN F. Then z = g. A b for some b € F; so
x=(g.Ab)AN1=¢qge ANbAa € F. Finally, by an argument like that in Proposition
2.7, ¢ A\ F is the identity element of L/F.

(2). It suffices to show that F' = U{g A F : ¢ € @ N F'}. Since the inclusion
U{gAF :q € QNF’'} C F'is clear, we will prove the reverse inclusion. Let z € F.
By Proposition 2.6, z = ¢ A a for some ¢ € Q and a € F C F'. Then g€ QN F’
since F’ is a subtractive filter of L, and so we have equality. O

Theorem 2.11. Assume that L is as in Remark 2.1 and let F be a Q-filter of L.
(1) If F’ is a subtractive filter of L and ' C F', then F'/F = {g\F : ¢ € QNF'}
is a subtractive filter of L/F.
(2) If F' is a subtractive filter of L/F, then F' = J/F for some subtractive
filter J of L.

Proof. (1). Let g. be the unique element in @ such that g, A F is the identity
in L/F. First, we show that . ANF € F'/F. Let aANF € F'/F C L/F, where
a€ F'NQ. Then (a A F)A(qe ANF) = a A F, where (go Aa) AF C a A F; hence
aNge =aANc € F for some c € F. Thus ¢. € F/ N Q since F’ is subtractive;
so ¢¢ N F € F'/F. Next, suppose that ¢1 A F,go A F € F'/F; we show that
(1 ANF)A(@2e AN F) € F'/F. Since F is a Q-filter, there is a unique element g3 € @
with (1 AF)A(g2ANF) = g3 AF, where (1 Ag2)ANF C gsAF, 80 g1 Aga = g3 \b € F’
for some b € F; hence g3 € F/ N Q since F’ is a subtractive filter of L. Therefore,
(g1 N F)A(g2 AN F) € F'/F. Now it is enough to show that if r A F € L/F and
aNF € F'/F (for some r € Q, a € F/'NQ), then (r A F)V(a A F) € F'/F.
There exists a unique element g4 € @ such that (r A F)A(a A F) = g4 A F, where
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rVa€e (rVa)AF CgAF,s0rVa=qgANd€e F for some d € F. It follows that
qs € F'NQ; hence g4 AN F € F'/F. Thus F'/F is a filter of L/F. Finally, assume
that tAF € F'/F and ¢ ANF)A(SAF) =uANF € F'/F, where t,u € F' NQ,
se€Q,and ¢ ANs)ANF CuAF. ThentAs=uAde F for some d € F; thus
s € F'NQ since F’ is a subtractive filter. Therefore, s A F' € F'/F, as needed.

(2). Assume that g, is the unique element in @ such that g. A F' is the identity
in L/Fandset J={reL : 3ge@ st reqANF , gANF € F'}. The proof
can now be broken down into a sequence of steps.

i) F C J. Let a € F. By Proposition 2.7,a € F =g.AF € F',s0 a € J. Thus
FCJ. Sincele F,1€J.

ii) J is a filter of L. For if r,s in J, there are elements ¢1,q2 € @ such that
G AF,goNF € F',r =q Nc,s = gaNd for some ¢,d € F, and (g1 AF)A(g2 AN F) =
gs NF € F', where g3 € @Q is the unique element such that (¢ Ag2) A F C g3 A F
hence rAs € (1 Ag) NF CgsANF € F'. Thus r As € J. Similarly, if r € J
and ¢t € L, then there are elements ¢1,q> € Q such that r € ¢y A F € F' and
t € go AF. Since F' is a filter of R/I, (1 AN F)V(g2 AN F) = g3 N F € F’', where
rAte (@ V(g)ANF CgAF;thusrVvtedJ.

iii) J is a subtractive filter of L. Let a,aAb € J. Then there are elements ¢, ¢a,
and g3 of Q such that a € ¢ AF € F',ab € ¢oAF € F'and b € g3AF, 80 a = q1 Ac,
aNb=gyANdand b= g3 A f for some ¢,d, f € F; hence aAb € (guAF)N (g2 A F),
where ¢4 is a unique element of @ such that (g1 A F)A(gs A F) = g4 A F'; hence
g2 = q4. Therefore, gsAF € F’ since F” is a subtractive filter; so b € J. Thus Jis a
subtractive filter of L. Finally, we can see that F' = J/F = {¢AF : ¢ € JNQ}. O

Definition 2.12. Let L be as in Remark 2.1. L is called an L-domain, if aVb =1
(a,b € L), then either a = 1 or b = 1. A proper filter F of L is called prime if
xVy€F,thenxe ForyekF.

Theorem 2.13. Assume that L is as in Remark 2.1 and let F' be a Q-filter of L.
(1) If P is a filter of L with F C P, then P is a prime filter of L if and only
if P/F is a prime filter of L/F.
(2) F is a prime filter of L if and only if L/F is a L-domain.

Proof. (1). Assume that P is a prime filter of L and let ¢ A F,ga AF € L/F
be such that (¢1 A F)V(g2 A F)) € P/F, where ¢1,q2 € Q. There exists a unique
g3 € QN P such that g1 Vge € (1 V@) ANF CgsANF € P/F;s0 q1 Vg2 = g3 Ac for
some ¢ € F'; hence ¢; V g2 € P. Then P prime gives ¢; € P or ¢2 € P; thus either
@ ANFeP/ForgAFeP/.

Conversely, suppose that P/F is a prime filter and let z,y € L such that
xVy € P. Then there exist q4,q5 € @ such that + € g4 AN F and y € g5 A F;
sox =qqsNeandy=gqs A f for some e, f € F. Let ¢ be the unique element in
Q@ such that (g4 A F)V(gs N F) = g\ F, where (g4 V g5) NF C gA F. It follows
that x Vy = gAd € P for some d € F; so ¢ € P since P is a subtractive filter;
hence (g4 A f)V(¢s NF) = qANF € P/F. Now P/F is a prime filter gives either
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gaNF € P/F or gs N F € P/F. Therefore, either g4 € P (so x € P) or g5 € P (so
y € P). Thus P is a prime filter of L.

(2). Let g. be the unique element in @ such that g. A F' is the identity in
L/F. Let F be a prime filter of L and ¢; A F, g2 A F be elements of L/F such
that (@ A F)V(g2 A F) = ge A F, where (1 V g2) NF C g NF = F. Hence
(1 Vg)Nha= (g1 ANa)V (g2 Na) € F for every a € F. Since P is a prime filter,
either g Aa € F or gaAa € F; hence (1 AF)N(ge AF') # D or (g2 AF)N(ge ANF) # 0.
This implies that ¢y NF =g ANF orgg ANF =¢q. N F.

Conversely, assume that L/F is a L-domain and let aVVb € F for some a,b € L.
Since F' is a partitioning filter, there exist ¢;,q2 € @ such that a € ¢; A F and
b € g2 A F. There exists a unique g3 € @Q such that (3 A F)V(ga A F = g3 A F,
where avb e (@1 AF)V (g2 ANF) = (q1Vg2) NF C g3 A F; hence g3 = ¢, since
aVb e (sNF)N(geAF). As L/F is a L-domain, 4 AF = g.ANF or o ANF = g A F.
Thus a € F or b € F, and the proof is complete. O

Let L be as in Remark 2.1. If A is an arbitrary nonempty subset of L, then
the set T'(A) consisting of all elements of L of the form (a; Aas A--- ANa,) Ve
(with a; € Afor all 1 < i < nand z € L) is a filter of L containing A (let
u=(arNagA---ANap)Vaz,v=(by AbagA---ANbp)Vy €T(A) and z € L. An
inspection will show that u Av = (AT_;a; A (AL,b;) Vit € T(A) for some ¢t € L and
uVz=((Aya;)V(rVvz)eT(A); hence T'(A) is a filter of L).

Theorem 2.14. Let L be as in Remark 2.1. If F is a mazimal filter of L, then
F is a prime filter.

Proof. Let aVbe F,a ¢ F and b ¢ F. As F is a maximal filter, T(F U {a}) =
T(FU{b}) = Lsince F G T(FU{a}) C Land F G T(FU{b}) C L. Since 0 € L,
we split the proof into three cases for T'(F U {a}).

Case 1: There exist mq,...,m, € F and r € L such that (mjAmaA...Am,)Vr =
0. Since F'is a filter, we have 0 € F' which is a contradiction.

Case 2: aVr =0 for somer € L. Sob=>bVaVr;hence b € F, a contradiction.

Case 3: There exist m,n € F, r;s € L and a positive integers ¢, k such that
(m/\/\zzla)\/r = (mAa)Vr =0 and (n/\/\leb)\/s =(nAb) Vs =0
hence m Aa = 0 = nAb. It follows tha m AnAa =mAnAb=0. Thus
(mAn)A(aVb)=mAnAa)V(mAnAD)=0. As (mAn)A(aVb) €F, we
obtain 0 € F, a contradiction. Thus F' is a prime filter of L. O
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