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Quasigroup representation

of some lightweight block ciphers

Aleksandra Mileva and Smile Markovski

Abstract. Most of the lightweight block ciphers are build as S-P networks or Feistel networks,

their generalization or variations. We represent the lightweight Feistel ciphers GOST and MIBS,

and Generalized Feistel cipher Skipjack by quasigroup string transformations. For obtaining

suitable representation we use the fact that Feistel round functions that are bijections can be

considered as orthomorphisms of groups, and that give us a tool for creating wanted quasigroups.

1. Introduction

Over the past years, the lightweight cryptography has drawn considerable at-
tention. Pervasive computing, presented with application of smart cards, RFID
(Radio-frequency identi�cation) tags and sensor nodes, is changing and improving
everyday life and, at the same time, introducing many security issues and risks, in
the same time. Many new cryptographic primitives have been proposed for use in
resource-constrained environments, leaded by the lightweight block ciphers, which
number increase constantly.

According to their design, there are two major classes of lightweight block
ciphers: S-P type ciphers and Feistel-type ciphers. Examples of S-P type ciphers
are PRESENT [2], KLEIN [10], etc. However, here we shall be more interested in
the latter class of ciphers.

H. Feistel [8] invented a special transformation that takes any function f
(known as round function) and produces a permutation. First, the input is split
into two halves. The one half swaps with the result obtained from XOR-ing the
output of the function f applied to this half, and the other half. This became
a round of so called Feistel structure for construction of block ciphers, known
as Feistel network or Feistel cipher. When two parts of the input in the Feistel
round are with di�erent lengths, we have Unbalanced Feistel networks (UFNs)
[23]. There exist di�erent generalizations of Feistel networks that split the input
into n > 2 parts (cells), such as the type-1, type-2 and type-3 Extended Feistel
networks from Zheng et al [30], the Generalized Feistel-Non Linear Feedback Shift
Register (GF-NLFSR) from Choy et al [3], etc.
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Some lightweight Feistel ciphers are GOST 28147-89 [11], MIBS [13] and Ka-
sumi [27]. There are block ciphers with variations of Feistel network, such as
lightweight variants of DES, with names DESL/DESX/DESXL [14], then TEA
[28], LBlock [29] and SEA [25]. Examples of Generalized Feistel ciphers that use
type-2 Extended Feistel networks are: HIGHT [12], TWINE [26], Piccolo [24].
Skipjack [21] is another Generalized Feistel cipher.

1.1 Previous work

Recent research activities show that possible quasigroup representations of some
existing cryptographic primitives or their building blocks lead to �nding weak-
nesses in their deployment or to improving their hardware implementations.

Paper [9] describes some block cipher's modes of operation as quasigroup string
transformations, and with this methodology the authors showed that the OFB
mode is a special case of the CBC mode of operation. Even more, they showed
that in a cases of interchanged use of CBC and OFB modes, the plaintext can be
obtained from the ciphertext, without the knowledge of the secret key.

Another paper [17] describes an algorithm for generating an optimal 4 × 4 S-
boxes by quasigroup string transformations. Using this algorithm, the authors of
[18] o�er a methodology for more optimized hardware implementation of crypto-
graphically strong 4× 4 S-boxes, which not only iteratively reuse the same circuit
to implement several di�erent S-boxes, but it leads to bit level serialization and
S-box implementation below 10 GEs.

The authors of paper [20] represent Feistel ciphers Misty1 [16] and Camellia
[1], and Generalized Feistel ciphers Four-Cell+ [3, 4] and SMS4 [6] with quasigroup
string transformations. For all of them, one feature is the same - they use bijections
as round functions in their Feistel networks. This can be a promising methodology
to analyze the block ciphers from totally new perspective.

1.2 Our contribution

Using the same methodology from [20] we give the quasigroup representations of
the lightweight Feistel ciphers: GOST and MIBS, and Generalized Feistel cipher
Skipjack. Even more, we show that all three are the same from quasigroup point of
view. With other words, all three are special instances of one block cipher obtained
by generalized e-transformation of string that consists of 32 zeros 0 (each of length
64 bits), with 32 di�erent quasigroups of order 264, with or without last swap.

To our knowledge, this is not a certi�cational weaknesses of the examined block
ciphers, but only another view of them.

The following variations of the Feistel cipher, DESL/DESX/DESXL and TEA
(and XTEA) do not use bijections as round functions. Kasumi is slightly modi�-
cation of MISTY1 for optimized hardware implementations, so we are not looking
at it.
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2. Preliminaries

A quasigroup is a groupoid (Q, ∗) with the property that for every a, b ∈ Q there
exist unique x ∈ Q and y ∈ Q such that the equations a ∗ x = b and y ∗ a = b are
true. When Q is a �nite set, the main body of the Cayley table of the quasigroup
(Q, ∗) represents a Latin square, i.e., a matrix with rows and columns that are
permutations of Q.

Given a quasigroup (Q, ∗), de�ne upon Q the operation of left division \ by

x\y = z ⇐⇒ x ∗ z = y.

The quaisigroup string transformations are de�ned in [15]. Here we use their gen-
eralizations from [20], de�ned as follows. Consider the �nite set Q as an alphabet
with word set Q+ = {x1x2 . . . xt | xi ∈ Q, t > 1}. Let ∗1, ∗2, . . . , ∗t be t (not
necessarily distinct) quasigroup operations on Q and let \i be the left division ad-
joint operation corresponding to ∗i. Let l ∈ Q be a �xed element, called a leader.
Then the generalized quasigroup string transformations el,∗1,∗2,...,∗t : Qt → Qt and
dl,\1,\2,...,\t : Qt → Qt are de�ned as follows:

el,∗1,∗2,...,∗t(x1 . . . xt) = (z1 . . . zt)⇐⇒ zj = zj−1 ∗j xj , 1 6 j 6 t, (1)

dl,\1,\2,...,\t(z1 . . . zt) = (x1 . . . xt)⇐⇒ xj = zj−1\t−j+1zj , 1 6 j 6 t, (2)

where z0 = l. It is easy to proof that following equation holds

el,∗1,∗2,...,∗t(dl,\t,\t−1,...,\1(x1. . . xt))= x1. . . xt = dl,\1,\2,...,\t(el,∗t,∗t−1,...,∗1(x1. . . xt)).

We need next the de�nition of complete mappings and orthomorphisms.

De�nition 2.1. [5, 7] A complete mapping of a group (G,+) is a permutation
φ : G→ G such that the mapping θ : G→ G de�ned by θ(x) = x+φ(x) (θ = I+φ,
where I is the identity mapping) is again a permutation of G. The mapping θ is
the orthomorphism associated to the complete mapping φ. A group G is admissible
if there is a complete mapping φ : G→ G.

One can notice that orthomorphisms and complete mappings coincide in the
group (Zn

2 ,⊕). The generalization of Sade's [22] diagonal method, for construction
of needed quasigroups, is presented in the following theorem.

Theorem 2.2. [19] Let φ be a complete mapping of the admissible group (G,+)
and let θ be an orthomorphism associated to φ. De�ne operations ◦ and ∗ on G
by

x ◦ y = φ(y − x) + y = θ(y − x) + x, (3)

x ∗ y = θ(x− y) + y = φ(x− y) + x, (4)

where x, y ∈ G. Then (G, ◦) and (G, ∗) are quasigroups, opposite to each other,
i.e., x ◦ y = y ∗ x for every x, y ∈ G.
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Quasigroups produced by this method have the following properties [19]:

1. (G, ◦) and (G, ∗) are non-associative quasigroups.
2. If the group (Zn

2 ,⊕) is used, then
2.1 (Zn

2 , ◦) and (Zn
2 , ∗) are diagonally cyclic quasigroups, i.e.,

(x⊕ 1) ◦ (y⊕ 1) = x ◦ y⊕ 1 and (x⊕ 1) ∗ (y⊕ 1) = x ∗ y⊕ 1 for x, y ∈ Zn
2 .

2.2 (Zn
2 , ◦) and (Zn

2 , ∗) are Schroeder quasigroups, i.e.,
(x ◦ y) ◦ (y ◦ x) = x and (x ∗ y) ∗ (y ∗ x) = x for every x, y ∈ Zn

2 .
2.3 (Zn

2 , ◦) and (Zn
2 , ∗) are anti-commutative quasigroups.

In [19] are de�ned and in [20] are rede�ned parameterized versions of the Feis-
tel network, the type-1 Extended Feistel network, and the Generalized Feistel-Non
Linear Feedback Shift Register (GF-NLFSR), and has been proved that if a bijec-
tion f is used for their creation, then they are orthomorphisms of abelian groups.
Another generalization of Feistel network is given in [20] as type-4 PEFN (4-cell
version was �rst presented in the SMS4 block cipher).

De�nition 2.3. [20] Let (G,+) be an abelian group, let fC : G→ G be a mapping,
where C is an arbitrary constant and let A,B,A1, A2, . . . , An ∈ G.

• The Parameterized Feistel Networks (PFN) F d
A,B,C and F l

A,B,C : G2 → G2

created by fC are de�ned for every l, r ∈ G by

F d
A,B,C(l, r) = (r +A, l +B + fC(r)) and

F l
A,B,C(l, r) = (r +A+ fC(l), l +B).

• The type-1 Parameterized Extended Feistel Network (PEFN)
FA1,A2,...,An,C : Gn → Gn created by fC is de�ned for every (x1, x2, . . . , xn)
∈ Gn by

FA1,A2,...,An,C(x1, x2, . . . , xn) =

= (x2 + fC(x1) +A1, x3 +A2, . . . , xn +An−1, x1 +An).

• The type-4 Parameterized Extended Feistel Network (PEFN)
FA1,A2,...,An,C : Gn → Gn created by fC is de�ned for every (x1, x2, . . . , xn)
∈ Gn by

FA1,A2,...,An,C(x1, x2, . . . , xn) =

= (x2 +A1, x3 +A2, . . . , xn +An−1, x1 +An + fC(x2 + . . .+ xn)).

• The PGF-NLFSR (Parameterized Generalized Feistel-Non Linear Feedback
Shift Register) FA1,A2,...,An,C : Gn → Gn created by fC is de�ned for every
(x1, x2, . . . , xn) ∈ Gn by

FA1,A2,...,An,C(x1, x2, . . . , xn) =

= (x2 +A1, x3 +A2, . . . , xn +An−1, x2 + . . .+ xn +An + fC(x1)).
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The last two generalizations are orthomorphisms only of the group (Zm
2 ,⊕)

and even n. Note that, the PFN F l
A,B,C is in the same time a 2-cell type-1 PEFN

FA,B,C , and the PFN F d
A,B,C is in the same time a 2-cell type-4 PEFN FA,B,C .

type-2 and type-3 PEFN [19] are not orthomorphisms in general, thus, they are
not subject of our interest. This means also, that the methodology used in this
paper, can not be applied to HIGHT, TWINE and Piccolo.

3. Quasigroup representation of GOST

The GOST is 64-bit block cipher, and the o�cial encryption standard of the
Russian Federation, known as �GOST 28147-89" [11] (Soviet �DES" from 1989).
It uses key length of 256 bits.

GOST is a Feistel cipher with 32 rounds. The round functions fski : {0, 1}32 →
{0, 1}32, i ∈ {1, 2, . . . , 32}, can be represented as fski

(x) = (S(x + ski))<<<11,
where + is addition modulo 232, S is permutation obtained by 8 4 × 4 Sj-boxes,
j ∈ {1, 2, . . . , 8}, (y)<<<11 is rotation of y to the left by 11 bits, and ski are
subkeys generated from the secret key K. We leave the details how the subkeys
are generated from the key.

Let the plaintext be denoted by M = (l0, r0) = X0 ∈ ({0, 1}32)2. The GOST
algorithm can be represented as follows:

1. For i = 1 to 32 do
Xi = (li, ri) = (ri−1, li−1 ⊕ fski(ri−1))

2. The ciphertext is C = (r32, l32).

The i-th round can be represented by the PFN F d
0,0,ski

, i ∈ {1, 2, . . . , 32}, as
Xi = F d

0,0,ski
(Xi−1). Since its round function fski is a bijection for �xed ski, the

PFN F d
0,0,ski

is an orthomorphism of the group ((Z32
2 )2,⊕) (0 is the zero in (Z32

2 ,⊕)

and 0 = (0, 0)). We can de�ne 32 di�erent quasigroups ((Z32
2 )2, ∗i) of order 264 as

X ∗i Y = F d
0,0,ski

(X ⊕ Y )⊕ Y,

where X,Y ∈ (Z32
2 )2.

So, we can write the output of the i-th round as

Xi = Xi−1 ∗i 0.

The output X32 of the �nal 32-th round can be written as

X32 = X31 ∗32 0 = (X30 ∗31 0) ∗32 0 = ((. . . (X0 ∗1 0) . . .) ∗31 0) ∗32 0.

Now we can represent the GOST algorithm by generalized el,∗1,∗2,...,∗32 quasi-
group transformation on string of 32 zeros 0 with leader l = X0 and 32 di�erent
quasigroups.

1. X32 = (l32, r32) = eX0,∗1,∗2,...,∗32(0,0, . . . ,0︸ ︷︷ ︸
32

)

2. The ciphertext is C = (r32, l32).
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4. Quasigroup representation of MIBS

The MIBS is a lightweight 64-bit block cipher, with variable key length of 64 and
80 bits [13]. It is a Feistel cipher that uses 32 rounds. All internal operations in
MIBS are nibble-wise.

The round functions fKi
: {0, 1}32 → {0, 1}32, i ∈ {1, 2, . . . , 32}, have an SPN

structure composed of round subkey addition, non-linear substitution layer with
one 4 × 4 S-box applied 8 times in parallel and linear transformation layer. For
our analysis, only important thing is that fKi

are bijections for �xed round subkey
Ki.

Let the plaintext be denoted by M = (l0, r0) = X0 ∈ ({0, 1}32)2. The MIBS
algorithm can be represented as follows:

1. For i = 1 to 32 do Xi = (li, ri) = (ri−1 ⊕ fKi(li−1), li−1).
2. The ciphertext is C = X32.

The i-th round can be represented by the PFN F l
0,0,Ki

, i ∈ {1, 2, . . . , 32}, as
Xi = F l

0,0,Ki
(Xi−1). Since its round function fKi

is a bijection for �xed Ki, the

PFN F l
0,0,Ki

is an orthomorphism of the group ((Z32
2 )2,⊕). We can de�ne 32

di�erent quasigroups ((Z32
2 )2, ∗i) of order 264 as

X ∗i Y = F l
0,0,Ki

(X ⊕ Y )⊕ Y,

where X,Y ∈ (Z32
2 )2.

Like GOST, MIBS algorithm can be represented by generalized el,∗1,∗2,...,∗32
quasigroup transformation on string of 32 zeros 0 with leader l = X0 and 32
di�erent quasigroups, but with one di�erence, without �nal swap.

C = X32 = eX0,∗1,∗2,...,∗32(0,0, . . . ,0︸ ︷︷ ︸
32

).

5. Quasigroup representation of Skipjack

Skipjack [21] is a Generalized Feistel cipher with 64-bit block, 80-bit key and 32
rounds. It is designed by NSA and it is one of the three approved encryption algo-
rithm by NIST. It uses two di�erent types of generalized Feistel rounds, referred
as A-round and B-round.

Let the plaintext be denoted by M = (x0, x1, x2, x3) = X0 ∈ ({0, 1}16)4.
Skipjack consists of 8 A-rounds, followed by 8 B-rounds, and once again 8 A-
rounds followed by 8 B-rounds, and can be represented as follows:

1. For i = 1 to 8 do
Xi = (xi, xi+1, xi+2, xi+3)=(xi+3⊕GKi(xi−1)⊕counter,GKi(xi−1), xi+1, xi+2).
2. For i = 1 to 8 do
X8+i = (x8+i, x8+i+1, x8+i+2, x8+i+3) =

(x8+i+3, GK8+i
(x8+i−1), x8+i−1 ⊕ x8+i ⊕ counter, x8+i+2)
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3. For i = 1 to 8 do

X16+i = (x16+i, x16+i+1, x16+i+2, x16+i+3) =
(x16+i+3⊕GK16+i

(x16+i−1)⊕counter,GK16+i
(x16+i−1), x16+i+1, x16+i+2).

4. For i = 1 to 8 do

X24+i = (x24+i, x24+i+1, x24+i+2, x24+i+3) =
(x24+i+3, GK24+i

(x24+i−1), x24+i−1 ⊕ x24+i ⊕ counter, x24+i+2).

5. The ciphertext is C = X32.

The functions GKi , 1 6 i 6 32, have four-round Feistel structure, so, they
are bijections for �xed Ki, where Ki is 32-bit round subkey. We can proof the
following two propositions.

Proposition 5.1. The A-round of Skipjack AK,C : (Z16
2 )4 → (Z16

2 )4 given by

AK,C(x0, x1, x2, x3) = (x3 ⊕GK(x0)⊕ C,GK(x0), x1, x2)

for �xed K and C, and created by a bijection GK : Z16
2 → Z16

2 is an orthomorphism
of the group ((Z16

2 )4,⊕).

Proof. The function AK,C is a bijection, with the inverse

A−1K,C(x0, x1, x2, x3) = (G−1K (x1), x2, x3, x0 ⊕ x1 ⊕ C).

Let Φ = AK,C ⊕ I, i.e., Φ(x0, x1, x2, x3) = (x3 ⊕ GK(x0) ⊕ C ⊕ x0, GK(x0) ⊕
x1, x1 ⊕ x2, x2 ⊕ x3) = (y0, y1, y2, y3) for every (x0, x1, x2, x3) ∈ (Z16

2 )4.

De�ne the function Ω : (Z16
2 )4 → (Z16

2 )4 by Ω(y0, y1, y2, y3) = (z, y1⊕GK(z), y1⊕
y2 ⊕GK(z), y1 ⊕ y2 ⊕ y3 ⊕GK(z)) where z = y0 ⊕ y1 ⊕ y2 ⊕ y3 ⊕ C.

We have Ω ◦ Φ = Φ ◦ Ω = I, i.e., Φ and Ω = Φ−1 are bijections.

Proposition 5.2. The B-round of Skipjack BK,C : (Z16
2 )4 → (Z16

2 )4 given by

BK,C(x0, x1, x2, x3) = (x3, GK(x0), x0 ⊕ x1 ⊕ C, x2)

for �xed K and C, and created by a bijection GK : Z16
2 → Z16

2 is an orthomorphism
of the group ((Z16

2 )4,⊕).

Proof. The function BK,C is a bijection, with the inverse

B−1K,C(x0, x1, x2, x3) = (G−1K (x1), x2 ⊕G−1K (x1)⊕ C, x3, x0).

Let Φ = BK,C ⊕ I, i.e., Φ(x0, x1, x2, x3) = (x0 ⊕ x3, GK(x0) ⊕ x1, x0 ⊕ x1 ⊕
x2 ⊕ C, x2 ⊕ x3) = (y0, y1, y2, y3) for every (x0, x1, x2, x3) ∈ (Z16

2 )4.

De�ne the function Ω : (Z16
2 )4 → (Z16

2 )4 by Ω(y0, y1, y2, y3) = (G−1K (z), y0 ⊕
y2 ⊕ y3 ⊕ C, y0 ⊕ y3 ⊕G−1K (z), y0 ⊕G−1K (z)) where z = y0 ⊕ y1 ⊕ y2 ⊕ y3 ⊕ C.

We have Ω ◦ Φ = Φ ◦ Ω = I, i.e., Φ and Ω = Φ−1 are bijections.
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Let AKi,counter : ({0, 1}16)4 → ({0, 1}16)4, i = 1, 2, . . . , 8, 17, 18, . . . , 24, be
orthomorphisms created by the bijections GKi , respectfully. The quasigroup op-
erations are de�ned by

X ∗i Y = AKi,counter(X ⊕ Y )⊕ Y,

where X,Y ∈ ({0, 1}16)4.
Let BKi,counter : ({0, 1}16)4 → ({0, 1}16)4, i = 9, 10, . . . , 16, 25, 26, . . . , 32, be

orthomorphisms created by the bijections GKi
, respectfully. The quasigroup op-

erations are de�ned by

X ∗i Y = BKi,counter(X ⊕ Y )⊕ Y,

where X,Y ∈ ({0, 1}16)4.
Now we can rewrite Skipjack with quasigroups as generalized el,∗1,∗2,...,∗32

transformation of string that consists of 32 zeros 0 (in the group (({0, 1}16)4,⊕)))
and l = X0, with 32 di�erent quasigroups of order 264:

C = eX0,∗1,∗2,...,∗32(0,0, . . . ,0︸ ︷︷ ︸
32

).

The round function GK : {0, 1}16 → {0, 1}16, where K = (k1, k2, k3, k4) (kj ∈
{0, 1}8, for j ∈ {1, 2, 3, 4}) can be represent by quasigroup transformations in
similar manner. It has a four-round Feistel structure, with round function fkj

,
which is permutation on {0, 1}8, for �xed kj . For a given x0 = (l0, r0), GK(x0) =
x4 can be represented as:

For j = 1 to 4 do xj = (rj−1, lj−1 ⊕ fkj
(rj−1)) = F d

0,0,kj
(lj , rj).

We have that F d
0,0,kj

are orthomorphisms of the group ({0, 1}16,⊕), and the

quasigroup operations are de�ned by x ?j y = F d
0,0,kj

(x ⊕ y) ⊕ y, where x, y ∈
{0, 1}16. So, GK can be represented as generalized ex0,?1,?2,?3,?4

transformation of
4 zeros 0 (length of 16 bits), with 4 di�erent quasigroups of order 216, or

GK(x0) = ex0,?1,?2,?3,?4
(0,0,0,0).

6. Conclusions

In this paper we give a quasigroup representation of lightweight block ciphers
GOST, MIBS and Skipjack. One can see, that all three block ciphers are similar
in their quasigroup representations. All three can be seen as special instances of
one block cipher obtained by generalized e-transformation of string that consists
of 32 zeros 0, with 32 di�erent quasigroups of order 264, with or without last swap.
This methodology o�er a new way to analyze existing block ciphers, and how this
can be deployed, remains as an open problem.
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