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A guide to self-distributive quasigroups,

or latin quandles

David Stanovský

Abstract. We present an overview of the theory of self-distributive quasigroups, both in the

two-sided and one-sided cases, and relate the older results to the modern theory of quandles, to

which self-distributive quasigroups are a special case. Most attention is paid to the representation

results (loop isotopy, linear representation, homogeneous representation), as the main tool to

investigate self-distributive quasigroups.

1. Introduction

1.1. The origins of self-distributivity. Self-distributivity is such a natural
concept: given a binary operation ∗ on a set A, �x one parameter, say the left
one, and consider the mappings La(x) = a ∗ x, called left translations. If all such
mappings are endomorphisms of the algebraic structure (A, ∗), the operation is
called left self-distributive (the pre�x self- is usually omitted). Equationally, the
property says

a ∗ (x ∗ y) = (a ∗ x) ∗ (a ∗ y)

for every a, x, y ∈ A, and we see that ∗ distributes over itself.
Self-distributivity was pinpointed already in the late 19th century works of lo-

gicians Peirce and Schröder [69, 76], and ever since, it keeps appearing in a natural
way throughout mathematics, perhaps most notably in low dimensional topology
(knot and braid invariants) [12, 15, 63], in the theory of symmetric spaces [57]
and in set theory (Laver's groupoids of elementary embeddings) [15]. Recently,
Moskovich expressed an interesting statement on his blog [60] that while associa-
tivity caters to the classical world of space and time, distributivity is, perhaps, the
setting for the emerging world of information.

Latin squares are one of the classical topics in combinatorics. Algebraically,
a latin square is represented by a binary operation, and such algebraic structures
are called quasigroups. Formally, a binary algebraic structure (A, ∗) is called a
quasigroup, if the equations a ∗ x = b and y ∗ a = b have unique solutions x, y, for
every a, b ∈ A.
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It is therefore no surprise that one of the very �rst algebraic works fully de-
voted to non-associative algebraic strucures was Burstin and Mayer's 1929 paper
Distributive Gruppen von endlicher Ordnung [11] about quasigroups that are both
left and right distributive. Another earliest treatise on non-associative algebraic
structures was [86] by Sushkevich who observed that the proof of Lagrange's theo-
rem (the one in elementary group theory) does not use associativity in full strength
and discussed weaker conditions, some related to self-distributivity, that make the
proof work. These pioneering works were quickly followed by others, with vari-
ous motivations. For example, Frink [22] argued that the abstract properties of
the mean value are precisely those of medial idempotent quasigroups, and self-
distributivity pops up again.

The foundations of the general theory of quasigroups were laid in the 1950s
and carved in stone in Bruck's book A survey of binary systems [10] (despite
the general title, the book leans strongly towards a particular class of Moufang
loops). Ever since, self-distributive quasigroups and their generalizations played a
prominent role in the theory of quasigroups, both in the Western and the Soviet
schools [3, 30, 71]. More in the Soviet one, where the dominant driving force was
Belousov's program to investigate loop isotopes of various types of quasigroups
(see the list of problems at the end of the book [3]). We refer to [72] for a more
detailed historical account.

Re�ection in euclidean geometry (and elsewhere) is another example of a self-
distributive operation: for two points a, b, consider a ∗ b to be the re�ection of b
over a. The equation a ∗ x = b always has a unique solution, namely, x = a ∗ b,
but in many cases, re�ections do not yield a quasigroup operation (e.g. on a
sphere). These observations, and the resulting abstraction of the notion of a
re�ection, can be attributed to Takasaki and his remote 1942 work [87], but the real
advances have been made by Loos and others two decades later [57]. The resulting
notions of kei (Takasaki), symmetric spaces (Loos), or involutory quandles in the
modern terminology, are axiomatized by three simple algebraic properties: left
distributivity, idempotence (a ∗a = a for every a), and the left involutory law (the
unique solution to a ∗x = b is x = a ∗ b; the property is also called left symmetry).
The background is described e.g. in [54].

Group conjugation, a∗b = aba−1 on any subset of a group closed with respect to
conjugation, is another prototypical self-distributive operation. This observation is
often attributed to Conway andWraithe [60], who also coined the the term wrack of
a group, although the idea to represent self-distributive quasigroups by conjugation
appeared earlier in [84] by Stein. The conjugation operation is idempotent, left
distributive, but again, rarely a quasigroup: only solutions to the equation a ∗
x = b are guaranteed to exist uniquely. Algebraic structures satisfying the three
conditions are called quandles nowadays. (The word quandle has no meaning in
English and was entirely made up by Joyce [40]. Many other names have been
introduced for quandles, such as automorphic sets, pseudo-symmetric sets, left
distributive left quasigroups, etc.)

In early 1980s, Joyce [40] and Matveev [58], independently, picked up the idea
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of "wracking a group" to extract the essential part of the fundamental group of a
knot complement. Unlike the fundamental group, the resulting structure, called
the fundamental quandle of a knot, is a full invariant of (tame, oriented) knots
(up to reverse mirroring) with respect to ambient isotopy. Ever sicne, quandles
were successfully used in knot theory to design e�ciently computable invariants,
see e.g. [12, 21].

The works of Joyce and Matveev put the foundations for the modern the-
ory of quandles, which covers, to some extent, many traditional aspects of self-
distributivity as a special case (self-distributive quasigroups, or latin quandles, in
particular). It is the main purpose of the present paper to overview the classical
results on self-distributive quasigroups, and relate them to the results in modern
quandle theory.

1.1. Contents of the paper. The paper is organized as a guide to the literature
on self-distributive quasigroups, or latin quandles, trying to relate the results of
various mathematical schools, which are often fairly hard to �nd and navigate (at
least to me, due to a combination of writing style, terminology mess, and, to most
mathematicians, language barrier).

As in most survey tasks, I had to narrow down my focus. The main subject
of the paper are representation theorems, serving as the main tool to investigate
self-distributive algebraic structures, such as quandles and quasigroups. To see the
tools in action, my subjective choice are enumeration results. Other interesting
results are cited and commented. I do not claim completeness of my survey, and
apologize in advance for eventual ignorance.

In Section 2, we overview the background from the theory of quasigroups,
loops and from universal algebra. First, we recall various equational properties
of quasigroups and quandles, and de�ne the multiplication groups. Then, various
weakenings of the associative and commutative laws are introduced, with a focus
towards the classes of commutative Moufang loops and Bruck loops, which are
used in the representation theorems. Finally, we talk about isotopy, linear and
a�ne representation, and polynomial equivalence between quasigroups and loops.

Section 3 addresses distributive and trimedial quasigroups. In the �rst part,
we prove the classical a�ne representation of medial quasigroups (Theorem 3.1),
outline Kepka's a�ne representation of trimedial quasigroups over commutative
Moufang loops (Theorem 3.2), and comment upon some special cases and gener-
alizations. Then, in the second part, we present a few consequences of the repre-
sentation theorem, namely, a classi�cation theorem (Theorem 3.5), enumeration
results (Table 1), and we also mention the property called symmetry-by-mediality.

In a short intermezzo, Section 4, we brie�y comment on the Cayley-like repre-
sentation of quandles using conjugation in symmetric groups, and on the construc-
tion called the core of a loop. These were some of the �rst families of examples of
left distributive quasigroups which are not right distributive.

In Section 5, we investigate loop isotopes of left distributive quasigroups, so
called Belousov-Onoi loops. First, we prove a representation theorem (Theo-
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quasigroups loops

medial abelian groups

distributive (trimedial) commutative Moufang

involutory l.d. B-loops

left distributive Belousov-Onoi

Theorem 3.1

Theorems 3.2, 3.3

Theorem 5.5

Theorem 5.9

Figure 1: Correspondence between certain classes of quasigroups and loops.

rem 5.5, based on more detailed Propositions 5.2 and 5.4), and then continue
with the properties of Belousov-Onoi loops (among others, Propositions 5.8, 5.7,
5.10 and Theorem 5.11). We explain why, at the moment, the correspondence is of
limited value for the general theory of left distributive quasigroups. Nevertheless,
one special case is important: involutory left distributive quasigroups correspond
to the well established class of B-loops (Theorem 5.9). The representation theo-
rems are outlined in Figure 1.

In Section 6, we introduce the homogeneous representation of connected quan-
dles, which is perhaps the strongest tool to study self-distributive quasigroups
developed so far. We present several applications to the structure theory, with
most attention paid to enumeration results.

Many proofs in our paper are only sketched. In the case of trimedial and dis-
tributive quasigroups (Theorems 3.2 and 3.3), we believe that new, shorter, and
conceptually cleaner proofs are possible, using modern methods of universal alge-
bra, but we did not succeed to make a substantial progress yet. The only minor
contribution in this part is yet another proof of the Toyoda-Murdoch-Bruck theo-
rem on medial quasigroups (Theorem 3.1). Neither we go into details in Section
6 on homogeneous representation, since it has been presented in our recent pa-
per [35]. On the other hand, many details are given in Section 5, the Belousov-Onoi
theory is presented in a substantially di�erent way. In particular, we provide a new
and cleaner proof of the representation theorem for left distributive quasigroups
(Theorem 5.5), which contains as a special case the classical results of Belousov
on distributive quasigroups (a part of Theorem 3.3), and the Kikkawa-Robinson
theorem on involutory left distributive quasigroups (Theorem 5.9).

1.3. A remark on automated theorem proving. Many theorems discussed in
the present paper admit a short �rst order theory formulation, and subsequently
could be attempted by automated theorem proving (ATP). Most of them are
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beyond the capabilites of current provers, but a few can be proved by any state-
of-the art theorem prover within a few seconds. In those cases, we do not always
bother to provide a reference or a proof, considering such problems "easy symbolic
manipulation", although it may be rather intricate to �nd a proof without the aid
of a computer. We refer to [73] for more information about automated theorem
proving in algebra.

2. Background

2.1. Quasigroups and quandles. Let (A, ∗) be an algebraic structure with a
single binary operation, or, shortly, a binary algebra (also referred to as magma or
groupoid elsewhere). We say it possesses unique left division, if for every a, b ∈ A,
there is a unique x ∈ A such that a ∗ x = b; such an x is often denoted x = a\b.
Unique right division is de�ned dually: for every a, b ∈ A, there is a unique y ∈ A
such that y∗a = b; such a y is often denoted y = b/a. Binary algebras with unique
left and right division are called quasigroups.

We list a few identities which are met frequently (all identities are assumed
to be universally quanti�ed, unless stated otherwise). A binary algebra (A, ∗) is
called

• left distributive if x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z),

• right distributive if (z ∗ y) ∗ x = (z ∗ x) ∗ (y ∗ x),

• distributive if it is both left and right distributive,

• medial if (x ∗ y) ∗ (u ∗ v) = (x ∗ u) ∗ (y ∗ v),

• trimedial if every 3-generated subquasigroup is medial,

• idempotent if x ∗ x = x,

• left involutory (or left symmetric) if x ∗ (x ∗ y) = y (hence we have unique
left division with x\y = x ∗ y).

Observe that left distributive quasigroups are idempotent: x∗(x∗x) = (x∗x)∗(x∗x)
by left distributivity and we can cancel from the right. Non-idempotent medial
quasigroups exist, indeed, abelian groups are examples. Also observe that idem-
potent trimedial binary algebras are distributive: given a, b, c ∈ A, the subalgebra
〈a, b, c〉 is medial, hence (a ∗ b) ∗ (a ∗ c) = (a ∗ a) ∗ (b ∗ c) = a ∗ (b ∗ c), and du-
ally for right distributivity; it requires quite an e�ort to prove the converse for
quasigroups, see Theorem 3.3.

A binary algebra is called a (left) quandle, if it is idempotent, left distributive
and has unique left division (remarkably, the three conditions correspond neatly
to the three Reidemeister moves in knot theory, see [12, 63]). Quandles that also
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have unique right division are called latin quandles. Indeed, latin quandles and
left distributive quasigroups are the very same things.

For universal algebraic considerations, it is often necessary to consider quandles
as algebraic structures with two binary operations, (A, ∗, \), and quasigroups as
structures with three binary operations, (A, ∗, /, \). Then, subalgebras are really
quandles (quasigroups, respectively), etc. We will implicitly assume the division
operations to be part of the algebraic structure whenever needed (e.g. when con-
sidering term operations in Section ).

Given a binary algebra (A, ∗), it is natural to consider left translations La(x) =
a ∗ x, and right translations Ra(x) = x ∗ a, and the semigroups they generate, the
left multiplication semigroup LMlt(A, ∗) = 〈La : a ∈ A〉, the right multiplica-
tion semigroup RMlt(A, ∗) = 〈Ra : a ∈ A〉, and the multiplication semigroup
Mlt(A, ∗) = 〈La, Ra : a ∈ A〉. Unique left division turns left translations into
permutations, and thus the left multiplication semigroup into a group (and dually
for right translations). Observe that L−1a (x) = a\x and R−1a (x) = x/a. Also note
that (A, ∗) is left distributive if and only if La is an endomorphism for every a ∈ A.
Hence, in quandles, LMlt(A, ∗) is a subgroup of the automorphism group.

A binary algebra (A, ∗) is called homogeneous if Aut(A, ∗) acts transitively on
A. It is called left connected if LMlt(A, ∗) acts transitively on A (we will omit the
adjective "left" for quandles). A �nite quandle is therefore connected if, for every
a, b ∈ A, there exist x1, . . . , xn ∈ A such that b = x1 ∗ (x2 ∗ (. . . (xn ∗a))) (compare
to unique right division!). Connected quandles are arguably the most important
class of quandles, both from the algebraic and topological points of view. Indeed,
latin quandles are connected, and the class of connected quandles is a very natural
generalization of left distributive quasigroups: many structural properties of left
distributive quasigroups extend to connected quandles, as we shall see throughout
Section 6.

To illustrate the power of connectedness, let us prove the following implication
for quandles that are (both left and right) distributive.

Proposition 2.1 ([13, Theorem 5.10]). Finite connected distributive quandles are
quasigroups.

Proof. Assume the contrary, and let (Q, ∗) be the smallest counterexample. Right
distributivity says that every right translation Ra is a homomorphism, hence, its
image, Ra(Q), forms a subquandle that is also connected and distributive (both
properties project to homomorphic images). For every a, b ∈ Q, the subquan-
dles Ra(Q) and Rb(Q) are isomorphic: connectedness of (Q, ∗) provides an au-
tomorphism α ∈ LMlt(Q, ∗) such that α(a) = b, and it follows from α(x ∗ a) =
α(x)∗α(a) = α(x)∗b that α restricts to an isomorphism between Ra(Q) and Rb(Q).
Therefore, by minimality, all subquandles Ra(Q) are proper subquasigroups. Now
we prove that Ra(Q) ⊆ Rx∗a(Q) for every x, a ∈ Q. Let y ∗ a ∈ Ra(Q). Since
Ra(Q) is a quasigroup, there is z ∗ a ∈ Ra(Q) such that y ∗ a = (z ∗ a) ∗ (x ∗ a).
Hence y ∗ a ∈ Rx∗a(Q). By induction, Ra(Q) ⊆ Rx1∗a(Q) ⊆ Rx2∗(x1∗a)(Q) ⊆ . . .,
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and thus, from connectedness, Ra(Q) ⊆ Rb(Q) for every a, b ∈ Q. Hence all sub-
quasigroups Ra(Q) are equal, and since x ∈ Rx(Q) for every x ∈ Q, all of them
are equal to Q, a contradiction.

2.2. Loops. A loop is a quasigroup (Q, ·) with a unit element 1, i.e., 1·a = a·1 = a
for every a ∈ A. In the present paper, loops will be denoted multiplicatively.
To avoid parenthesizing, we shortcut x · yz = x · (y · z) etc., and we remove
parentheses whenever the elements associate, i.e. write xyz whenever we know
that x · yz = xy · z. For all unproved statements, we refer to any introductory
book on loops, such as [10, 71].

Let (Q, ·) be a loop. Inner mappings are those elements of the multiplication
group Mlt(Q, ·) that �x the unit element. For example, the conjugation mappings
Tx(z) = xz/x are inner and, in a way, measure the non-commutativity in the loop.
The left inner mappings are de�ned by Lx,y(z) = (xy)\(x · yz) and measure the
non-associativity from the left.

The most common example of loops are groups (i.e. associative loops), and
most classes of loops studied in literature are those satisfying a weak version of
associativity or commutativity. We list a few weak associative laws (note that all
the conditions hold in groups): a loop is called

• diassociative if all 2-generated subloops are associative;

• left alternative if x · xy = x2y;

• power-associative if all 1-generated subloops are associative;

• Moufang if (xy · x)z = x(y · xz) (the dual law is equivalent in loops);

• left Bol if (x · yx)z = x(y · xz);

• automorphic if all inner mappings are automorphisms.

• left automorphic if all left inner mappings Lx,y are automorphisms.

Moufang's theorem [18] says that in a Moufang loop, every subloop generated
by three elements that associate, is associative. In particular, Moufang loops
are diassociative, since a(ba) = (ab)a for every a, b, as directly follows from the
Moufang law. Bol loops are power-associative.

The nucleus of a loop (Q, ·) is the set of all elements a ∈ Q that associate with
all other elements, i.e.,

N = {a ∈ Q : a · xy = ax · y, x · ay = xa · y, x · ya = xy · a for all x, y ∈ Q}.

An element of a loop is called nuclear if it belongs to the nucleus. A mapping
f : Q→ Q is called k-nuclear if xkf(x) ∈ N for every x ∈ Q.

Commutative Moufang loops were a central topic in the Bruck's book [10], and
newer results are surveyed in [7, 78]. The following characterization shows how
natural the class is.
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Theorem 2.2 ([10, 70]). The following are equivalent for a commutative loop
(Q, ·):

(1) it is diassociative and automorphic;

(2) it is Moufang;

(2′) the identity xx · yz = xy · xz holds.

(3) the identity f(x)x · yz = f(x)y · xz holds for some f : Q→ Q.

Moreover, if (Q, ·) is a commutative Moufang loop, than the identity of (3) holds
if and only if f is a (−1)-nuclear mapping.

The equivalence of (1), (2), (2') is well-known [10]. The rest is a special case
of a lesser known, but intriguing characterization of Moufang loops by P�ugfelder
[70]. It is one of the crucial ingrediences in Kepka's proof of Theorem 3.2, and also
in our new proof of Proposition 5.7.

Example 2.3. According to Kepka and N¥mec [49, Theorem 9.2], the smallest
non-associative commutative Moufang loops have order 81, there are two of them
(up to isomorphism), and can be constructed as follows. Consider the groups
G1 = (Z3)

4 and G2 = (Z3)
2 × Z9. Let e1, e2, e3(, e4) be the canonical generators.

Let t1 be the triaditive mapping over G1 satisfying

t1(e2, e3, e4) = e1, t1(e3, e2, e4) = −e1, t1(ei, ej , ek) = 0 otherwise.

Let t2 be the triaditive mapping over G2 satisfying

t2(e1, e2, e3) = 3e3, t2(e2, e1, e3) = −3e3, t2(ei, ej , ek) = 0 otherwise.

The loops Qi = (Gi, ·), i = 1, 2, with

x · y = x+ y + ti(x, y, x− y),

are non-isomorphic commutative Moufang loops, and every commutative Moufang
loop of order 81 is isomorphic to one of them.

In an arbitrary loop (Q, ·), we can de�ne the left inverse as x−1 = x\1 (in
general, x\1 6= 1/x). Then, the left inverse property (LIP) requests that a\b =
a−1b for every a, b ∈ Q, and the left automorphic inverse property (LAIP) requests
that (ab)−1 = a−1b−1 for every a, b ∈ Q. The RIP and RAIP are de�ned dually;
if left and right inverses coincide, we talk about IP and AIP.

Diassociative loops have the IP, and then, commutativity is indeed equivalent
to the AIP. Bol loops have the LIP, and are power associative, hence the left and
right inverses coincide. Occasionally, we will need the following technical lemma.

Lemma 2.4 ([51] or ATP). The following properties are equivalent for a left Bol
loop (Q, ·):
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(1) the AIP;

(2) the identity (xy)2 = x · y2x;

(3) L2
ab = LaL

2
bLa for every a, b ∈ Q.

It seems that the AIP is the appropriate generalization of commutativity into
the Bol setting (commutativity is no good, as it implies the Moufang law). We
have the following "left version" of Theorem 2.2, under the additional assumption
of unique 2-divisibility, which states that the mapping x 7→ x2 is a permutation.

Theorem 2.5 ([53] and ATP). The following are equivalent for a uniquely 2-
divisible loop (Q, ·) with the LAIP:

(1) it has the LIP, is left alternative and left automorphic;

(1′) the identities x2 · x−1y = xy and Lx,y(z
−1) = Lx,y(z)

−1 hold;

(2) it is left Bol;

(2′) the identity (xy)2 · (x−1z) = x · y2z holds.

Proof sketch. (1') is an immediate consequence of (1), and (2') easily follows from
(2) by Lemma 2.4, but the converse implications are trickier; we could not �nd
them anywhere in literature, but they can be veri�ed by an automated theorem
prover.

To prove that the equivalent conditions (1),(1') are in turn equivalent to the
equivalent conditions (2),(2'), we can use [53, Theorem 3], which states that, for
left alternative uniquely 2-divisible loops with the LIP and LAIP, the identity (2')
is equivalent to being left automorphic.

Left Bol loops with the AIP are called Bruck loops (or K-loops or gyrocommu-
tative gyrogroups). A lot of structure theory is collected in Kiechle's book [51].
Uniquely 2-divisible Bruck loops were called B-loops (we will use the shortcut,
too) and studied in detail by Glauberman [31]. A �nite Bruck loop is uniquely
2-divisible if and only if it has odd order [31, Proposition 1]. Every B-loop can
be realized as a subset Q of a group (G, ◦) such that the mapping x 7→ x ◦ x is a
permutation on Q and the loop operation is a · b =

√
a ◦ b ◦

√
a [31, Theorem 2].

Example 2.6. The smallest non-associative B-loop has order 15 and can be con-
structed as follows. Consider the loop (Z5 × Z3, ·) with

(a, x) · (b, y) = (ϕx,ya+ b, x+ y)

where ϕx,y ∈ Z∗5 are given by the following table:

0 1 2
0 1 2 2
1 1 3 1
2 1 1 3
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It is straightforward to check that this is a B-loop. It is an abelian extension of
Z5 by Z3 in the sense of [82].

2.3. Linear and a�ne representation. A great portion of the present paper
is about establishing that "two algebraic structures are essentially the same". To
formalize the statement, we borrow a formal de�nition from universal algebra. Let
(A, f1, f2, . . . ) be an arbitrary algebraic structure (shortly, algebra), with basic op-
erations f1, f2, . . . A term operation is any operation that results as a composition
of the basic operations. Polynomial operations result from term operations by
substituting constants for some of the variables. Two algebras with the same un-
derlying set are called term equivalent (or polynomially equivalent, respectively),
if they have the same term operations (or polynomial operations). For example,
a group can be presented in the standard way, as (G, ·,−1 , 1), or in the loop the-
oretical way, as an associative loop (G, ·, /, \, 1); the two algebraic structures are
formally di�erent, but they are term equivalent, since the basic operations in any
one of them are term operations in the other one. Term equivalent algebras have
identical subalgebras, polynomially equivalent algebras have identical congruences,
and share all properties that only depend on terms or polynomials (for example,
the Lagrange property, see Section 6.3). To learn more, consult [8, Section 4.8].

One of the fundamental tools to study a quasigroup is, to determine its loop
isotopes, and use the properties of the loops to obtain an information about the
original quasigroup. An isotopy between two quasigroups (Q1, ∗) and (Q2, ·) is a
triple of bijective mappings α, β, γ : Q1 → Q2 such that

α(a) · β(b) = γ(a ∗ b)

for every a, b ∈ Q1. Then, (Q2, ·) is called an isotope of (Q1, ∗). The combinatorial
interpretation is that (Q2, ·) is obtained from (Q1, ∗) by permuting rows, columns
and renaming entries in the multiplication table. Up to isomorphism, we can only
consider isotopes with Q1 = Q2 and γ = id, so called principal isotopes.

Every quasigroup admits many principal loop isotopes, often falling into more
isomorphism classes, yet all of them have a particularly nice form.

Proposition 2.7 ([10, Section III]). Let (Q, ∗) be a quasigroup and α, β permu-
tations on Q. The following are equivalent:

• the isotope a · b = α(a) ∗ β(b) is a loop;

• α = Re1 and β = Le2 for some e1, e2 ∈ Q.

Rephrased, given a quasigroup (Q, ∗), the only loop isotopes, up to isomor-
phism, are (Q, ·) with

a · b = (a/e1) ∗ (e2\b),

where e1, e2 ∈ Q can be chosen arbitrarily. Then the unit element is 1 = e2 ∗ e1.
For the division operations, we will use the symbols \· and /·, to distinguish them
from the quasigroup division.
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Notice that the new operation · is a polynomial operation over the original
quasigroup, and so are the division operations. We can recover the quasigroup
operation as

a ∗ b = Re1(a) · Le2(b),

but this is rarely a polynomial operation over (Q, ·). The most satisfactory loop
isotopes are those where Re1 and Le2 are a�ne mappings over (Q, ·).

A permutation ϕ of Q is called a�ne over (Q, ·), if

ϕ(x) = ϕ̃(x) · u or ϕ(x) = u · ϕ̃(x)

where ϕ̃ is an automorphism of (Q, ·) and u ∈ Q. In other terms, if ϕ = Ruϕ̃
or ϕ = Luϕ̃. A quasigroup (Q, ∗) is called a�ne over a loop (Q, ·) if, for every
a, b ∈ Q,

a ∗ b = ϕ(a) · ψ(b),

where ϕ,ψ are a�ne mappings over (Q, ·) such that ϕ̃ψ̃ = ψ̃ϕ̃. If both ϕ,ψ are
automorphisms, we call (Q, ∗) linear over (Q, ·). (Note that the a�ne mappings
ϕ,ψ do not necessarily commute.)

Example 2.8. To illustrate the concept of a�ne representation, consider a quasi-
group (Q, ∗) a�ne over an abelian group (Q, ·). We prove that it is medial. With
ϕ = Ruϕ̃, ψ = Rvψ̃ (left or right makes no di�erence here), we have

(a ∗ b) ∗ (c ∗ d) = ϕ (ϕ(a) · ψ(b)) · ψ (ϕ(c) · ψ(d))

= ϕ̃
(
ϕ̃(a)u · ψ̃(b)v

)
u · ψ̃

(
ϕ̃(c)u · ψ̃(d)v

)
v

= ϕ̃2(a) · ϕ̃ψ̃(b) · ψ̃ϕ̃(c) · ψ̃2(d) · ϕ̃(uv) · ψ̃(uv) · uv.

Since ϕ̃ψ̃ = ψ̃ϕ̃, the expression is invariant with respect to interchange of b and c.
As we shall see, Theorem 3.1 states also the converse: every medial quasigroup is
a�ne over an abelian group.

Any adjective to the words "a�ne" or "linear" will refer to the properties of the
mappings ϕ and ψ. In Section 3, we will consider 1-nuclear a�ne representations
over commutative Moufang loops, i.e. we will assume that ϕ,ψ are 1-nuclear a�ne
mappings. Notice that if ϕ = Fuϕ̃, with F ∈ {L,R}, is 1-nuclear, then u is nuclear
(substitute 1), and if the nucleus is a normal subloop, then ϕ̃ is also 1-nuclear.

How to turn an a�ne representation into a polynomial equivalence? Consider
a�ne mappings ϕ = Fuϕ̃, ψ = Gvψ̃ where F,G ∈ {L,R} and ϕ̃, ψ̃ are automor-
phisms of (Q, ·). Then x∗y = ϕ(x)·ψ(y) is a polynomial operation over the algebra
(Q, ·, ϕ̃, ψ̃), and a similar statement applies to the division operations, too (one also
needs to use the inverse automorphisms ϕ̃−1, ψ̃−1). Conversely, if (Q, ·) is a loop
isotope of a quasigroup (Q, ∗), then x · y = (x/e1) ∗ (e2\y), x\·y = e2 ∗ ((x/e1)\y),
and x/·y = (x/(e2\y)) ∗ e1 are all polynomial operations over the quasigroup. If
the translations Re1 , Le2 are a�ne over (Q, ·), then R̃e1(x) = (x ∗ e1)/·(1 ∗ e1),
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L̃e2(x) = (e2 ∗ x)/·(e2 ∗ 1) are polynomial operations, too, hence the quasigroup
(Q, ∗, \, /) and the algebra (Q, ·, \·, /·, R̃e1 , R̃−1e1 , L̃e2 , L̃

−1
e2 ) are polynomially equiva-

lent, i.e. essentially the same object. It is convenient to perceive the loop expanded
by two automorphisms in a module-theoretic way, as we shall explain now.

The classical case �rst: assume the loop is an abelian group and let us denote
it additively, (Q,+). Let ϕ,ψ be two commuting automorphisms of (Q,+). Then
the algebra (Q,+,−, 0, ϕ, ϕ−1, ψ, ψ−1) is term equivalent to the module over the
ring of Laurent polynomials Z[s, s−1, t, t−1] whose underlying additive structure
is (Q,+) and the action of s, t is that of ϕ,ψ, respectively. The corresponding
quasigroup operation can be written as the a�ne form

x ∗ y = sx+ ty + c,

where c ∈ Q is a constant.
For general loops, one can consider "generalized modules" over commutative

"generalized rings", where the underlying additive structures are not necessarily
associative. No general theory has been developed yet, but there are indications
that this approach could provide a powerful tool. For example, commutative
diassociative loops share a lot of module-theoretic properties of abelian groups,
such as the primary decomposition [56]. The idea of "generalized modules" and
the corresponding homological methods have been exploited several times to prove
interesting theorems about quasigroups [33, 34, 48].

Finally, let us note that our de�nition of a�ne quasigroup is too strong in one
sense, and possibly weak in another sense.

The condition that the two automorphisms ϕ̃, ψ̃ commute is strongly tied to
mediality and its weaker forms, and we included it only for brevity. Omitting
the condition makes a very good sense from the universal algebra point of view.
Quasigroups that admit a "non-commuting" a�ne representation over an abelian
group (and thus polynomially equivalent to a module over the ring of Laurent
polynomials of two non-commuting variables) have been studied since the 1970s,
see [79, Chapter 3] or [17] for recent developments (the original name T-quasigroups
is slowly fading away, being replaced by the adjective central ; in universal algebra,
they would be called abelian or a�ne, as the two concepts are equivalent for
quasigroups).

In Section 3, all a�ne representations will be 1-nuclear. However, we resist to
enforce nuclearity in the de�nition of a�neness, since we do not understand its role
properly (in particular, we do not know whether the representation of Theorem
5.5 admits any sort of nuclearity). We are not yet certain what is the appropriate
generalization of the notion of an a�ne form into the non-associative setting.

3. Distributive quasigroups

3.1. A�ne representation. The �rst ever a�ne representation theorem was
the one for medial quasigroups, proved independently by Toyoda [88], Murdoch
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[61] and Bruck [9] in the 1940s.

Theorem 3.1 ([9, 61, 88]). The following are equivalent for a quasigroup (Q, ∗):

(1) it is medial;

(2) it is a�ne over an abelian group.

Proof. (2)⇒ (1) was calculated in Example 2.8.
(1)⇒ (2). Pick arbitrary e1, e2 ∈ Q and de�ne a loop operation on Q by a ·b =

(a/e1)∗ (e2\b). We can recover the quasigroup operation as a∗ b = Re1(a) ·Le2(b),
where Re1 , Le2 are translations in (Q, ∗). We show that (Q, ·) is an abelian group,
and that Re1 , Le2 are a�ne mappings over (Q, ·).

First, consider the quasigroup (Q, ◦) with a ◦ b = (a/e1) ∗ b. We prove that it
is also medial. Observe that, for every x, y, u, v ∈ Q,

(x/y) ∗ (u/v) = (x ∗ u)/(y ∗ v), (†)

since ((x/y) ∗ (u/v)) ∗ (y ∗ v) = ((x/y) ∗ y) ∗ ((u/v) ∗ v) = x ∗ u, and we obtain the
identity by division from the right. Now we expand

(a ◦ b) ◦ (c ◦ d) = (((a/e1) ∗ b)/e1) ∗ ((c/e1) ∗ d)
= (((a/e1) ∗ b)/((e1/e1) ∗ e1)) ∗ ((c/e1) ∗ d)
= (((a/e1)/(e1/e1)) ∗ (b/e1)) ∗ ((c/e1) ∗ d),

and using mediality, we can interchange b/e1 and c/e1, and by an analogous cal-
culation obtain (a◦ b)◦ (c◦d) = (a◦ c)◦ (b◦d). Now notice that a · b = a◦ (e2\b) =
a ◦ ((e2 ∗ e1)\◦b), hence a dual argument, with ∗ replaced for ◦ and e1 replaced
for e2 ∗ e1, shows that the loop (Q, ·) is also medial. But medial loops are abelian
groups.

It remains to prove that the mappings Re1 , Le2 are a�ne over (Q, ·) and that
the corresponding automorphisms R̃e1 , L̃e2 commute. Let 1 denote the unit and
−1 the inverse element in the group (Q, ·). Consider a, b ∈ Q. By mediality,

(R−1e1 (a) ∗ L−1e2 (b)) ∗ (L−1e2 (1) ∗ L−1e2 (1)) = (R−1e1 (a) ∗ L−1e2 (1)) ∗ (L−1e2 (b) ∗ L−1e2 (1)).

Rewriting x ∗ y = Re1(x) · Le2(y), we obtain

Re1(a · b) · Le2Re1L−1e2 (1) = Re1(a) · Le2Re1L−1e2 (b).

With a = 1, we obtain Le2Re1L
−1
e2 (b) = Re1(b) ·Le2Re1L−1e2 (1) ·Re1(1)−1, and after

replacement of the last term in the previous identity, and after cancelling the term
Le2Re1L

−1
e2 (1), we obtain

Re1(a · b) = Re1(a) ·Re1(b) ·Re1(1)−1.
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This shows that Re1 is an a�ne mapping, with the underlying automorphism
R̃e1(x) = Re1(x)Re1(1)

−1. Dually, we obtain that Le2 is an a�ne mapping, with
the underlying automorphism L̃e2(x) = Le2(x)Le2(1)

−1.
Finally we show that the two automorphisms commute. With ϕ = Re1 , ψ =

Le2 , u = Re1(1)
−1 and v = Le2(1)

−1, we can calculate as in Example 2.8 that, for
every x ∈ Q,

ϕ̃ψ̃(x)·ϕ̃(uv)·ψ̃(uv)·uv = (1∗x)∗(1∗1) = (1∗1)∗(x∗1) = ψ̃ϕ̃(x)·ϕ̃(uv)·ψ̃(uv)·uv.

After cancellation, we see that ϕ̃ψ̃ = ψ̃ϕ̃.

Note that we proved a stronger statement: any loop isotope of a medial quasi-
group is an abelian group that provides an a�ne representation. For other classes,
in order to obtain an a�ne representation over a nice class of loops, one often
has to choose the parameters e1, e2 in a special way. For instance, for trimedial
quasigroups, one has to take e1 = e2 which is a square, as we shall see.

Perhaps the best way to perceive distributive quasigroups is through trimedial-
ity. As we shall see, a quasigroup is distributive if and only if it is idempotent and
trimedial. This was �rst realized by Belousov in [2], and his proof was based on
�nding an isotopy of a distributive quasigroup to a commutative Moufang loop,
and subsequently using Moufang's theorem (see also his book [3, Theorems 8.1
and 8.6]). Belousov's method actually provides a linear representation, but this
fact was recognized and explicitly formulated only later by Soublin [80, Section
II.7, Theorem 1]. An analogous theorem for general (not necessarily idempotent)
trimedial quasigroups was proved by Kepka [43] a few years later (Theorem 3.2).
We will now outline Kepka's proof, and show how the Belousov-Soublin theorem
follows as a special case (Theorem 3.3).

Many equivalent conditions charecterizing trimediality are formulated in [43],
we only pick the most important ones here: (1) trimediality, (2) a stronger fact
stating that mediating elements generate a medial subquasigroup, (3) a �nite
equational base for trimediality, and (4) the a�ne representation. In fact, Kepka
lists several �nite bases, but not the one we state here: our condition (3) is a
minimal base, found in [55], and subsumes most of Kepka's bases.

Theorem 3.2 ([43]). The following are equivalent for a quasigroup (Q, ∗):

(1) it is trimedial;

(2) for every a, b, c, d ∈ Q, if (a∗b)∗(c∗d) = (a∗c)∗(b∗d) then the subquasigroup
〈a, b, c, d〉 is medial;

(3) it satis�es, for every a, b, c ∈ Q, the identities

(c ∗ b) ∗ (a ∗ a) = (c ∗ a) ∗ (b ∗ a),
(a ∗ (a ∗ a)) ∗ (b ∗ c) = (a ∗ b) ∗ ((a ∗ a) ∗ c);
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(4) it is 1-nuclear a�ne over a commutative Moufang loop.

Proof sketch. (2)⇒ (1). For any a, b, c ∈ Q, we have (b∗a)∗(a∗c) = (b∗a)∗(a∗c).
Hence, by (2), 〈a, b, c〉 is medial.

(1)⇒ (3). Given a, b, c ∈ Q, consider the subquasigroup 〈a, b, c〉. It is medial,
hence the two identities hold for a, b, c.

(3)⇒ (4). First of all, we need to prove the following two additional identities:
(a ∗ a) ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c) and (a ∗ b) ∗ (c ∗ a) = (a ∗ c) ∗ (b ∗ a) (in Kepka's
terminology, to prove that (Q, ∗) is a WAD-quasigroup). A proof can be found
quickly by an automated theorem prover, or read in [55]. Now we can follow
Kepka's proof from [43], whose structure is similar to our proof of Theorem 3.1.

Pick an arbitrary square e ∈ Q (i.e. e = e′ ∗ e′ for some e′) and de�ne the loop
operation on Q by a · b = (a/e) ∗ (e\b). We can recover the quasigroup operation
as a∗b = Re(a) ·Le(b), where Le, Re are translations in (Q, ∗). To show that (Q, ·)
is a commutative Moufang loop, it is su�cient to verify condition (3) of Theorem
2.2 with f = ReL

−1
e . The proof is rather technical, see [42, Proposition 4.8(iii)]. It

also follows that the mapping f is (-1)-nuclear, and another technical calculation,
see [43, Lemma 3(iii)], shows that the mappings Le, Re are 1-nuclear. Finally,
we can reuse the second part of our proof of Theorem 3.1 to show that the two
mappings are a�ne and that the underlying automorphisms commute, since we
only used the identity (a∗a)∗ (b∗ c) = (a∗ b)∗ (a∗ c) and its dual in the proof. We
have to be careful about non-associativity of the multiplication, but fortunately, all
calculations are correct thanks to the fact that the mappings Le, Re are 1-nuclear,
hence preserve the nucleus (in particular, all elements resulting by application of
Le, Re on 1 are nuclear).

(4) ⇒ (2). The idea is, �nd a subloop Q′ of (Q, ·) that contains all four
elements a, b, c, d and is generated by three elements u, v, w that associate. Then,
by Moufang's theorem [18], Q′ is an abelian group, and thus the subquasigroup
〈a, b, c, d〉 is medial by Theorem 3.1. The construction is described in [43, Theorem
2 (vi)⇒(vii)].

As a corollary to Theorem 3.2, we settle the case of distributive quasigroups.

Theorem 3.3 ([80]). The following are equivalent for an idempotent quasigroup
(Q, ∗):

(1) it is trimedial;

(2) for every a, b, c, d ∈ Q, if (a∗b)∗(c∗d) = (a∗c)∗(b∗d) then the subquasigroup
〈a, b, c, d〉 is medial;

(3) it is distributive;

(4) it is 1-nuclear linear over a commutative Moufang loop.



106 D. Stanovský

Proof. Look at Theorem 3.2. Conditions (1) and (2) are identical. Under the as-
sumption of idempotence, condition (3) of Theorem 3.2 is equivalent to distributiv-
ity. To obtain the equivalence of the fourth conditions, we observe that an idempo-
tent quasigroup which is 1-nuclear a�ne over a commutative Moufang loop (Q, ·)
is actually linear over (Q, ·): with ϕ = Ruϕ̃ and ψ = Rvψ̃, thanks to nuclearity and
commutativity, we have a∗b = ϕ̃(a)ψ̃(a)uv, and since 1 = 1∗1 = ϕ̃(1)ψ̃(1)uv = uv
we see that a ∗ b = ϕ̃(a)ψ̃(a) is a linear representation.

For idempotent quasigroups, the linear representation a ∗ b = ϕ(a) · ψ(b) is
determined by either one of the automorphisms ϕ or ψ, since a = a∗a = ϕ(a)·ψ(a),
hence ϕ(a) = a/·ψ(a) or ψ(a) = ϕ(a)\·a. Mappings ϕ,ψ satisfying ϕ(a) ·ψ(a) = a
will be called companions. Note that the companion of an automorphism is not
necessarily a permutation or an endomorphism! However, if it is an endomorphism,
then the two mappings commute.

Example 3.4. Combining Theorem 3.3 and Example 2.3, one can determine the
smallest non-medial distributive quasigroups. They have order 81 and there are
six of them (up to isomorphism) [49, Theorem 12.4]. A careful analysis of the
automorphisms of the loops (G1, ·) and (G2, ·) of Example 2.3 (see [49, Sections 5
and 6], respectively) leads to the following classi�cation:

1. (G1, ∗) with x ∗ y = x−1 · y−1.

2. (G1, ∗) with x∗y = ϕ(x) ·ψ(y) where ϕ(x) = (x2−x1)e1−x2e2−x3e3−x4e4
and ψ is its companion.

3. (G2, ∗) with x ∗ y =
√
x · √y. In (G2, ·), the mapping x 7→ x2 is a 1-nuclear

automorphism, and so is its inverse x 7→
√
x.

4. (G2, ∗) with x ∗ y = x−1 · y2.

5. (G2, ∗) with x ∗ y = x2 · y−1.

6. (G2, ∗) with x ∗ y = ϕ(x) · ψ(y) where ϕ(x) = −x1e1 − x2e2 − (3x1 + x3)e3
and ψ is its companion.

Theorem 3.3 has an interesting connection to design theory. It is well known
that Steiner triple systems correspond to a certain class of (�nite) idempotent
quasigroups, called Steiner quasigroups. A�ne Steiner triple systems, constructed
over the a�ne spaces (F3)

k, correspond to medial Steiner quasigroups, ((F3)
k, ∗)

with a ∗ b = −a − b. Hall triple systems can be de�ned by the property that
every subsystem generated by three points is a�ne. Theorem 3.3 implies that the
corresponding quasigroups are precisely the distributive Steiner quasigroups. As a
consequence, one can obtain, for instance, the enumeration of Hall triple systems,
see the numbers DQ(n) in Table 1 (the one of order 81 is item 1. of Example 3.4).
We refer to [6, 16] for details and other relations between distributive quasigroups,
�nite geometries and combinatorial designs.
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Theorems 3.2 and 3.3 can be further generalized in several directions. For
example, it was proved by Kepka, Kinyon and Phillips [47, Theorem 1.2] that
the class of F-quasigroups, properly containing the trimedial quasigroups, admits
a 1-nuclear (−1)-Moufang-central a�ne representation over NK-loops, a class of
Moufang loops that are sums of their nucleus and Moufang center. Another direc-
tion is weakening the unique divisibility condition, see the comprehensive studies
by Jeºek, Kepka and N¥mec [36, 38, 39, 45, 49]. In all of these papers, a self-
dual condition (such as trimediality or both-sided distributivity) is essential for
linearization. The one-sided case is quite di�erent and will be studied in Section
5. Nevertheless, we will be able to obtain the representation from Theorem 3.3 as
a consequence of the one-sided theory.

3.2. Structure and enumeration. Theorem 3.3 allows to use the well developed
theory of commutative Moufang loops to build the structure theory of distributive
quasigroups. We will describe a few examples. Further results can be found in the
comprehensive survey [7].

We start with Galkin's interpretation of the Fischer-Smith theorem [23, 77].

Theorem 3.5 ([23]). Let Q be a �nite distributive quasigroup of order pn1
1 ·. . .·p

nk

k

where p1, . . . , pk are pairwise di�erent primes. Then

Q ' Q1 × . . .×Qk

where |Qi| = pni
i . Moreover, if Qi is not medial, then pi = 3 and ni ≥ 4.

The story of the proof goes as follows. Let Q be a �nite distributive quasi-
group. The �rst step was Fischer's proof [20] that LMlt(Q) is solvable, using
substantial results from group theory, including the Feit-Thompson theorem and
the Brauer-Suzuki theorem. Then Smith [77] was able to strengthen Fischer's the-
orem, while avoiding the heavy �nite group machinery, by combining Theorem 3.3
and the Bruck-Slaby theorem [10, Chapter VIII] stating that �nite commutative
Moufang loops are centrally nilpotent. Smith's result says that the derived sub-
group LMlt(Q)′ is the direct product of a 3-group and an abelian group of order
coprime to 3 (hence LMlt(Q)′ is nilpotent and LMlt(Q) is solvable, as proved by
Fischer). Finally, Galkin [23] observed that his idea of minimal representation
(explained in our Section 6) implies that the quasigroup Q decomposes in a way
analogous to the decomposition of LMlt(Q)′. Using the fact that every 3-generated
subquasigroup is medial (see Theorem 3.3), one concludes that a non-medial dis-
tributive quasigroup has at least 34 = 81 elements.

A somewhat di�erent approach to the Fischer-Smith theorem, based on the
homogeneous representation of Section 6, is presented in [29].

An interesting story is the enumeration of distributive quasigroups. Again,
Theorem 3.3 is crucial here, as it allows to focus on the enumeration of commu-
tative Moufang loops and their automorphism groups. It is not di�cult to prove
(see e.g. [49, Lemma 12.3]) that two commutative Moufang loops, Q1 and Q2,
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and their nuclear automorphisms, ψ1 and ψ2, respectively, provide isomorphic dis-
tributive quasigroups if and only if there is a loop isomorphism ϕ : Q1 → Q2 such
that ψ2 = ϕψ1ϕ

−1.

In particular, the lemma applies to abelian groups, hence the number MI(n)
of medial idempotent quasigroups of order n up to isomorphism can be determined
using the classi�cation of �nite abelian groups and the corresponding linear alge-
bra. The function MI(n) is indeed multiplicative (i.e. MI(mn) = MI(m)MI(n)
for every m,n coprime) and explicit formulas forMI(pk), p prime and k ≤ 4, were
found by Hou [34] (in his paper, (�nite) medial idempotent quasigroups are re-
ferred to as connected Alexander quandles; the formulas are given in [34, equation
(4.2)] and the complete list of quasigroups is displayed in [34, Table 1]). See our
Table 3 for the �rst 47 values of MI(n).

Theorem 3.5 says that the interesting (i.e. directly indecomposable) non-medial
distributive quasigroups have orders n = 3k, k ≥ 4. Table 1 summarizes some of
the enumeration results found in literature. CML(n) denotes the number of non-
associative commutative Moufang loops of order n up to isomorphism, as calcu-
lated in [49]; the next four rows describe the numbers of non-medial quasigroups
of order n up to isomorphism in the following classes: 3M(n) refers to trime-
dial quasigroups [46], D(n) to distributive quasigroups [49], DM(n) to distribu-
tive Mendelsohn quasigroups [16], and DS(n) to distributive Steiner quasigroups
[6, 44]; the last row displays the medial case.

n 3 32 33 34 35 36

CML(n) 0 0 0 2 6 ≥ 8
3M(n) 0 0 0 35
D(n) 0 0 0 6

DM(n) 0 0 0 2 ≥ 3
DS(n) 0 0 0 1 1 3
MI(n) 1 8 30 166

Table 1: Enumeration of commutative Moufang loops and of various classes of
distributive quasigroups.

Another interesting enumeration result says that the smallest non-medial hamil-
tonian distributive quasigroup has order 36, and that there are two of them [33].
This is perhaps the deepest application of the module-theoretical approach to
distributive quasigroups.

Finally, let us mention the property called symmetry-by-mediality. An idem-
potent binary algebra is called symmetric-by-medial, if it has a congruence α
such that its blocks are symmetric (i.e. both left and right involutory), and the
factor over α is medial. (In idempotent algebras, congruence blocks are always
subalgebras.) Symmetric distributive quasigroups are commutative, and they are
precisely the distributive Steiner quasigroups. Using Bruck's associator calculus
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for Moufang loops, Belousov proved that distributive quasigroups are symmetric-
by-medial [3, Theorem 8.7]. Again, the theorem generalizes to a non-quasigroup
setting [37, 81].

4. Conjugation and cores

Let (G, ·) be a group and Q a subset of G closed with respect to conjugation. Then
the binary algebra (Q, ∗) with

a ∗ b = aba−1

is a quandle, called a conjugation quandle over the group (G, ·). It is easy to
verify that every quandle admits a Cayley-like representation over a conjugation
quandle.

Proposition 4.1. Let (Q, ∗) be a quandle. Then a 7→ La is a quandle homomor-
phism of (Q, ∗) onto a conjugation quandle over the group LMlt(Q, ∗).

Proof. Left distributivity implies a ∗ (b ∗ (a\x)) = (a ∗ b) ∗ x, hence La ∗ Lb =
LaLbL

−1
a = La∗b.

This homomorphism is rarely an embedding, even for connected quandles.
However, it is an embedding for every latin quandle, because, in a latin quan-
dle, La(x) = a ∗ x 6= b ∗ x = Lb(x) for every a 6= b and every x. Hence, every
latin quandle is a conjugation quandle, up to isomorphism. This observation can
probably be attributed to Stein [84]. He also found the following criterion.

Proposition 4.2 ([84]). Let (G, ·) be a group, Q a subset of G closed with respect
to conjugation, and assume that for every a, b, c ∈ Q, aNG(c) = bNG(c) i� a = b.
Then the conjugation quandle (Q, ∗) is latin.

A few structural results on quandles have been proved using the Cayley rep-
resentation. For instance, Kano, Nagao and Nobusawa [41] used it for involutory
quandles (in this case, the quandle is represented by involutions), and proved the
following characterization of involutory quandles that are latin.

Theorem 4.3 ([41]). A �nite involutory quandle (Q, ∗) is a quasigroup if and
only if the derived subgroup LMlt(Q, ∗)′ has odd order.

The proof is not easy and uses Glauberman's Z∗-theorem. They conclude that
involutory left distributive quasigroups are solvable, and possess the Lagrange and
Sylow properties (see Section 6.3 for a more comprehensive discussion).

The Cayley representation is fundamental in Pierce's work on involutory quan-
dles [74], and McCarron [59] used conjugation to represent simple quandles and
to argue that there were no connected quandles with 2p elements, for any prime
p > 5 (see also Section 6.2).
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Let (G, ·) be a group, or, more generally, a Bol loop. The binary algebra (G, ∗)
with

a ∗ b = a · b−1a

is an involutory quandle, called the core of (G, ·). The core is a quasigroup if
and only if the loop is uniquely 2-divisible [3, Theorem 9.4]. The core operation
was introduced by Bruck who proved that isotopic Moufang loops have isomorphic
cores [10]. It was later picked up by Belousov and others to construct some of the
�rst examples of involutory left distributive quasigroups, see e.g. [3, Chapter IX]
or [89].

Example 4.4. The smallest non-medial involutory left distributive quasigroup has
order 15 and it is the core of the B-loop constructed in Example 2.6. Explicitly,
it is the quasigroup (Z5 × Z3, ∗) with

(a, x) ∗ (b, y) = (µx,ya− b,−x− y)

where µx,y ∈ Z∗5 are given by the following table:

0 1 2
0 2 −1 −1
1 −1 2 −1
2 −1 −1 2

5. Left distributive quasigroups: Isotopy

5.1. Right linear representation. Restricting self-distributivity to only one
side, it is natural to expect that the loop counterpart will admit one of the weaker
one-sided loop conditions mentioned in Section 2.2. There are good news and bad
news. Left distributive quasigroups are polynomially equivalent to a certain class
of "non-associative modules", satisfying a (very) weak associative law. However,
the connection is non-linear (only one of the de�ning mappings is an automor-
phism), and the corresponding class of loops, called Belousov-Onoi loops here,
extends beyond the well-established theories (except for some special cases). The
correspondence is therefore of limited utility at the moment. Nevertheless, it is in-
teresting to look at details. Most of the ideas of the present section were discovered
by Belousov and Onoi [5], but our presentation is substantially di�erent.

Let (Q, ·) be a loop and ψ its automorphism. We will call (Q, ·, ψ) a Belousov-
Onoi module (shortly, BO-module) if

ϕ(ab) · ψ(ac) = a · ϕ(b)ψ(c) (BO)

holds for every a, b, c ∈ Q, where ϕ(x) = x/·ψ(x) is the companion mapping
for ψ. (The explanation why is it reasonable to consider such structures as "non-
associative modules" has been explained at the end of Section 2.3.) To match the
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identity (BO) to the Bol identity, substitute ψ−1(ac) for c and obtain an equivalent
identity

ϕ(ab) · (ψ(a) · ac) = a · (ϕ(b) · ac). (BO')

Example 5.1. We state a few examples of Belousov-Onoi modules.

1. Every loop (Q, ·) turns into the BO-module (Q, ·, id). If ψ(x) = x, then
ϕ(x) = 1 and thus the identity (BO) holds.

2. Every group (Q, ·) with any automorphism ψ turns into the BO-module
(Q, ·, ψ). Condition (BO) is easily veri�ed.

3. Every Bruck loop (Q, ·) turns into the BO-module (Q, ·,−1 ). If ψ(x) = x−1,
then ϕ(x) = x2 by power-associativity, and we verify (BO') by (ab)2 · (a−1 ·
ac) = (ab)2 · c = a · (b2 · ac) using Lemma 2.4 in the second step.

Call a BO-module non-trivial if ψ 6= id. There are relatively few loops that turn
into a non-trivial BO-module, see the values of BOM(n) in Table 2. Nevertheless,
nearly all groups and all Bruck loops (except possibly those where x−1 = x) have
the property.

A BO-module turns naturally into a quandle. The proof illustrates very well
the conditions imposed by the de�nition.

Proposition 5.2. Let (Q, ·, ψ) be a Belousov-Onoi module, ϕ the companion map-
ping, and de�ne for every a, b ∈ Q

a ∗ b = ϕ(a) · ψ(b).

Then (Q, ∗) is a quandle. The quandle is a quasigroup if and only if ϕ is a
permutation.

Proof. Idempotence explains the de�nition of the companion mapping: we have
a ∗ a = a i� ϕ(a) · ψ(a) = a i� ϕ(a) = a/·ψ(a).

Unique left division follows from the fact that ψ is a permutation: we have
a ∗ x = ϕ(a) · ψ(x) = b i� ψ(x) = ϕ(a)\·b i� x = ψ−1(ϕ(a)\·b).

Left distributivity is veri�ed as follows: expanding the de�nition of ∗ and using
the identity (BO), we obtain

(a ∗ b) ∗ (a ∗ c) = ϕ(ϕ(a)ψ(b)) · ψ(ϕ(a)ψ(c)) = ϕ(a) · (ϕψ(b) · ψ2(c)),

and since ψ is an automorphism and ϕ a term operation, we have ϕψ = ψϕ, and
thus the right hand side equals

ϕ(a) · (ψϕ(b) · ψ2(c)) = ϕ(a) · ψ(ϕ(b)ψ(c)) = a ∗ (b ∗ c).

Unique right division is dual to the left case: it happens if and only if ϕ is a
permutation.



112 D. Stanovský

Example 5.3. Consider the three items from Example 5.1.

1. Any trivial BO-module (Q, ·, id) results in a projection quandle (Q, ∗) with
a ∗ b = b.

2. The BO-module (Q, ·, ψ), constructed over a group with an automorphism,
results in a homogeneous quandle (Q, ∗) with

a ∗ b = aψ(a−1b).

If Q is �nite, then (Q, ∗) is a quasigroup if and only if ψ is a regular auto-
morphism (i.e. the unit is the only �xed point of ψ). Belousov [3, Theorem
9.2] proves that all left distributive quasigroups isotopic to a group result in
this particular way, and Galkin [24, Section 5] shows a number of interesting
properties of such quasigroups. See Construction 6.1 for a generalization of
this idea which covers all left distributive quasigroups.

3. The BO-module (Q, ·,−1 ), constructed over a Bruck loop, results in an invo-
lutory quandle (Q, ∗) with a ∗ b = a2b−1. It follows from Lemma 2.4(2) that
x 7→ x2 is a homomorphism from (Q, ∗) to the core of (Q, ·); hence, if (Q, ·)
is a B-loop, then the two constructions result in isomorphic quasigroups. In
Theorem 5.9, we shall see that all involutory left distributive quasigroups
result this way.

Relatively few quandles admit a Belousov-Onoi representation as in Proposi-
tion 5.2, see the values of BOQ(n) in Table 2. Even connected quandles do not
always result from a BO-module: for example, a quick computer search reveals
that none of the quandles constructed over a BO-module of order 6 is connected
(compare to [35, Table 2]). In the latin case, however, the situation is di�erent.
The setting of BO-modules was designed by Belousov and Onoi in order to prove
that all left distributive quasigroups (latin quandles) admit a representation as in
Proposition 5.2.

A loop (Q, ·) possesing an automorphism ψ such that (B, ·, ψ) is a BO-module
and the companion mapping for ψ is a permutation, will be called a Belousov-Onoi
loop (shortly, BO-loop) with respect to ψ. (The original name was S-loops, for no
apparent reason. Our de�nition uses the characterizing condition of [5, Theorem
4].)

Proposition 5.4 ([5]). Let (Q, ∗) be a left distributive quasigroup, e ∈ Q and let

a · b = (a/e) ∗ (e\b).

Then (Q, ·) is a Belousov-Onoi loop with respect to ψ = Le, the companion mapping
is ϕ = Re and

a ∗ b = ϕ(a) · ψ(b).

Moreover, di�erent choices of e result in isomorphic loops.
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Proof. First notice that a ∗ b = (a ∗ e) · (e ∗ b) = ϕ(a) ·ψ(b). Indeed, both ϕ,ψ are
permutations and ϕ is the companion for ψ, since ϕ(a) · ψ(a) = a. To prove that
ψ is an automorphism of (Q, ·), we calculate for every a, b ∈ Q

ψ(ab) = e ∗ ab = e ∗ ((a/e) ∗ (e\b))
= (e ∗ (a/e)) ∗ (e ∗ (e\b))
= ((e ∗ a)/e) ∗ (e\(e ∗ b) = (e ∗ a) · (e ∗ b) = ψ(a)ψ(b).

In the third and fourth steps, we used left distributivity: in the latter case, since
Le is an automorphism of (Q, ∗), we also have Le(x/y) = Le(x)/Le(y) for every
x, y. To prove the condition (BO), we calculate for every a, b ∈ Q

ϕ(ab) · ψ(ac) = (ab ∗ e) · (e ∗ ac) = ab ∗ ac
= ((a/e) ∗ (e\b)) ∗ ((a/e) ∗ (e\c))
= (a/e) ∗ ((e\b) ∗ (e\c))
= (a/e) ∗ (e\(b ∗ c)) = a · (b ∗ c) = a · ϕ(b)ψ(c).

In the fourth and �fth steps, we used left distributivity: in the latter case, using
the fact that L−1e is also an automorphism of (Q, ∗).

Let e1, e2 ∈ Q and consider an automorphism ρ of (Q, ∗) such that ρ(e1) =
e2 (for example, we can take ρ = Le2/e1). Then ρ is an isomorphism of the
corresponding loops (Q, ·1) and (Q, ·2), since

ρ(a ·1 b) = ρ((a/e1) ∗ (e1\b)) = (ρ(a)/ρ(e1)) ∗ (ρ(e1)\ρ(b)) = ρ(a) ·2 ρ(b)

for every a, b ∈ Q.

If (Q, ·) is a Belousov-Onoi loop with respect to ψ, the companion mapping
ϕ is usually not an automorphism. In such a case, the representation of (Q, ∗)
over (Q, ·) will be called right linear. In Proposition 5.7, we shall prove that ϕ
is an automorphism if and only if the loop is commutative Moufang. Therefore,
according to Theorem 3.3, we do not have a linear representation, unless we handle
a (both-side) distributive quasigroup.

Still, the left distributive quasigroup (Q, ∗) (formally, the algebra (Q, ∗, \, /))
is polynomially equivalent to the Belousov-Onoi module (Q, ·, ψ) (formally, the al-
gebra (Q, ·, \·, /·, ψ, ψ−1)): all operations in Proposition 5.4 were de�ned polyno-
mially, the same can be shown about the division operations, and ϕ(x) = x/·ψ(x)
is a polynomial, too. In fact, we can think of the mapping ϕ as quadratic over the
BO-module (Q, ·, ψ), as the variable x appears only twice in its de�nition.

Combining Propositions 5.2 and 5.4, we can formulate the following represen-
tation theorem.

Theorem 5.5 ([5]). The following are equivalent for a quasigroup (Q, ∗):

(1) it is left distributive;
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(2) it is right linear over a Belousov-Onoi loop (with respect to the automorphism
used in the right linear representation).

Example 5.6. The smallest non-associative Belousov-Onoi loops have order 15,
and there are two of them (up to isomorphism). One is a B-loop, see Example 2.6.
The other one can be constructed by a modi�cation of the previous construction.
Consider the loop (Z5 × Z3, ·) with

(a, x) · (b, y) = (ϕx,ya+ b+ θx,y, x+ y)

where ϕx,y ∈ Z∗5 are as before, and θx,y ∈ Z5 are given by the following table:

0 1 2
0 0 0 0
1 0 −1 1
2 0 −2 2

It is straightforward to check that this is a BO-loop with respect to the automor-
phism (a, x) 7→ (−a+ δx,2,−x) where δx,y = 1 if x = y and δx,y = 0 otherwise. It
is not a B-loop, it does not even have the LIP. It is also an abelian extension of
Z5 by Z3. If we set θx,y = 0 for every x, y, we would have obtained the B-loop of
Example 2.6.

Correspondingly, the smallest non-medial left distributive quasigroups have
order 15, and there are two of them (up to isomorphism). One is involutory, see
Example 4.4. The other one can be constructed as (Z5 × Z3, ∗) with

(a, x) ∗ (b, y) = (µx,ya− b+ τx,y,−x− y)

where µx,y ∈ Z∗5 is as before, and τx,y = δx−y,1 for every x, y. (See [13, 14] for a
generalization of this construction, originally suggested by Galkin [26].)

5.2. Belousov-Onoi loops. Given the correspondence of Theorem 5.5, a natural
question arises. What are these Belousov-Onoi loops? Can we use an established
part of loop theory to investigate left distributive quasigroups? The current state of
knowledge is unsatisfactory in this respect. In the rest of the section, we summarize
most of the known results on BO-loops.

First of all, it is not even clear how to construct Belousov-Onoi loops which
are not B-loops. All BO-loops of order less than 15 are abelian groups, and there
are two non-associative BO-loops of order 15, see Example 5.6. Nowadays, these
facts are easy to check on a computer, but back in the 1970s, this was realized
only indirectly, via Theorem 5.5, using the theory of left distributive quasigroups.
The �rst example of a left distributive quasigroup not isotopic to any Bol loop
was constructed by Onoi in [67]. The construction is quite intricate, and occupies
a major part of the paper: Onoi starts with 2 × 2 matrices over a certain non-
associative ring with four elements, takes a quadratic operation on pairs of the
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matrices, and then creates a left distributive isotope; thus, the quasigroup has
order 216. The smallest example, of order 15, was found later by Galkin in [26].
We see the situation twisted: it is not the loops that reveal properties of the
quasigroups, it is the other way around!

Table 2 shows some enumeration results related to Belousov-Onoi loops. The
upper part compares the numbers L(n) of all loops, BOM(n) of loops that turn
into a non-trivial BO-module, and BOL(n) of BO-loops, of order n up to isomor-
phism. The lower part compares the numbers Q(n) of all quandles, BOQ(n) of
quandles that admit a Belousov-Onoi representation as in Proposition 5.2, and
LQ(n) of latin quandles (left distributive quasigroups), of order n up to isomor-
phism. The sequences L(n), Q(n) are well known [66], the other numbers were
calculated using an exhaustive computer search.

n 1 2 3 4 5 6 7 8
L(n) 1 1 1 2 6 109 23746 106228849

BOM(n) 0 0 1 1 1 3 1 144
BOL(n) 1 0 1 1 1 0 1 3

Q(n) 1 1 3 7 22 73 298 1581
BOQ(n) 1 1 2 3 4 3 6 9
LQ(n) 1 0 1 1 3 0 5 2

Table 2: Enumeration of small loops and quandles related to the Belousov-Onoi
representation.

In the rest of the section, we present a few results that relate the Belousov-
Onoi loops to more established classes of loops, and specialize the correspondence
between left distributive quasigroups and Belousov-Onoi loops, proved in Theorem
5.5, on two important subclasses: the distributive quasigroups, and the involutory
left distributive quasigroups.

We start with a variation on [68, Theorem 2]. Our proof, based on Theorem
2.2 (the P�ugfelder's part), is much simpler.

Proposition 5.7. Let (Q, ·) be a loop, ψ an automorphism of (Q, ·) and assume its
companion mapping ϕ is a permutation. Then any two of the following properties
imply the third:

• (Q, ·) is a Belousov-Onoi loop with respect to ψ;

• (Q, ·) is a commutative Moufang loop;

• ϕ is an automorphism.

Proof. According to Theorem 2.2, (Q, ·) is a commutative Moufang loop if and
only if, for some mapping f on Q, the identity f(x)y · xz = f(x)x · yz holds.
Let f = ϕψ−1 and substitute x = ψ(a), y = ϕ(b), z = ψ(c). We obtain
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that (Q, ·) is a commutative Moufang loop if and only if ϕ(a)ϕ(b) · ψ(a)ψ(c) =
ϕ(a)ψ(a) · ϕ(b)ψ(c) = a · ϕ(b)ψ(c) for every a, b, c ∈ Q. Consider the following
three expressions:

X = ϕ(a)ϕ(b) · ψ(a)ψ(c)
Y = a · ϕ(b)ψ(c)
Z = ϕ(ab) · ψ(a)ψ(c)

We just proved that X = Y for every a, b, c ∈ Q i� (Q, ·) is commutative Moufang.
According to condition (BO), Y = Z for every a, b, c ∈ Q i� (Q, ·) is a BO-loop with
respect to ψ. And, obviously, X = Z for every a, b, c ∈ Q i� ϕ is an automorphism
of (Q, ·).

Now we can reprove Belousov's result that every distributive quasigroup is
linear over a commutative Moufang loop (a similar argument is presented in [68,
Theorem 3]).

Proof of Theorem 3.3, (3)⇒ (4). Let (Q, ∗) be a distributive quasigroup, pick e ∈
Q a let a · b = (a/e) ∗ (e\b). Since (Q, ∗) is left distributive, (Q, ·) is a BO-loop
with respect to Le, which in turn is an automorphism of (Q, ·). Since (Q, ∗) is
right distributive, (Q, ·) is also a right(!) BO-loop (this is irrelevant for us) with
respect to Re, which in turn is an automorphism of (Q, ·). We showed that the
companion of Le is an automorphism, hence (Q, ·) is a commutative Moufang loop
by Proposition 5.7.

Next we show that B-loops are precisely the BO-loops with respect to the left
inverse mapping.

Proposition 5.8 ([5, Theorem 8]). Let (Q, ·) be a loop and ψ(x) = x\·1. Then
(Q, ·) is a Belousov-Onoi loop with respect to ψ if and only if it is a B-loop.

Proof. The backward implication was proved in Example 5.1, item 3. In the
forward direction, condition (BO) with b = 1 and c = a says that ϕ(a)ψ(a2) =
aψ(a) = 1, and thus

ϕ(a) = 1/·ψ(a2) = 1/·(a2\·1) = a2

for every a ∈ Q. Hence, (Q, ·) is a uniquely 2-divisible loop with the LAIP. Now,
condition (BO), upon substitution of ψ−1(c) for c, says that (ab)2 · ((a\·1) · c) =
a · b2c, and we can use Theorem 2.5 to conclude that (Q, ·) is a Bol loop.

With the aid of Proposition 5.8, we establish the correspondence between in-
volutory left distributive quasigroups and B-loops. This connection has a rich
history: it was �rst realized by Robinson in his 1964 PhD thesis, but published
only 15 years later in [75]. Independently, Belousov and Florya [4, Theorem 3]
noticed that involutory left distributive quasigroups are isotopic to Bol loops, but
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they did not formulate the full correspondence. Independently, the theorem was
formulated by Kikkawa [52] (at the �rst glance, it is not obvious that his loop
axioms are equivalent to those of B-loops, as he uses condition (2') of Theorem 2.5
instead of the Bol identity). The theorem was rediscovered once more in [62, The-
orems 2.5 and 2.7]. Unlike all of the other representation theorems in the present
paper, Theorem 5.9 has a fairly straightforward direct proof, and contemporary
ATP systems can prove it within a second.

Theorem 5.9 ([52, 62, 75]). The following are equivalent for a quasigroup (Q, ∗):

(1) it is involutory left distributive;

(2) there is a B-loop (Q, ·) such that a ∗ b = a2 · b−1.

Proof. (1)⇒ (2) Consider the quasigroup operation a·b = (a/e)∗(e\b). According
to Theorem 5.5, (Q, ·) is a BO-loop with respect to Le. If we prove that Le(x) =
x\·1, Proposition 5.8 applies and (Q, ·) is a B-loop. Then, clearly, the companion
mapping is ϕ(x) = x2, and thus a ∗ b = a2 · b−1.

We need to check that Le(a) = e ∗ a equals a\·1 = a\·e for every a ∈ Q.
We have e ∗ a = a\·e i� a · (e ∗ a) = e i� (a/e) ∗ a = e (we expanded the
de�nition of ·). Now multiply the last identity by a/e from the left, and obtain
(a/e) ∗ ((a/e) ∗ a) = (a/e) ∗ e = a, which is always true thanks to the involutory
law.

(2) ⇒ (1) Left distributivity was veri�ed in Proposition 5.2 through Example
5.1. It is involutory, as a ∗ (a ∗ b) = a2(a2b−1)−1 = a2(a−2b) = b thanks to the
AIP and LIP in Bruck loops.

As far as we know, only two papers, [5, 68], are devoted to Belousov-Onoi
loops. We state two more results here. The �rst one identi�es some important
subclasses of BO-loops, see [5, Theorem 2], [68, Theorem 1] and [5, Theorem 3],
respectively.

Proposition 5.10 ([5, 68]). Let (Q, ·) be a Belousov-Onoi loop.

(1) It is Bol if and only if it is left alternative.

(2) It is Moufang i� it is right alternative, i� it has the RIP, i� the identity
(xy)−1 = y−1x−1 holds, i� the identity x · yx = xy · x holds.

(3) It is a group if and only if it is left alternative and every square is nuclear.

The second is a characterization of Belousov-Onoi loops that matches well with
Theorem 2.5 on B-loops.

Theorem 5.11 ([5]). The following are equivalent for a loop (Q, ·) with an auto-
morphism ψ such that its companion mapping ϕ is a permutation:

(1) it satis�es the identity ϕ(x) · ψ(x)y = xy and it is left automorphic as a
BO-module (i.e. the left inner mappings are automorphisms of (Q, ·, ψ));
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(1′) the identities ϕ(x) · ψ(x)y = xy and Lx,yψ = ψLx,y hold;

(2) it satis�es condition (BO).

Proof sketch. The equivalence of (1') and (2) is proved in [5, Theorem 4]. Condi-
tion (1') is a special case of (1). It remains to prove that in any BO-loop (Q, ·), ev-
ery inner mapping Lx,y is an automorphism of (Q, ·, ψ). It respects ψ as postulated
in (1'). According to Theorem 5.5, (Q, ·) is isotopic to a left distributive quasi-
group, and Belousov and Florya prove in [4, Theorem 2] that every loop isotope
of a left distributive quasigroup (actually, more generally, of any F-quasigroup) is
left automorphic.

We are not aware of any general structural results on left distributive quasi-
groups proved using the correspondence of Theorem 5.5. Actually, with the ef-
�cient methods we will describe in Section 6, the correspondence could be used
in the other direction, to investigate properties of Belousov-Onoi loops via left
distributive quasigroups.

Nevertheless, in the involutory case, loop theory helps considerably, as the
theory of Bruck loops is well developed. One example for all: Glauberman proved
that �nite B-loops are solvable, and that analogies of the Lagrange and Sylow
theorems hold (see [31, Section 8] for precise statements). Since a B-loop (Q, ·) and
its corresponding involutory left distributive quasigroup (Q, ∗) are polynomially
equivalent, they share all the properties de�ned by polynomial operations. For
instance, congruences and solvability. The polynomial correspondence uses a single
constant, e, therefore, the subloops of (Q, ·) are exactly the subquasigroups of
(Q, ∗) containing e. Since e can be chosen arbitrarily, the Lagrange and Sylow
properties are shared by (Q, ∗) as well. In Section 6.3, we put these results into a
broader context.

6. Left distributive quasigroups:

Homogeneous representation

6.1. Homogeneous representation. Our exposition in this section follows our
recent paper [35] where many older ideas are collected and adjusted to the mo-
dern quandle setting. A reader interested in more details (proofs in particular), is
recommended to consult [35]. Here we try to reference the original sources.

Recall that a quandle Q is homogeneous, if Aut(Q) acts transitively on Q.
Since LMlt(Q) is a subgroup of Aut(Q), all connected quandles (and thus all left
distributive quasigroups) are homogeneous.

It is not clear who came up with Construction 6.1. But it was certainly Galkin
[24] who recognized its importance for representing self-distributive algebraic struc-
tures, followed independently by Joyce and others (perhaps a partial credit could
be paid to Loos [57], too).
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Construction 6.1 ([24, 40]). Let (G, ·) be a group, H its subgroup, and ψ an
automorphism of (G, ·) such that ψ(a) = a for every a ∈ H. Such a triple (G,H,ψ)
will be called admissible. Denote G/H the set of left cosets {aH : a ∈ G}, and
consider the binary algebra Q(G,H,ψ) = (G/H, ∗) with

aH ∗ bH = aψ(a−1b)H.

It is straightforward to verify that Q(G,H,ψ) is a homogeneous quandle. If G is
�nite, then Q(G,H,ψ) is a quasigroup if and only if, for every a, u ∈ G, aψ(a−1) ∈
Hu implies a ∈ H.

Note that the operation can be written as aH ∗ bH = ϕ(a)ψ(b)H, where ϕ is
the companion mapping to ψ, so this really is, in a way, a variation on the isotopy
method. Also note that the special case Q(G, 1, ψ), with the trivial subgroup
H = 1, is the same construction as in Example 5.3, item 2.

Example 6.2. According to Theorem 3.1, medial idempotent quasigroups are
precisely the quasigroups Q(G, 1, ψ) where G is an abelian group and ψ is an
automorphism such that its companion is a permutation (and therefore an auto-
morphism, too).

In the present section, we will denote conjugation as ab = bab−1 (unlike most
texts on group theory, we use the right-left composition of mappings, hence it
is natural to use the dual notation for conjugation). Similarly, we will denote
aG = {ag : g ∈ G} the conjugacy class of a in G, Hb = {hb : h ∈ H}, and −b the
mapping x 7→ xb. If G is a group acting on a set X and e ∈ X, we will denote eG

the orbit containing e, and Ge the stabilizer of e.
The following observation appeared in many sources in various forms, its com-

plete proof can be found e.g. in [35, Section 3].

Proposition 6.3. Let (Q, ∗) be a quandle and e ∈ Q. Let G be a normal subgroup
of Aut(Q, ∗). Then (G,Ge,−Le) is an admissible triple and the orbit subquandle
(eG, ∗) is isomorphic to the quandle Q(G,Ge,−Le).

Proof sketch. Since −Le is a restriction of an inner automorphism to a normal
subgroup, it is an automorphism of G. It is straightforward to check that it �xes
the stabilizer pointwise. Consider the bijective mapping f : G/Ge → eG, αGe 7→
α(e). Again, it is straightforward to check that this is a quandle isomorphism
Q(G,Ge,−Le) ' (eG, ∗).

Consider three particular choices of the normal subgroup: G = Aut(Q, ∗),
G = LMlt(Q, ∗) and G = LMlt(Q, ∗)′, respectively. If G acts transitively on Q,
Proposition 6.3 claims the following:

(1) Every homogeneous quandle (Q, ∗) is isomorphic to Q(G,Ge,−Le) with G =
Aut(Q, ∗).
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(2) Every connected quandle (Q, ∗) is isomorphic to Q(G,Ge,−Le) with G =
LMlt(Q, ∗). This will be called the canonical representation of (Q, ∗).

(3) Every connected quandle (Q, ∗) is isomorphic to Q(G,Ge,−Le) with G =
LMlt(Q, ∗)′. This will be called the minimal representation of (Q, ∗). (To
make it work, one has to show that the actions of LMlt(Q, ∗) and LMlt(Q, ∗)′
have identical orbits [24, 40].)

Corollary 6.4 ([40, Theorem 7.1]). A quandle is isomorphic to Q(G,H,ψ) for
some admissible triple (G,H,ψ) if and only if it is homogeneous.

Why minimal representation? Galkin [24, Theorem 4.4] proved the following
fact: if a connected quandle (Q, ∗) is isomorphic to Q(G,H,ψ) for some admissible
triple (G,H,ψ), then LMlt(Q)′ embeds into a quotient of G. Hence, if Q is �nite,
the minimal representation is the one with the smallest group G.

Why canonical representation? Fix a set Q and an element e. We have a
1-1 correspondence between connected quandles (Q, ∗) on one side, and certain
con�gurations in transitive groups acting on Q on the other side. A quandle
envelope is a pair (G, ζ) where G is a transitive group on Q and ζ ∈ Z(Ge) (here
Z denotes the center) such that 〈ζG〉 = G. The correspondence is given by the
following two mutually inverse mappings:

connected quandle ↔ quandle envelope

(Q, ∗) → (LMlt(Q, ∗), Le)
Q(G,Ge,−ζ) ← (G, ζ)

If Q is �nite, then an envelope (G, ζ) corresponds to a latin quandle if and only if
ζ−1ζα has no �xed point for every α ∈ GrGe. Moreover, two envelopes (G1, ζ1)
and (G2, ζ2) yield isomorphic quandles if and only if there is a permutation f of

Q such that f(e) = e, ζf1 = ζ2 and Gf1 = G2 (in particular, the two groups are
isomorphic). See [35, Section 5] for details, and [35, Section 7] for a plenty of
illustrative examples (the correspondence seems to be an original contribution of
the paper).

Canonical representation is arguably the most powerful tool currently available
to study connected quandles, and left distributive quasigroups in particular, as we
shall see in the remaining part of the section.

6.2. Enumeration. Canonical representation allows to enumerate connected
quandles (left distributive quasigroups in particular) with n elements, provided a
classi�cation of transitive groups of degree n. Currently, such a library is available
for n ≤ 47. The enumeration of small connected quandles was carried out in
[35, 90]. Here, in Table 3, we present the numbers of quasigroups, where LD(n)
refers to non-medial left distributive ones, and ILD(n) to non-medial involutory
left distributive ones, of order n up to isomorphism. We recall from Section 3.2
that MI(n) denotes the number of medial idempotent quasigroups and can be
determined by Hou's formulas [34].
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

LD(n) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
ILD(n) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

MI(n) 1 0 1 1 3 0 5 2 8 0 9 1 11 0 3 9

n 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

LD(n) 0 0 0 0 2 0 0 0 0 0 32 2 0 0 0 0
ILD(n) 0 0 0 0 1 0 0 0 0 0 4 0 0 0 0 0

MI(n) 15 0 17 3 5 0 21 2 34 0 30 5 27 0 29 8

n 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

LD(n) 2 0 0 1 0 0 2 0 0 0 0 0 12 0 0
ILD(n) 1 0 0 0 0 0 1 0 0 0 0 0 3 0 0

MI(n) 9 0 15 8 35 0 11 6 39 0 41 9 24 0 45

Table 3: Enumeration of small left distributive quasigroups.

From the historical perspective, the �rst serious attempt on enumeration was
carried out by Galkin [26] who calculated (without a computer!) the numbers
LD(n) for n < 27, and found that LD(27) ≥ 3. A few results in the involutory
case can be found in an earlier paper by Nobusawa [64]. In [90], Vendramin
enumerated connected quandles of size n ≤ 35, which was the state-of-the-art
in the classi�cation of transitive groups at the time, but his algorithm works for
larger orders as well.

One can make a few observations about Table 3. Most obviously, we do not
see any left distributive quasigroups (medial or not) with 4k+2 elements. This is
true for every k, as proved by Stein already in the 1950s [83, Theorem 9.9].

Theorem 6.5 ([83]). There are no left distributive quasigroups of order 4k + 2,
for any k ≥ 0.

The fact is easy to observe in the medial case: any medial idempotent quasi-
group of order 4k+2 is linear over an abelian group which is the direct product of
Z2 and a group of odd order; however, there is no idempotent quasigroup of order
2. Stein's remarkable argument uses a topological reasoning, constructing a trian-
gulated polyhedron from the graph of the quasigroup and discussing parity of its
Euler characteristic (for details, see [83] or [30, Section 6]). In [85], Stein observed
that the result extends to all homogeneous quasigroups, since each of them is iso-
topic to an idempotent quasigroup and the same method as in the self-distributive
case proves non-existence. In [24, Theorem 6.1], Galkin proved Stein's theorem
using a short group theoretical argument about the minimal representation.

Let us note that connected quandles of order 4k + 2 do exist, although there
are no connected quandles with 2p elements for any prime p > 5 [35, 59].
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Our second observation about Table 3 is that there are severe restrictions on
the admissible orders of non-medial left distributive quasigroups. Many gaps are
justi�ed by the following theorem.

Theorem 6.6 ([19, 32]). Every connected quandle with p or p2 elements, p prime,
is medial.

The prime case was proved by Galkin [24] for quasigroups, and by Etingof,
Soloviev and Guralnick [19] for connected quandles. A conceptually simpler proof
using canonical representation can be found in [35, Section 8], here is an outline.
First, use a group-theoretical result by Kazarin: in a �nite group G, if |aG| is
a prime power, then 〈aG〉 is solvable; with little work, it follows that if Q is a
connected quandle of prime power size, then LMlt(Q) is solvable. Now recall that
a transitive group (here: LMlt(Q)) acting on a set of prime size (here: Q) is
primitive, and apply a theorem of Galois stating that any �nite solvable primitive
group acts as a subgroup of the a�ne group over a �nite �eld.

The prime square case for quasigroups is claimed by Galkin in [30] but never
appeared in print; for connected quandles, it was solved by Graña [32]. For invo-
lutory left distributive quasigroups, the proof is substantially easier, see [64]. The
prime cubed case is discussed in [1], but the classi�cation is not easy to state.

We can also observe that there are no non-medial left distributive quasigroups
of order 2k for k = 1, 2, 3, 4, 5. However, this is not a general property: in fact,
the �rst ever example of a left distributive quasigroup not isotopic to a Bol loop,
constructed by Onoi [67], has 216 elements. The smallest non-medial connected
quandle with 2k elements exists for k = 5, but we do not know the smallest k in
the quasigroup case.

Our �nal observation is that there are precisely two non-medial left distributive
quasigroups of order 3p for p = 5, 7, 11, 13. Two such examples were constructed
for every prime p ≥ 5 by Galkin in [26] (the construction was studied recently in
a great detail in [13, 14], see also Example 5.6). It is an open problem whether
there exist any other connected quandles with 3p elements.

6.3. Structural properties. We will mention a few subalgebra and congruence
properties here. A �nite quasigroup of order n has the Lagrange property, if the
order of every subquasigroup divides n. It has the Sylow property, if, for every
maximal prime power divisor pk of n, there is a subquasigroup of order pk (stronger
versions of the Sylow property exist, and we refer to each particular paper for its
own precise de�nition). Informally, a left distributive quasigroup is called solvable,
if it can be constructed by a chain of extensions by medial quasigroups; formal
de�nitions di�er [25, 41, 65], but they seem to share the following property: a
left distributive quasigroup is solvable if and only if its left multiplication group
is solvable. (We note that it is not at all clear what is the "correct" notion of
solvability for quasigroups and loops, see [82] for a thorough discussion; the par-
ticular choice made by Glauberman, following Bruck, is only one of the reasonable
options.)
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Finite involutory left distributive quasigroups are solvable and have the La-
grange and Sylow properties. This has been proved independently several times,
using each of the three methods we have discussed: through the conjugation repre-
sentation in [41], through the isotopy to B-loops (combining Theorem 5.9 and the
results of Glauberman on B-loops [31]), and through the homogeneous representa-
tion in [28]. In each case, the underlying group theoretical result is Glauberman's
Z∗-theorem, which is used to show that the left multiplication group is solvable.
An in�nite counterexample to solvability is presented in [28].

Later, Galkin generalized the results into the non-involutory setting. In [25],
he proves that every �nite solvable left distributive quasigroup has the Lagrange
property, but not necessarily the Sylow property (a counterexample of order 15
exists). In [27], he proves the Sylow property under the additional assumption
that the order of the quasigroup, and the order of its translations, are coprime
(this is always true in the involutory case).

Recall that all left distributive quasigroups isotopic to a group admit a ho-
mogeneous representation of the form Q(G, 1, ψ), cf. Example 5.3. They also
satisfy the Lagrange and Sylow properties [24, Theorem 5.3]. This fact is used to
show an important structural feature: a �nite left distributive quasigroup with no
non-trivial subquasigroups is medial [24, Theorems 5.5 and 7.2].

More information about Galkin's results on left distributive quasigroups can be
found in his survey paper [30, Section 6]. A part of Galkin's theory was translated
to English and clari�ed in [91].

7. Open problems

Several interesting problems appeared to us while writing the paper.

7.1. Commutator theory over "non-associative modules". Universal al-
gebra develops a commutator theory based on the notion of abelianess, related
to a�ne representation over classical modules (see [82] for the commutator the-
ory adapted to loops, and the references thereof). For instance, Theorem 3.1 can
be explained in this manner. Is there a meaningful weakening of the principle
of abelianess, related to a�ne representation over some sort of "non-associative
modules"? A one that would, for instance, explain Theorem 3.2? To what extent
the module theoretic methods can be adapted to the non-associative setting?

7.2. Non-idempotent generalization of left distributive quasigroups.

Find a "non-idempotent generalization" of Theorem 5.5: describe the class of
quasigroups (whose idempotent members are precisely the left distributive quasi-
groups) that are right a�ne over Belousov-Onoi loops; perhaps, impose an addi-
tional condition on the representation in order to obtain an elegant description of
the class. Theorem 3.2 shall follow as an easy consequence of this generalization,
just as it happens in the idempotent case (see Section 5.2). We are not aware of
any results even in the involutory case (generalizing Theorem 5.9).
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7.3. Enumeration. The generic problem is, to extend all enumeration results
presented in this paper. Perhaps the most interesting questions are:

1. distributive and trimedial quasigroups of order 35;

2. commutative Moufang loops of order 36 and the corresponding enumeration
of distributive and trimedial quasigroups of order 36;

3. connected quandles and left distributive quasigroups of order 3p, p prime, or
more generally, pq, p, q primes;

4. left distributive quasigroups of order 2k, k > 5 (cf. [67]).

Acknowledgement. I am indebted to my former student Jan Vlachý for a thor-
ough research on Galkin's papers and for explaining me their contents and signif-
icance. His remarkable student project [91] on enumeration of small left distribu-
tive quasigroups convinced me that this is the right approach to left distributive
quasigroups in particular, and connected quandles in general.
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