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Three lectures on automorphic loops

Petr Vojt¥chovský

Abstract. These notes accompany a series of three lectures on automorphic loops to be
delivered by the author at Workshops Loops '15 (Ohrid, Macedonia, 2015). Automorphic loops
are loops in which all inner mappings are automorphisms.

The �rst paper on automorphic loops appeared in 1956 and there has been a surge of interest
in the topic since 2010. The purpose of these notes is to introduce the methods used in the study
of automorphic loops to a wider audience of researchers working in nonassociative mathematics.

In the �rst lecture we establish basic properties of automorphic loops (�exibility, power-
associativity and the antiautomorphic inverse property) and discuss relations of automorphic
loops to Moufang loops.

In the second lecture we expand on ideas of Glauberman and investigate the associated oper-
ation (x−1\(y2x))1/2 and similar concepts, using a more modern approach of twisted subgroups.
We establish many structural results for commutative and general automorphic loops, including
the Odd Order Theorem.

In the last lecture we look at enumeration and constructions of automorphic loops. We show
that there are no nonassociative simple automorphic loops of order less than 4096, we study
commutative automorphic loops of order pq and p3, and introduce two general constructions of
automorphic loops.

The material is newly organized and sometimes new, shorter proofs are given.
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Introduction

The purpose of these notes is to give a gentle introduction into the theory of
automorphic loops that nevertheless captures the main ideas of current investi-
gation. Due to the limited scope of the lectures, not all proofs are included and
not all known results about automorphic loops are stated. A survey article on
automorphic loops that attempts to remedy both of these shortcomings is under
preparation by the author and will appear elsewhere.

Let Q = (Q, ·, \, /, 1) be a loop, where we also write xy to denote the product
x · y. For x ∈ Q, let

Lx : Q→ Q, Lx(y) = xy and Rx : Q→ Q, Rx(y) = yx

be the left and right translation by x, respectively. The permutation group

Mlt(Q) = 〈Lx, Rx : x ∈ Q〉

is called the multiplication group of Q, and its subloop

Inn(Q) = 〈ϕ ∈ Mlt(Q) : ϕ(1) = 1〉

is the inner mapping group of Q.
Denote by Aut(Q) the automorphism group of Q. An automorphic loop (or

A-loop) is a loop Q in which every inner mapping is an automorphism, that is,
Inn(Q) ≤ Aut(Q). Note that groups are automorphic loops, but the converse is
certainly not true.

The following multiplication table speci�es a nonassociative automorphic loop
of the smallest possible order, which we will call Q6:

Q6 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 1 4 6 3 5
3 3 5 1 2 6 4
4 4 3 6 5 1 2
5 5 6 2 1 4 3
6 6 4 5 3 2 1

.

Properties of Q6 can be checked in the GAP [19] package LOOPS [38], for instance.
Bruck proved [5] that in any loop

Inn(Q) = 〈Lx,y, Rx,y, Tx : x, y ∈ Q〉,

where

Lx,y(z) = (yx)\(y(xz)), Rx,y(z) = ((zx)y)/(xy), and Tx(y) = x\(yx).
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It is also well known that a mapping between two loops is a homomorphism of
loops if and only if it respects the multiplication operation. Because this fact is of
crucial importance for automorphic loops, we give a short proof:

Let f : (A, ·A, \A, /A, 1A) → (B, ·B , \B , /B , 1B) be a mapping between loops
such that f(x ·A y) = f(x) ·B f(y) for every x, y ∈ A. Then f(x) ·B f(x\Ay) =
f(x ·A (x\Ay)) = f(y) and therefore f(x\Ay) = f(x)\Bf(y) for every x, y ∈ Q.
The argument for right division is dual, and the property f(1A) = 1B is obtained
by cancelation from f(1A) = f(1A ·A 1A) = f(1A) ·B f(1A).

It follows that a loop Q is an automorphic loop if and only if for every x, y ∈ Q
the inner mappings Lx,y, Rx,y and Tx respect multiplication. Consequently, the
class of automorphic loops is a subvariety of the variety of loops, consisting of all
loops satisfying the axioms

(yx)\(y(x(uv))) = ((yx)\(y(xu)))((yx)\(y(xv))), (A`)

(((uv)x)y)/(xy) = (((ux)y)/(xy))(((vx)y)/(xy)), (Ar)

x\((uv)x) = (x\(ux))(x\(vx)). (Am)

In particular, subloops, factor loops and homomorphic images of automorphic
loops are again automorphic loops.

We call a loop left automorphic if (A`) holds, right automorphic if (Ar) holds,
and middle automorphic if (Am) holds.

The axioms (A`), (Ar), (Am) are somewhat long and intimidating, certainly
much more so than the axiom

(xy)(zx) = (x(yz))x (M)

de�ning Moufang loops, for instance. But the message of the axioms is easy to
remember��inner mappings respect multiplication��and, as we shall see, auto-
morphic loops are very much amenable to algebraic investigation.

Such an investigation started in earnest in 1956 with the work of Bruck and
Paige [6]. We will retrace some of their steps, for instance by proving that au-
tomorphic loops are power-associative. The main contribution of [6], which we
will not follow here, was to demonstrate that diassociative automorphic loops
share many properties with Moufang loops (which are always diassociative, by
Moufang's theorem [36]).

The conjecture that every diassociative automorphic loop is Moufang is implicit
in [6], but its proof remained elusive for 45 years. The conjecture was established
for the special case of commutative loops by Osborn in 1958 [41]. Since commuta-
tive Moufang loops are automorphic by [5] (or see Proposition 1.14), it follows from
Osborn's result that commutative Moufang loops are precisely commutative dias-
sociative automorphic loops. The full conjecture was �nally con�rmed by Kinyon,
Kunen and Phillips in 2002 [33].

Following a few sporadic results in late 1900s and early 2000s, of which we
mention [14, 17, 32, 39, 43], automorphic loops became one of the focal areas
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in loop theory after the work of Jedli£ka, Kinyon and the author on commutative
automorphic loops [25, 26] was circulated. It is worth mentioning that some results
of [25] were �rst obtained by automated deduction [35], which remains in�uential
in this �eld. But once the initial hurdles were cleared, the theory opened up to
more traditional modes of investigation.

New results by many authors followed in quick succession. We mention two
highlights: Odd Order Theorem for automorphic loops [34], and solvability of �nite
commutative automorphic loops [23].

The �eld remains active and we hope that these survey notes will attract new
researchers to automorphic loops and related areas. Open problems can be found
in the last section of this paper.

From now on we will employ the following notational conventions in order to
save parentheses and improve legibility. The division operations are less binding
than juxtaposition, and the explicit · multiplication is less binding than divisions
and juxtaposition. For instance, x/y · y\zy means (x/y)(y\(zy)).

Lecture 1: Basic properties

In this section we establish some basic properties of automorphic loops. Most of
these properties were known already to Bruck and Paige [6], except that they were
not aware of the fact that automorphic loops have the antiautomorphic inverse
property (see [29] or Proposition 1.4) and its consequences (one of the axioms (A`),
(Ar) can be ommitted by Theorem 1.6, and the left and right nuclei coincide by
Theorem 1.11). Of course, they also did not know that diassociative automorphic
loops are Moufang [33], a result that we have incorporated without proof into
Theorem 1.12.

Many proofs presented in this section shorten older arguments. We do not
hesitate to prove even folklore results to better show to the reader that most
result in this section can be derived quickly from �rst principles. In this spirit,
consider:

Lemma 1.1. Let Q be a loop and ϕ ∈ Aut(Q). Then

ϕL±1x ϕ−1 = L±1ϕ(x), ϕR±1x ϕ−1 = R±1ϕ(x),

ϕT±1x ϕ−1 = T±1ϕ(x), ϕL±1x,yϕ
−1 = L±1ϕ(x),ϕ(y), ϕR±1x,yϕ

−1 = R±1ϕ(x),ϕ(y)

for every x, y ∈ Q.

Proof. We have ϕLxϕ
−1(y) = ϕ(x · ϕ−1(y)) = ϕ(x) · ϕ(ϕ−1(y)) = ϕ(x) · y =

Lϕ(x)(y), so ϕLxϕ
−1 = Lϕ(x). Then ϕL−1x ϕ−1 = (ϕLxϕ

−1)−1 = L−1ϕ(x). The

argument for Rx is similar. Then ϕTxϕ
−1 = ϕL−1x Rxϕ

−1 = ϕL−1x ϕ−1ϕRxϕ
−1 =

L−1ϕ(x)Rϕ(x) = Tϕ(x), and so on.
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Thus in any loop Q, the automorphism group Aut(Q) acts on Mlt(Q) and on
Inn(Q) by conjugation, mapping left inner mappings to left inner mappings, and
so on. If Q is an automorphic loop, then the action of Aut(Q) induces an action
of Inn(Q).

1.1. Flexibility and power-associativity

A loop Q is �exible if x(yx) = (xy)x holds for every x, y ∈ Q. A consequence of
�exibility is that every element x has a (unique) two-sided inverse x−1. Indeed, if
x`, xr ar the left and right inverses of x, respectively, then x = x(x`x) = (xx`)x,
so xx` = 1 = xxr and x` = xr.

Proposition 1.2 ([6, p. 311]). Every middle automorphic loop is �exible.

Proof. Suppose that Q satis�es (Am). Then Tx(xy) = Tx(x) · Tx(y), and multi-
plying this equality by x on the left yields (xy)x = x(x\xx ·x\yx) = x(x ·x\yx) =
x(yx).

We remark that there exists a loop (of order 6) that is both left and right
automorphic, yet does not posses two-sided inverses, so is also not �exible.

A loop Q is said to be power-associative if for every x ∈ Q the subloop 〈x〉 of
Q generated by x is associative. For a prime p, a power-associative loop Q is said
to be a p-loop if every element of Q has order that is a power of p.

Assuming two-sided inverses, a general strategy for proving power-associativity
is as follows: De�ne nominal powers x[n] by letting x[0] = 1, x[k+1] = xx[k] and
x[−k] = (x[k])−1. Then it is not hard to show by induction that Q is power-
associative if and only if

x[i](x[j]x[k]) = (x[i]x[j])x[k] (1.1)

for all i, j, k ∈ Z. A typical proof of (1.1) in a given variety of loops is based on a
careful induction. In automorphic loops, however, Bruck and Paige [6] employed
an ingenious argument that we will essentially follow here.

Note that for any loop Q and a subset A of Aut(Q) the set

Fix(A) = {x ∈ Q : ϕ(x) = x for every ϕ ∈ A}

of common �xed points of automorphisms from A is a subloop of Q.

Proposition 1.3 ([6, Theorems 2.4 and 2.6]). Every automorphic loop is power-
associative and satis�es (xiy)xj = xi(yxj), xi(xjy) = xj(xiy), (yxi)xj = (yxj)xi

for every i, j ∈ Z.

Proof. Our loop Q is �exible by Proposition 1.2, which implies that x ∈ Fix(Ly,x)
and hence 〈x〉 ≤ Fix(Ly,x). In particular, (xy)x[j] = x(yx[j]). (Note that we have
not used (Ar) yet.) This means that the inner mapping R−1

yx[j]Rx[j]Ry �xes x, thus
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also x[i], and we have (x[i]y)x[j] = x[i](yx[j]). As a special case we obtain (1.1),
which implies power-associativity. Then xi is well-de�ned, coincides with x[i], and
(xiy)xj = xi(yxj) follows.

The inner mapping R−1xy LxRy trivially �xes x, so also xi. This shows that

R−1xiyLxiRy �xes x, so also xj , and xi(xjy) = xj(xiy) follows. The last identity is
proved dually.

Note that the identities of Proposition 1.3 say that for a �xed x in an auto-
morphic loop Q, the group 〈Lxi , Rxi : i ∈ Z〉 is commutative.

1.2. Antiautomorphic inverse property

A loop with two-sided inverses has the antiautomorphic inverse property if it sat-
is�es the identity

(xy)−1 = y−1x−1. (1.2)

We are now going to show that every automorphic loop has the antiautomorphic
inverse property. For reasons that become clear, we prove a seemingly stronger
result, assuming only (A`) and (Am). We give a shorter proof than in [29].

Proposition 1.4 (compare [29, Proposition 7.4]). Every loop that is both left and
middle automorphic has the antiautomorphic inverse property.

Proof. In the proof of Proposition 1.3 we established (xy)x[j] = x(yx[j]) using only
(A`) and (Am). In particular, we can use (xy)x−1 = x(yx−1) below. Consider
ψ = L−1y LxLx\y = Lx\y,x ∈ Aut(Q). Since ψ((x\y)−1) = y\x, we also have
ψ(x\y) = (y\x)−1. Then (y\x)−1 · y−1 = (y\x)−1 · y\1 = ψ(x\y)ψ((x\y)\x−1) =
ψ(x−1) = y\(x ·(x\y)x−1) = y\(x(x\y) ·x−1) = y\yx−1 = x−1. Then (1.2) follows
by substituting yx for x.

In general, the antiautomorphic inverse property has a similar e�ect as commu-
tativity in the sense that it allows one to deduce properties about right concepts
from properties of left concepts, and vice versa. In the following well-known lemma,
let J be the inversion mapping x 7→ x−1.

Lemma 1.5. Let Q be an antiautomorphic inverse property loop. Then the inver-
sion mapping J is an involutory antiautomorphism of Q. Moreover, JLxJ = Rx−1

and JLx,yJ = Rx−1,y−1 for every x, y ∈ Q.

Proof. With x, y ∈ Q we have JLxJ(y) = (xy−1)−1 = yx−1 = Rx−1(y), so
JLxJ = Rx−1 . Then JLx,yJ = JL−1yx J · JLyJ · JLxJ = R−1(yx)−1Ry−1Rx−1 =

R−1x−1y−1Ry−1Rx−1 = Rx−1,y−1 .

We now easily arrive at the following important result:

Theorem 1.6 (compare [29, Theorem 7.1]). The following properties are equiva-
lent for a loop Q:
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(i) Q is automorphic,

(ii) Q is left and middle automorphic,

(iii) Q is right and middle automorphic.

Proof. Thanks to the duality, it su�ces to establish the implication (ii) ⇒ (i).
Suppose that Q is left and middle automorphic. By Proposition 1.4, Q has the
antiautomorphic inverse property. By Lemma 1.5, J is an antiautomorphism and
Rx−1,y−1 = JLx,yJ is an automorphism, being a composition of an automorphism
and two antiautomorphisms.

We can further exploit the inversion mapping J .

Lemma 1.7 ([34, Lemma 2.7]). Let Q be an automorphic loop. Then J centralizes
Inn(Q). Moreover, Lx,y = Rx−1,y−1 and T−1x = Tx−1 for every x, y ∈ Q.

Proof. Because ϕ(x−1) = ϕ(x)−1 for every x ∈ Q and ϕ ∈ Aut(Q), the inversion
mapping J centralizes Inn(Q) ≤ Aut(Q). Combining this with Lemma 1.5 yields
Lx,y = JLx,yJ = Rx−1,y−1 . Using this fact and Proposition 1.3 yields TxTx−1 =

L−1x RxL
−1
x−1Rx−1 = RxRx−1L−1x L−1x−1 = Rx−1,xL

−1
x,x−1 = Rx−1,xR

−1
x−1,x = 1.

1.3. Nuclei

As usual, de�ne the left, middle and right nucleus of a loop Q by

N`(Q) = {a ∈ Q : a(xy) = (ax)y for all x, y ∈ Q},
Nm(Q) = {a ∈ Q : x(ay) = (xa)y for all x, y ∈ Q},
Nr(Q) = {a ∈ Q : x(ya) = (xy)a for all x, y ∈ Q},

respectively, and the nucleus of Q by N(Q) = N`(Q) ∩Nm(Q) ∩Nr(Q).
It is easy to observe that all the nuclei are associative subloops of Q. In general

loops, there is no relationship between the three nuclei N`(Q), Nm(Q) and Nr(Q).
On the other hand, it is well known (see below) that in inverse property loops all
nuclei coincide.

Recall that a loop with two-sided inverses has the left inverse property if
x−1(xy) = y holds, the right inverse property if (xy)y−1 = x holds, and the
inverse property if it has both the left and right inverse properties.

Proposition 1.8 ([5, Theorem VII.2.1]). In antiautomorphic inverse property
loops the left and right nuclei coincide. In inverse property loops all nuclei coincide.

Proof. Suppose thatQ satis�es (1.2). Then the condition ax·y = a·xy is equivalent
to y−1 · x−1a−1 = y−1x−1 · a−1, so N`(Q) = Nr(Q). Now suppose that Q has the
inverse property. From (xy)−1x = (xy)−1(xy · y−1) = y−1 we deduce (1.2), so it
remains to show that N`(Q) = Nm(Q). If ax · y = a · xy then y = (ax)−1(a · xy),
and substituting x = a−1u−1, y = ua · v yields ua · v = y = u · av. The other
inclusion follows by a similar argument.
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Suppose that Q is an automorphic loop. We know from Proposition 1.4 that
Q has the antiautomorphic inverse property, and thus that N`(Q) = Nr(Q) by
Proposition 1.8. But taking x = 2 and y = 3 in Q6 shows that Q does not
necessarily have the left or right inverse property, so there is no a priori reason
why the nuclei of Q should coincide. In fact, there are automorphic loops Q
satisfying the strict inclusion N(Q) = N`(Q) = Nr(Q) < Nm(Q). Theorem 1.11
shows that no other inclusions among nuclei arise in automorphic loops.

Call a subloop S of a loop Q characteristic if ϕ(S) = S for every ϕ ∈ Aut(Q).
In general loops, nuclei are not necessarily normal subloops, but they are always

characteristic subloops. For instance, if a ∈ N`(Q) and ϕ ∈ Aut(Q) then ϕ(a) ·
ϕ(x)ϕ(y) = ϕ(a · xy) = ϕ(ax · y) = ϕ(a)ϕ(x) · ϕ(y) shows that ϕ(a) ∈ N`(Q).

In automorphic loops, nuclei are therefore normal subloops thanks to this easy
but important fact:

Lemma 1.9 ([6, Theorem 2.2]). Let Q be an automorphic loop and S a charac-
teristic subloop of Q. Then S is normal in Q.

Proof. A subloop S is normal in Q if and only if ϕ(S) = S for every ϕ ∈ Inn(Q).

Lemma 1.10. Let Q be an automorphic loop. Then TxTy(a) = Tyx(a) for every
a ∈ N`(Q) = Nr(Q).

Proof. We have already shown that N`(Q) = Nr(Q) is a characteristic subloop of
Q. Let u = Tx(y) (that is, xu = yx). Because a ∈ Nr(Q), we also have Txu(a) ∈
Nr(Q), and so x(uTxu(a)) = (xu)Txu(a) = a(xu). Since a ∈ N`(Q), we then have
TxTy(a) = Tx(y\ay) = Tx(y)\Tx(ay) = Tx(y)\(x\(ay)x) = Tx(y)\(x\a(yx)) =
u\(x\a(xu)) = u\(x\x(uTxu(a))) = Txu(a) = Tyx(a).

Theorem 1.11. Let Q be an automorphic loop. Then N(Q) = N`(Q) = Nr(Q) ≤
Nm(Q) and all nuclei are normal subloops of Q.

Proof. All nuclei are normal by Lemma 1.9. Let A = N`(Q) = Nr(Q). It remains
to prove that A ≤ Nm(Q). Note that Lx,y and Rx,y �x A pointwise, while (xa)y =
x(ay) holds if and only if Mx,y(a) = a, where Mx,y = L−1x R−1y LxRy.

Given a ∈ A, we want to show that Mx,y(a) = a. Now,

Mx,y = (L−1x Rx)(R−1x R−1y Rxy)(R−1xy Lxy)(L−1xy LxLy)(L−1y Ry),

and thus Mx,y = TxR
−1
x,yT

−1
xy Ly,xTy. While evaluating Mx,y at a, we never leave

the normal subloop A, so Mx,y(a) = TxT
−1
xy Ty(a). By Lemma 1.10, Mx,y(a) =

TxT
−1
xy Ty(a) = Tx(TyTx)−1Ty(a) = a.

The middle nucleus is important in automorphic loops but its role is not fully
understood.
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1.4. Diassociativity and the Moufang property

Up to this point we have carefully proved all the results. In this subsection we
skip some proofs and refer the reader to the literature.

A loop has the left alternative property if it satis�es x(xy) = (xx)y and the
right alternative property if x(yy) = (xy)y holds. A loop Q is diassociative if any
two elements of Q generate an associative subloop.

By Moufang's theorem [36], Moufang loops are diassociative. The loop Q6 with
x = 2 and y = 3 shows that automorphic loops need not have the left alternative
property nor the right alternative property so, in particular, they need not be
diassociative.

Bruck and Paige proved in [6, Theorem 2.4] that the following properties are
equivalent for an automorphic loop Q: Q is diassociative; Q satis�es both left
and right inverse properties; Q satis�es both left and right alternative properties.
Moreover, as we have already mentioned in the introduction, every diassociative
automorphic loop is Moufang [33]. Thanks to Proposition 1.4, we can re�ne these
results as follows:

Theorem 1.12. The following properties are equivalent for an automorphic loop
Q :

(i) Q has the left alternative property

(ii) Q has the right alternative property,

(iii) Q has the left inverse property,

(iv) Q has the right inverse property,

(v) Q is diassociative,

(vi) Q is Moufang.

Proof. Suppose that Q has the left alternative property. Then Proposition 1.4
implies that (yx · x)−1 = x−1 · x−1y−1 = x−1x−1 · y−1 = (y · xx)−1, so Q has
the right alternative property. A similar argument �nishes the equivalence of (i)
and (ii), and also proves the equivalence of (iii) and (iv). The rest follows from
[6, 33].

We conclude this section with Bruck's proof of the fact that commutative
Moufang loops are automorphic. The argument is based on nice observations
about autotopisms and companions of pseudo-automorphisms, which we review.

Let Q be a loop. A triple (f, g, h) of bijections Q → Q is an autotopism if
f(x)g(y) = h(xy) holds for every x, y ∈ Q. It is easy to see that the coordinate-
wise product (composition) of autotopisms is an autotopism.

If a bijection f of Q and c ∈ Q satisfy the identity f(x) · f(y)c = f(xy)c, then
f is called a pseudo-automorphism of Q with companion c.
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Lemma 1.13 (compare [5, Lemma VII.2.1]). Let Q be a loop and (f, g, h) an
autotopism of Q such that f(1) = 1. Then g = h and g(x) = f(x)c, where
c = g(1). Hence f is a pseudo-automorphism with companion c = g(1).

Proof. We have g(x) = f(1)g(x) = h(1 · x) = h(x), so g = h. Also, f(x)c =
f(x)g(1) = h(x) = g(x). Finally, f(x) · f(y)c = f(x)g(y) = h(xy) = g(xy) =
f(xy)c.

Proposition 1.14 ([5, Lemma VII.3.3]). Commutative Moufang loops are auto-
morphic.

Proof. Let Q be a commutative Moufang loop. Let f be a pseudo-automorphism
of Q with companion c. Then f(x) · cf(y) = f(x) · f(y)c = f(xy)c = f(yx)c =
f(y) · f(x)c = f(x)c · f(y) for every x, y ∈ Q, so c ∈ Nm(Q). Since Q is an inverse
property loop, its nuclei coincide by Proposition 1.8 and we have c ∈ Nr(Q). Then
c can be canceled in f(x) · f(y)c = f(xy)c and f ∈ Aut(Q) follows.

It therefore su�ces to prove that the mappings Lx,y are pseudo-automorphisms.
The Moufang identity (M) is equivalent to the statement that ϕx = (Lx, Rx, RxLx)
is an autotopism of Q. Then ϕ−1yxϕyϕx is an autotopism with �rst component Lx,y.
By Lemma 1.13, Lx,y is a pseudo-automorphism.

Lecture 2: Associated operations

Many of the concepts presented in this section can be traced to two in�uential
papers [20, 21] on loops of odd order written by Glauberman in the 1960s. In
his study of Moufang loops (Q, ·) of odd order [21], the most important idea was
to associate another loop (Q, •) with (Q, ·), de�ned by x • y = x1/2yx1/2, where
x1/2 is the unique square root of x in (Q, ·). The resulting loop (Q, •) is an
instance of what would nowadays be called a Bruck loop (or a K-loop). This
made Glauberman study Bruck loops of odd order and their left multiplication
groups in detail [20] and establish a number of key results for them (see Theorem
2.2). He then transferred the results from Bruck loops to Moufang loops.

We follow a similar approach but in a more general setting of twisted subgroups.
We show how to associate left Bruck loops with uniquely 2-divisible left Bol loops
and with uniquely 2-divisible automorphic loops. We then follow [22] and establish
a one-to-one correspondence between left Bruck loops of odd order and a certain
class of commutative loops containing commutative automorphic loops of odd
order. This will allow us to prove an analog of Theorem 2.2 for commutative
automorphic loops. Finally, as in [34] we establish a one-to-one correspondence
between uniquely 2-divisible automorphic loops whose associated left Bruck loop
is associative and a certain class of uniquely 2-divisible Lie rings. This eventually
leads to the Odd Order Theorem for automorphic loops. For the convenience of
the reader, the correspondence results are visualized in Figure 2.
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2.1. Bruck loops

A loop Q is a left Bol loop if it satis�es the left Bol identity

x(y(xz)) = (x(yx))z. (2.3)

It is well known that left Bol loops have the left inverse property.
The following result gives a nice axiomatization of left Bol loops in the variety

of magmas with inverses.

Lemma 2.1 ([31, (3.10)] and [42, Theorem 4.1]). Let (Q, ·) be a groupoid with an
identity element and two-sided inverses satisfying (2.3). Then (Q, ·) is a left Bol
loop.

Consequently, a nonempty subset of a left Bol loop is a subloop if it is closed
under mutiplication and inverses.

A left Bruck loop is a left Bol loop with the automorphic inverse property
(xy)−1 = x−1y−1.

Here is an omnibus result on Bruck loops of odd order compiled from [20, 21].
Recall that the left multiplication group ofQ is de�ned by Mlt`(Q) = 〈Lx : x ∈ Q〉.
Theorem 2.2 (Glauberman). Let Q be a left Bruck loop of odd order. Then Q
is solvable. If H ≤ Q then |H| divides |Q|. If p is a prime dividing |Q| then there
is x ∈ Q such that |x| = p. Sylow p-subloops and Hall π-subloops of Q exist. The
left multiplication group Mlt`(Q) of Q is of odd order.

If also |Q| = pk for an odd prime p, then Q is centrally nilpotent.

2.2. Twisted subgroups

A subset S of a group G is a twisted subgroup of G if it contains the identity
element of G, is closed under inverses, and is closed under the binary operation
(x, y) 7→ xyx.

Note that a twisted subgroup is not necessarily a subgroup, but every twisted
subgroup S is closed under powers. Indeed, it su�ces to show that all positive
powers of x ∈ S belong to S, and we get this by induction on k from xk+2 = xxkx.

Call a subset U of a loop Q uniquely 2-divisible if the squaring map Q → Q,
x 7→ x2 restricts to a bijection on U . In this case, for every x ∈ U there is
a unique element x1/2 ∈ U such that (x1/2)2 = x. If U happens to be power
associative and x ∈ U has odd order n, then x1/2 = x(n+1)/2, so the square root
of x is a positive power of x. If U happens to be closed under inverses, then
((x−1)1/2)2 = x−1 = (x1/2x1/2)−1 = (x1/2)−1(x1/2)−1 = ((x1/2)−1)2 shows that
(x−1)1/2 is equal to (x1/2)−1.

Proposition 2.3 (compare [20, Lemma 3]). Let G be a group and S a uniquely
2-divisible twisted subgroup of G. Then (S, ◦) with multiplication

x ◦ y = (xy2x)1/2

is a left Bruck loop. Moreover, the powers in (S, ·) and (S, ◦) coincide.
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Proof. If x, y ∈ S then y2 ∈ S, xy2x ∈ S and (xy2x)1/2 ∈ S. Hence (S, ◦) is a
groupoid. Since 1◦x = x = x◦1 and x−1◦x = (x−1x2x−1)1/2 = 1 = (xx−2x)1/2 =
x ◦ x−1, we see that (S, ◦) has identity element 1 and two-sided inverses. Note
that x ◦ (y ◦ x) = (xyx2yx)1/2 = ((xyx)2)1/2 = xyx. Thus x ◦ (y ◦ (x ◦ z)) =
(xyxz2xyx)1/2 = (xyx) ◦ z = (x ◦ (y ◦ x)) ◦ z. By Lemma 2.1, (S, ◦) is a left Bol
loop in which inverses coincide with those of (S, ·). It is a left Bruck loop thanks
to (x◦y)−1 = ((xy2x)1/2)−1 = ((xy2x)−1)1/2 = (x−1y−2x−1)1/2 = x−1 ◦y−1. The
inductive step x ◦ xn+1 = (xx2n+2x)1/2 = xn+2 shows that powers in (S, ·) and
(S, ◦) coincide.

A twisted subgroup of a uniquely 2-divisible group need not be uniquely 2-
divisible (consider Z in (Q,+)). But note that if G is a group of odd order then
any twisted subgroup S of G is uniquely 2-divisible.

The next result shows that in many varieties of loops the concepts �uniquely
2-divisible� and �of odd order� coincide for �nite loops.

Lemma 2.4. Let Q be a �nite power-associative loop in which |x| divides |Q| for
every x ∈ Q. Then the following conditions are equivalent:

(i) Q is uniquely 2-divisible,

(ii) |Q| is odd,

(iii) |x| is odd for every x ∈ Q.

Proof. Condition (ii) implies (iii) by the assumption that |x| divides |Q|. Con-
versely, if (iii) holds then the inversion mapping x 7→ x−1 is an involution with a
unique �xed point x = 1, so |Q| is odd.

If (i) holds then x2 = 1 implies x = 1, so (iii) holds. Conversely, if (iii) holds,
then |x| = 2n + 1 implies (xn+1)2 = x2n+2 = x, so the squaring map is onto Q.
Thanks to �niteness of Q, it is also one-to-one, and (i) follows.

2.3. Bruck loops associated with Bol and automorphic loops

If G is a uniquely 2-divisible group, Proposition 2.3 with S = G yields a uniquely
2-divisible left Bruck loop (G, ◦), the (left) Bruck loop associated with G.

Proposition 2.3 cannot be used directly to associate left Bruck loops with nonas-
sociative loops Q. The trick is to work with a certain twisted subgroup S of Mlt(Q)
instead and then project the operation ◦ from S to Q. The classical example is
that of uniquely 2-divisible left Bol loops, which we recall in Proposition 2.5.

Proposition 2.5 ([18]). Let (Q, ·) be a left Bol loop. Then LQ = {Lx : x ∈ Q}
is a twisted subgroup of Mlt`(Q) satisfying

LxLyLx = Lx(yx). (2.4)
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If (Q, ·) is also uniquely 2-divisible, then LQ is uniquely 2-divisible and (Q, ◦)
with multiplication

x ◦ y = (x(y2x))1/2 (2.5)

is a left Bruck loop in which powers coincide with those of (Q, ·). When Q is �nite
then any subloop of (Q, ·) is a subloop of (Q, ◦).

Proof. We have 1 = L1 ∈ LQ, L
−1
x = Lx−1 ∈ LQ thanks to the left inverse

property, and (2.4) follows from (2.3). Therefore LQ is a twisted subgroup of
Mlt`(Q). An easy induction with (2.4) shows that Ln

x = Lxn for every n ≥ 0.
Suppose that (Q, ·) is uniquely 2-divisible. The mapping Q → LQ, x 7→ Lx

is a bijection since Lx(1) = x. Since (Lx1/2)2 = L(x1/2)2 = Lx, it follows that

LQ is uniquely 2-divisible with L
1/2
x = Lx1/2 . By Proposition 2.3, (LQ, ◦) with

multiplication Lx ◦ Ly = (LxL
2
yLx)1/2 = L(x(y2x))1/2 is a left Bruck loop with

powers coinciding with those of Mlt`(Q).
We claim that ϕ : (LQ, ◦) → (Q, ◦), Lx 7→ x is an isomorphism of loops.

Indeed, ϕ is clearly a bijection and ϕ(Lx ◦ Ly) = ϕ(L(x(y2x))1/2) = (x(y2x))1/2 =
x ◦ y = ϕ(Lx) ◦ ϕ(Ly).

Finally, suppose that Q is �nite and S ≤ (Q, ·). To show that S is a subloop of
(Q, ◦), it su�ces to prove that it is closed under inverses and under the multipli-
cation ◦. The former is true because the inverses in (Q, ·) and (Q, ◦) coincide, and
the latter is true because (S, ·) is closed under · and square roots (being positive
integral powers in the �nite case).

A twisted subgroup in Mlt(Q) is harder to �nd for automorphic loops. For
x ∈ Q de�ne

Px = RxL
−1
x−1 .

Note that in automorphic loops we have Px = L−1x−1Rx by Proposition 1.3.

Proposition 2.6 ([34, Proposition 4.2]). Let (Q, ·) be an automorphic loop. Then
PQ = {Px : x ∈ Q} is a twisted subgroup of Mlt(Q) satisfying

PxPyPx = PPx(y) = P(x−1\y)x. (2.6)

If (Q, ·) is also uniquely 2-divisible, then PQ is uniquely 2-divisible and (Q, ◦)
with multiplication

x ◦ y = ((x−1\y2)x)1/2 = (x−1\y2x)1/2 (2.7)

is a left Bruck loop in which powers coincide with those of (Q, ·). When Q is �nite
then any subloop of (Q, ·) is a subloop of (Q, ◦).

Proof. We have 1 = P1 ∈ PQ. Proposition 1.3 and Lemma 1.7 yield

PxPx−1 = RxL
−1
x−1Rx−1L−1x = L−1x−1Rx−1L−1x Rx = Tx−1Tx = 1,
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so P−1x = Px−1 ∈ PQ. The identity (2.6) is nontrivial; see [34, Proposition 3.4] for
a proof. Therefore PQ is a twisted subgroup of Mlt(Q). An easy induction with
(2.6) yields Pn

x = Pxn for every n ≥ 0, using Px(xi) = (x−1\xi)x = xi+2.

Suppose that (Q, ·) is uniquely 2-divisible. The mapping Q → PQ, x 7→ Px is
a bijection since Px(1) = x2. Since P 2

x1/2 = P(x1/2)2 = Px, it follows that PQ is

uniquely 2-divisible with P
1/2
x = Px1/2 . By Proposition 2.3, (PQ, ◦) with multipli-

cation Px ◦ Py = (PxP
2
yPx)1/2 = P((x−1\y2)x)1/2 is a left Bruck loop with powers

coinciding with those of Mlt(Q). Note that (x−1\y)x = x−1\yx by Proposition
1.3.

We conclude as in the proof of Proposition 2.5, using the bijection Px 7→ x.

When (Q, ·) is a uniquely 2-divisible automorphic loop, we call (Q, ◦) from
Proposition 2.6 the left Bruck loop associated with (Q, ·).

It is worth noting that in left Bol loops we have x−1\y2 = xy2 thanks to the
left inverse property. So, in left Bol loops, the operation (2.5) of Proposition 2.5
coincides with the operation (2.7) of Proposition 2.6. But neither result is a special
case of the other.

We can now easily deduce Cauchy's and Lagrange's theorems for automorphic
loops of odd order from Theorem 2.2.

Theorem 2.7. Let Q be an automorphic loop of odd order. If S is a subloop of
Q then |S| divides |Q|. If p is a prime dividing |Q| then Q contains an element of
order p.

Proof. Let (Q, ◦) be the left Bruck loop associated with Q. If S ≤ Q then (S, ◦) ≤
(Q, ◦) by Proposition 2.6. By Theorem 2.2, |S| divides |Q|. Let p be a prime
dividing |Q|. Then there is x ∈ (Q, ◦) of order p by Theorem 2.2. Because powers
in Q and (Q, ◦) coincide, x has also order p in Q.

Corollary 2.8. Every automorphic loop of prime order is associative.

Note that we cannot easily use Proposition 2.6 to obtain the Odd Order The-
orem for automorphic loops from the Odd Order Theorem for Bruck loops, for
instance. The di�culty lies in the fact that it is not clear how subloops of (Q, ◦)
are related to subloops of (Q, ·).

2.4. Correspondence with Bruck loops

By Proposition 2.6, if (Q, ·) is a uniquely 2-divisible automorphic loop then PQ

is a twisted subgroup of Mlt(Q) satisfying (2.6), which induces a left Bruck loop
operation (Q, ◦) by x ◦ y = (x−1\y2x)1/2. However, there exist distinct uniquely
2-divisible automorphic loops with the same associated left Bruck loops, so it is
not possible to �nd an inverse to the mapping (Q, ·) 7→ (Q, ◦).
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Figure 1: Intersections among left Bol loops, automorphic loops and Γ-loops.

In an attempt to �nd a correspondence between uniquely 2-divisible left Bruck
loops and some class of loops, Greer [22] de�ned a technical variety of loops as
follows.

A loop Q is a Γ-loop if it is commutative, has the automorphic inverse property,
satis�es LxLx−1 = Lx−1Lx and PxPyPx = PPx(y). Note that the last condition is
just (2.6). By [22, Theorem 3.5], Γ-loops are power-associative.

Figure 1 gives a Venn diagram of intersections of the varieties of left Bol loops,
automorphic loops and Γ-loops. Here is a full justi�cation for the diagram. If Q
is an automorphic Γ-loop then it is a commutative automorphic loop; conversely,
a commutative automorphic loop is certainly automorphic and it satis�es the au-
tomorphic inverse property by Proposition 1.4, the relation LxLx−1 = Lx−1Lx by
Proposition 1.3, and (2.6) by [34, Proposition 3.4]. If Q is left Bol and automor-
phic then the antiautomorphic inverse property implies that Q is Moufang (and
automorphic); the converse is trivial. If Q is left Bol and a Γ-loop then it is a
commutative Moufang loop. If Q is Moufang and a Γ-loop then it is a commu-
tative Moufang loop. Finally, a commutative Moufang loop is automorphic by
Proposition 1.14.

When (Q, ·) is a uniquely 2-divisible Γ-loop, we can use the same construction
as in the case of uniquely 2-divisible automorphic loops to obtain the associated left
Bruck loop (Q, ◦), namely x ◦ y = (x−1\y2x)1/2. In the end, the variety of Γ-loops
was chosen so that the proof of this result can mimic the proof in the automorphic
case. (For instance, the di�cult identity (2.6) is part of the de�nition of Γ-loops.)
See [22, Theorem 4.9] for details.

Following Greer, we will now show how to construct a left Bruck loop Q from
a Γ-loop of odd order. (See the discussion after Lemma 2.11 for an obstacle in the
more general uniquely 2-divisible case.) We will actually use the twisted subgroup
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LQ again, but with a di�erent operation.
On a uniquely 2-divisible group (G, ·), let

x ∗ y = xy[y, x]1/2, (2.8)

where [x, y] = x−1y−1xy is the usual commutator.
Straightforward, albeit nontrivial calculation with the commutator in groups

yields:

Lemma 2.9 ([22, Theorem 2.5]). Let (G, ·) be a uniquely 2-divisible group. Then
(G, ∗) de�ned by (2.8) is a Γ-loop. Powers in (G, ·) and (G, ∗) coincide.

Let us now consider a twisted subgroup seemingly unrelated to LQ; see [4, 18,
20]. For a group G and τ ∈ Aut(G) let

K(τ) = {x ∈ G : τ(x) = x−1}.

We claim that K(τ) is a twisted subgroup of G. Indeed, 1 ∈ K(τ) is clear, if
x ∈ K(τ) then τ(x−1) = τ(x)−1 = (x−1)−1, so x−1 ∈ K(τ), and if x, y ∈ K(τ)
then τ(xyx) = τ(x)τ(y)τ(x) = x−1y−1x−1 = (xyx)−1, so xyx ∈ K(τ).

Lemma 2.10 (compare [18, Theorem 4.3]). Let G be a group and τ ∈ Aut(G).
Let S be a twisted subgroup of G such that S ⊆ K(τ) and 〈S〉 = G. Then {x2 :
x ∈ K(τ)} ⊆ S. In particular, if G is a uniquely 2-divisible group then S = K(τ).

Proof. Let x ∈ K(τ). Then x2 = xτ(x−1). Since 〈S〉 = G, there are x1, . . . ,
xn ∈ S such that x = x1 · · ·xn. Then xτ(x−1) = x1 · · ·xnτ(x−1n · · ·x−11 ) =
x1 · · ·xnτ(x−1n ) · · · τ(x−11 ) = x1 · · ·xnxn · · ·x1, where we have used xi ∈ S ⊆ K(τ).
An easy induction on n shows that the element x1 · · ·xnxn · · ·x1 belongs to the
twisted subgroup S.

We have proved {x2 : x ∈ K(τ)} ⊆ S ⊆ K(τ). Suppose that G is uniquely
2-divisible. The squaring map is then injective on any twisted subgroup, and we
claim that it is surjective on K(τ), so that K(τ) is uniquely 2-divisible. Indeed,
if x ∈ K(τ) then τ(x1/2) = τ(x)1/2 = (x−1)1/2 = (x1/2)−1, so x1/2 ∈ K(τ). It
follows that K(τ) = {x2 : x ∈ K(τ)}, and S = K(τ).

Lemma 2.11 (compare [22, Lemma 4.3]). Let G be a uniquely 2-divisible group
and let τ ∈ Aut(G). Then K(τ) is a subloop of the Γ-loop (G, ∗).

Proof. By Lemma 2.9, (G, ∗) is a Γ-loop. If x, y ∈ K(τ) then τ(x ∗ y) =
τ(xy[y, x]1/2) = τ(x)τ(y)[τ(y), τ(x)]1/2 = x−1y−1[y−1, x−1]1/2 = x−1 ∗ y−1 =
(x ∗ y)−1, where we have used the automorphic inverse property in the last step.

Let us now consider left division in (G, ∗). The following statements are
equivalent: x ∗ a = y, xa[a, x]1/2 = y, [a, x] = (a−1x−1y)2, ax = ya−1x−1y,
ay−1a = x−1yx−1, (ay−1)2 = x−1yx−1y−1, a = (x−1yx−1y−1)1/2y. Since this
is a term in (G, ·), we can easily show that K(τ) is closed under left division in
(G, ∗).
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We would now like to apply Lemmas 2.9 and 2.11. However, there are examples
of uniquely 2-divisible left Bruck loops Q with G = Mlt`(Q) not uniquely 2-
divisible, so the lemmas cannot be applied directly. We therefore focus on the odd
case.

Proposition 2.12 ([22]). Let (Q, ·) be a left Bruck loop of odd order and let
G = Mlt`(Q, ·). Then (LQ, ∗) is a Γ-loop, and (Q, ∗) with multiplication

x ∗ y = (Lx ∗ Ly)(1) = (LxLy[Ly, Lx]1/2)(1)

is a Γ-loop.

Proof. Proposition 2.5 shows that LQ is a twisted subgroup of Mlt`(Q, ·). Let τ
be the conjugation on Sym(Q) by the inversion map J of (Q, ·). For x, y ∈ Q, we
have JLxJ(y) = J(xy−1) = x−1y = Lx−1(y) = L−1x (y) by the automorphic inverse
property and the left inverse property. Because 〈LQ〉 = G, the established identity
τ(Lx) = JLxJ = Lx−1 = L−1x shows that τ ∈ Aut(G) and also that LQ ⊆ K(τ).

By Theorem 2.2, |G| is odd. By Lemma 2.4, G is uniquely 2-divisible. Lemma
2.10 with S = LQ then gives LQ = K(τ). By Lemma 2.11, (LQ, ∗) = (K(τ), ∗) is
a subloop of the Γ-loop (G, ∗). Finally, as usual, we transfer the operation ∗ from
(LQ, ∗) to (Q, ∗) by the isomorphism Lx 7→ x.

For a left Bruck loop (Q, ·) of odd order, we call (Q, ∗) from Proposition 2.12
the Γ-loop associated with (Q, ·).

Greer went on to establish the announced one-to-one correspondence, and
more:

Theorem 2.13 ([22, Theorem 5.2]). There is a categorical equivalence between
left Bruck loops of odd order and Γ-loops of odd order. Given a Γ-loop (Q, ·)
of odd order, we let (Q, ◦) be the associated left Bruck loop with multiplication
x ◦ y = (x−1\y2x)1/2. Conversely, given a Bruck loop (Q, ◦) of odd order, we
let (Q, ·) be the associated Γ-loop with multiplication x · y = (LxLy[Ly, Lx]1/2)(1),
where Lx is the left translation in (Q, ◦).

Solvability, Lagrange and Cauchy theorems for commutative automorphic loops
of odd order were for the �rst time established in [25]. (See Theorems 3.11 and
3.12 for the even case.) The fact that commutative automorphic loops of odd order
pk (p a prime) are centrally nilpotent was proved independently in [9] and [27].

Theorem 2.13 allows us to obtain these and additional results from Glauber-
man's Theorem 2.2 not only for commutative automorphic loops of odd order but
also for the larger class of Γ-loops of odd order.

Theorem 2.14 ([22, Section 6]). Let Q be a Γ-loop of odd order. Then Q is
solvable and the Lagrange and Cauchy theorems hold for Q. Moreover, there are
Sylow p- and Hall π-subloops in Q.

If also |Q| = pk for an odd prime p, then Q is centrally nilpotent.
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2.5. Correspondence with Lie rings

The correspondence between left Bruck loops of odd order and Γ-loops of odd
order covered all commutative automorphic loops of odd order as a subclass of Γ-
loops, but it did not cover all automorphic loops of odd order. In [34], a one-to-one
correspondence was found between uniquely 2-divisible automorphic loops whose
associated left Bruck loop is an abelian group on the one hand, and uniquely
2-divisible Lie rings satisfying conditions (2.10), (2.11) on the other hand (see
Theorem 2.18). This partial correspondence is su�cient to establish the Odd
Order Theorem for automorphic loops (Theorem 2.21). In this subsection we
sketch the proofs of these results.

We start with a construction of Wright [46]. Let us call (Q,+, [., .]) an algebra
if (Q,+) is a an abelian group and [., .] is biadditive, that is [x+y, z] = [x, z]+[y, z]
and [x, y + z] = [x, y] + [x, z] for every x, y, z ∈ Q. In this situation, for every
x ∈ Q de�ne

ad`
x : Q→ Q, ad`

x(y) = [x, y], adr
x : Q→ Q, adr

x(y) = [y, x]

to be the left and right adjoint maps of x, respectively. Note that ad`
x, adr

x are
just the left and right translations with respect to the binary operation [., .], re-
spectively. Finally, for x ∈ Q de�ne

`x = idQ − ad`
x, rx = idQ − adr

x.

Proposition 2.15 (see [46, Proposition 8] and [34, Lemma 5.1]). Let (Q,+, [., .])
be an algebra. De�ne a groupoid (Q, ·) by

x · y = x+ y − [x, y]. (2.9)

Then (Q, ·) is a loop (necessarily with identity element 0) if and only if

`x and rx are bijections of Q (2.10)

for every x ∈ Q.
When (Q, ·) is a loop with left and right translations Lx, Rx, respectively, then

Lx(y) = x+`x(y), Rx(y) = x+rx(y), L−1x (y) = `−1x (y−x), R−1x (y) = r−1x (y−x).

Moreover, Lx,y = `−1yx `y`x, Rx,y = r−1xy ryrx and Tx = `−1x rx.

Proof. We have 0 · x = x = x · 0 for every x ∈ Q. Note that x · y = x + `x(y) =
y + ry(x). Hence Lx bijects if and only if `x bijects, and Ry bijects if and only if
ry bijects.

The formulas for Lx, Rx, L
−1
x , R−1x are straightforward. Let us calculate Lx,y.

Note that every `x is additive, being a sum of two additive maps. We have

Lx,y(z) = L−1yxLyLx(z) = L−1yxLy(x+ `x(z)) = L−1yx (y + `y(x+ `x(z)))

= `−1yx (y + `y(x) + `y`x(z)− yx) = `−1yx (yx+ `y`x(z)− yx)

= `−1yx `y`x(z).

Similarly for Rx,y and Tx.
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Following Wright, we call (Q, ·) the linear groupoid of the algebra (Q,+, [., .]),
and the linear loop of (Q,+, [., .]) if (2.10) holds. In view of Proposition 2.15, it
is easy to express but di�cult to understand in terms of properties of [., .] when
the linear loop (Q, ·) is automorphic. We therefore specialize to the setting of Lie
rings.

An algebra (Q,+, [., .]) is alternating if [x, x] = 0 for every x ∈ Q. Every
alternating algebra is skew-symmetric, that is, [x, y] = −[y, x]. (Proof: Expand
0 = [x+ y, x+ y].)

We say that an algebra (Q,+, [., .]) is uniquely 2-divisible if the abelian group
(Q,+) is uniquely 2-divisible.

If (Q,+, [., .]) is alternating, then x · x = x+ x− [x, x] = 2x, so the associated
linear groupoid is uniquely 2-divisible if and only if (Q,+, [., .]) is uniquely 2-
divisible.

A Lie ring is an alternating algebra (Q,+, [., .]) in which [., .] satis�es the Jacobi
identity [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

Even for Lie rings it is not easy to characterize when the associated linear loop
is automorphic. We therefore analyze a stronger condition, namely `x and rx being
automorphisms.

Lemma 2.16 (compare [34, Proposition 5.2]). Let (Q,+, [., .]) be a Lie ring and
let (Q, ·) be de�ned by (2.9). Then (Q, ·) is a loop and all mappings `x, rx are
automorphisms of (Q, ·) if and only if conditions (2.10) and

[[x,Q], [x,Q]] = 0 (2.11)

hold for every x ∈ Q. In such a case, (Q, ·) is automorphic.

Proof. By Proposition 2.15, (Q, ·) is a loop if and only if (2.10) holds. We therefore
assume that (2.10) holds and investigate when the bijections `x, rx are automor-
phisms of (Q, ·). Using skew-symmetry and the Jacobi identity freely, we have

`x(u)`x(v) = `x(u) + `x(v)− [`x(u), `x(v)]

= u− [x, u] + v − [x, v]− [u− [x, u], v − [x, v]]

= (u+ v − [u, v])− [x, u+ v] + ([u, [x, v]] + [[x, u], v])− [[x, u], [x, v]]

= (u+ v − [u, v])− [x, u+ v] + [x, [u, v]]− [[x, u], [x, v]]

= (u+ v − [u, v])− [x, u+ v − [u, v]]− [[x, u], [x, v]]

= uv − [x, uv]− [[x, u], [x, v]] = `x(uv)− [[x, u], [x, v]].

Therefore `x ∈ Aut(Q, ·) if and only if (2.11) holds. The calculation for rx is
similar.

By Proposition 2.15, Inn(Q, ·) ≤ 〈`x, rx : x ∈ Q〉. Therefore, if `x, rx ∈
Aut(Q, ·) for every x ∈ Q, the loop (Q, ·) is automorphic.

Our eventual goal is to prove the Odd Order Theorem for automorphic loops,
so we focus on the uniquely 2-divisible case.
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Lemma 2.17. Let (Q,+, [., .]) be a uniquely 2-divisible Lie ring satisfying (2.10)
and (2.11). Let (Q, ·) be the (uniquely 2-divisible automorphic) linear loop of
(Q,+, [., .]). Let (Q, ◦) be the (uniquely 2-divisible) left Bruck loop associated with
(Q, ·). Then (Q, ◦) = (Q,+) is an abelian group.

Proof. We have x2 = x+x− [x, x] = 2x, so x1/2 = x/2. Also, x(−x) = x+(−x)+
[x,−x] = 0 shows x−1 = −x. Then x ◦ y = (x−1\y2x)1/2 = ((−x)\(2y)x)/2.
Therefore, the condition x ◦ y = x + y is equivalent to (2y)x = (−x) · (2(x + y)),
which is equivalent to 2y + x − [2y, x] = −x + 2(x + y) − [−x, 2(x + y)], which
follows easily because [., .] is alternating and biadditive.

We have shown how to construct uniquely 2-divisible automorphic loops from
certain uniquely 2-divisible Lie rings. In order to build a correspondence, we now
need to return from uniquely 2-divisible automorphic loops (Q, ·) to Lie rings,
i.e., we need to build operations + and [., .] on (Q, ·). Lemma 2.17 suggests to
restrict our attention to the class of uniquely 2-divisible automorphic loops whose
associated left Bruck loop is an abelian group, and set x+y = x◦y. This approach
works. See [34] for a proof.

Theorem 2.18 ([34, Theorem 5.7]). Suppose that (Q,+, [·, ·]) is a uniquely 2-
divisible Lie ring satisfying (2.10) and (2.11). Then (Q, ·) de�ned by (2.9) is a
uniquely 2-divisible automorphic loop whose associated left Bruck loop (Q, ◦) is an
abelian group (in fact, (Q, ◦) = (Q,+) ).

Conversely, suppose that (Q, ·) is a uniquely 2-divisible automorphic loop whose
associated left Bruck loop (Q, ◦) is an abelian group. Then (Q, ◦, [·, ·]) de�ned by

[x, y] = x ◦ y ◦ (xy)−1 (2.12)

is a uniquely 2-divisible Lie ring satisfying (2.10) and (2.11).
Furthermore, the two constructions are inverse to one another. Subrings (resp.

ideals) of the Lie ring are subloops (resp. normal subloops) of the corresponding
automorphic loop, and subloops (resp. normal subloops) closed under square roots
are subrings (resp. ideals) of the corresponding Lie ring.

Figure 2 summarizes what we have learned so far. In the �gure, all algebras
are of odd order, left Bruck loops are blue, Γ-loops are red, automorphic loops are
green, and Lie rings satisfying (2.10) and (2.11) are cyan. Dotted lines represent
abelian groups. Automorphic loops whose associated left Bruck loops are asso-
ciative are dashed green. Shaded regions represent one-to-one correspondences.
Except for the associated operation x · y = LxLy[Ly, Lx]1/2(1), all associated op-
erations make sense in the uniquely 2-divisible case, too.

We now work toward the Odd Order Theorem for automorphic loops.

Lemma 2.19 ([34, Lemma 5.8]). Let (Q,+, [., .]) be a uniquely 2-divisible Lie
ring. Then (2.11) holds if and only if (Q,+, [., .]) is solvable of length 2, that is,
[[Q,Q], [Q,Q]] = 0.
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Lemma 2.20 ([34, Lemma 6.5]). Let (Q, ·) be an automorphic loop of odd order,
let (Q, ◦) be the associated left Bruck loop, and let S be a characteristic subloop of
(Q, ◦). Then S is a normal subloop of (Q, ·).

Proof. Since x ◦ y = (x−1\y2x)1/2, we have Aut(Q, ·) ≤ Aut(Q, ◦). Thus S is
invariant under Inn(Q, ·) ≤ Aut(Q, ·). Let u, v ∈ S. We will show that vu and
v/u ∈ S. Let w = v1/2. Since powers in (Q, ·) and (Q, ◦) coincide, w ∈ S. Then
Tu((u ◦ w)2) = (Tu(u ◦ w))2 = (Tu(u) ◦ Tu(w))2 = (u ◦ Tu(w))2 = u−1\Tu(w)2u =
u−1\Tu(v)u = L−1u−1RuTu(v) = L−1u−1L

−1
u R2

u(v) is an element of S, where we have
used Proposition 1.3 in the last equality. Since LuLu−1 ∈ Inn(Q, ·), it follows
that R2

u(v) ∈ S. By induction, R2m
u (v) ∈ S for every m. By Lemma 2.4, |u| =

2m + 1 for some m. Then R2m+1
u ∈ Inn(Q, ·), so also R−2mu R2m+1

u (v) = vu and
R−2m−2u R2m+1

u (v) = v/u ∈ S. By the antiautomorphic inverse property for (Q, ·),
v\u ∈ S, too.

We have shown that S is a subloop of (Q, ·). It is a normal subloop because S
is invariant under Inn(Q, ·).

Theorem 2.21 ([34, Theorem 6.6]). Automorphic loops of odd order are solvable.

Proof. Let (Q, ·) be a minimal counterexample. If S is a nontrivial, proper normal
subloop of (Q, ·) then, by minimality, both S and (Q, ·)/S are solvable automorphic
loops of odd order. This contradicts the nonsolvability of (Q, ·). Therefore (Q, ·)
is simple.

Let (Q, ◦) be the associated left Bruck loop. By Theorem 2.2, (Q, ◦) is solvable
and so the derived subloop D = (Q, ◦)′ is a proper subloop of (Q, ◦). Since D is
a characteristic subloop of (Q, ◦), Lemma 2.20 shows that D is normal in (Q, ·).
Since (Q, ·) is simple, D = 1 and (Q, ◦) is an abelian group.

Recall that powers in (Q, ·) and (Q, ◦) agree. Let p be a prime divisor of |Q|
and let Qp = {x ∈ Q : xp = 1}. Then Qp is a characteristic subloop of (Q, ◦),
hence a normal subloop of (Q, ·). By Theorem 2.7, Qp is nontrivial, so Qp = Q
because (Q, ·) is simple. Thus (Q, ·) has exponent p, (Q, ◦) has exponent p, and
(Q, ◦) is an elementary abelian p-group.

By Theorem 2.18, (Q, ◦, [·, ·]) de�ned by (2.12) is a Lie ring satisfying (2.10)
and (2.11). By Lemma 2.19, (Q, ◦, [·, ·]) is solvable (of class 2). Since (Q, ◦) is
an elementary abelian p-group, we may view (Q, ◦, [·, ·]) as a �nite dimensional
Lie algebra over GF (p). Since (Q, ·) is simple, Theorem 2.18 also implies that
(Q, ◦, [·, ·]) is either a simple Lie algebra or an abelian Lie algebra (that is, [Q,Q] =
0). The former case contradicts solvability of (Q, ◦, [·, ·]), and so (Q, ◦, [·, ·]) is an
abelian Lie algebra. But then x · y = x ◦ y ◦ [x, y] = x ◦ y, so (Q, ·) is an abelian
group, a contradiction with nonsolvability of (Q, ·).

Lecture 3: Enumerations and constructions

In this section we �rst show how to e�ciently search for �nite simple automorphic
loops, temporarily suspending the notation ◦ and ∗ from previous sections. Then
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we discuss (commutative) automorphic loops of order pq and p3. Finally, we give
two useful constructions of automorphic loops.

3.1. Enumerating all left automorphic loops

Let G be a permutation group on a �nite set Q = {1, . . . , d}, and let H ≤ G. The
�rst goal of this section is to present a naive algorithm for constructing all loops
(Q, ∗) on Q with identity element 1 so that Mlt`(Q, ∗) ≤ G and H ≤ Aut(Q, ∗).
Since Mlt`(Q, ∗) acts transitively on Q and ϕ(1) = 1 holds for every ϕ ∈ H, let us
assume from the start that G is transitive on Q and H ≤ G1.

We then specialize this algorithm to construct all left automorphic loops (Q, ∗)
on Q satisfying Mlt`(Q, ∗) = G. In the next subsection we will add the requirement
that (Q, ∗) be simple. The exposition follows [29].

Lemma 3.1. Let Q = {1, . . . , d} be a �nite set and let L = {`x : x ∈ Q} be a
subset of Sym(Q). Then (Q, ∗) de�ned by x ∗ y = `x(y) is a loop with identity
element 1 if and only if

(i) `1 is the identity mapping on Q, and

(ii) `x(1) = x for every x ∈ Q, and

(iii) `−1x `y is �xed-point free for every x, y ∈ Q with x 6= y.

Proof. Condition (i) holds i� x = `1(x) = 1 ∗ x for every x ∈ Q. Condition (ii)
hold i� x = `x(1) = x∗1 for every x ∈ Q. So (i) and (ii) together are equivalent to
(Q, ∗) having 1 as the identity element. Since L ⊆ Sym(Q), all the left translations
of (Q, ∗) are bijections. Let z ∈ Q. Then z is not a �xed point of `−1x `y if and only
if x ∗ z 6= y ∗ z. Therefore condition (iii) holds if and only if all right translations
of (Q, ∗) are one-to-one. We are done by �niteness of Q.

We therefore have the following naive algorithm for constructing all loops on
Q with identity element 1: Construct all subsets {`x : x ∈ Q} of Sym(Q) and
check that conditions (i)− (iii) of Lemma 3.1 hold.

We will show how to speed up the algorithm if we are only interested in left
automorphic loops, essentially by adding left translation not one at a time but
rather one conjugacy class at a time.

Lemma 3.2. Let Q be a loop.

(i) A bijection ϕ : Q → Q is an automorphism of Q if and only if ϕLxϕ
−1 =

Lϕ(x) for every x ∈ Q.

(ii) If ϕ ∈ Aut(Q) �xes x then Lxϕ = ϕLx.

Proof. The following conditions, universally quanti�ed for y ∈ Q, are equivalent:
ϕLxϕ

−1 = Lϕ(x), ϕ(xϕ−1(y)) = ϕ(x)y, ϕ(xy) = ϕ(x)ϕ(y). To prove (ii), consider
ϕ ∈ Aut(Q) that �xes x, and note that Lxϕ(y) = xϕ(y) = ϕ(x)ϕ(y) = ϕ(xy) =
ϕLx(y) for every y ∈ Q.
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Algorithm 3.3.

Input: A set Q = {1, . . . , d}, a transitive permutation group G on Q, and H ≤ G1.

Output: All loops (Q, ∗) on Q with identity element 1 such that Mlt`(Q, ∗) ≤ G
and H ≤ Aut(Q, ∗).

Step 1: Let `1 = 1G, and let X ⊆ Q \ {1} be a set of orbit representatives for
the natural action of H on Q \ {1}. (The condition `1 = 1G is forced by Lemma
3.1(i).)

Step 2: For all x ∈ X, let

Lx = {`x ∈ G : `x(1) = x, `x is �xed-point free, and `x ∈ CG(Hx)}.

If Lx = ∅, stop with failure. (This is a set of candidates for `x. The �rst two
conditions are necessary by Lemma 3.1. The last condition is necessary by Lemma
3.2(ii). Note that if Lx is nonempty, it su�ces to �nd one ` ∈ Lx and set Lx =
`(CG(Hx)1).)

Step 3: For all x ∈ X, let

Lx = {`Hx : `x ∈ Lx, |`Hx | = |H(x)|,
`−1x ` is �xed-point free for every ` ∈ `Hx with ` 6= `x}.

If Lx = ∅, stop with failure. (By Lemma 3.2, the desired L = {`x : x ∈ Q} is
a union of H-conjugacy classes in G. The set Lx is a set of candidates for the
H-conjugacy class containing `x. The condition |`Hx | = |H(x)| is forced by Lemma
3.2(i). The second condition is forced by Lemma 3.1(iii).)

Step 4: Construct a graph Γ on V =
⋃

x∈X Lx by letting (`Hx , `
H
y ) ∈ Lx × Ly

to be an edge if and only if (`Hx )−1(`Hy ) consists of �xed-point free permutations.

(Note that it su�ces to check that `−1x `Hy consists of �xed-point free permuta-
tions. Indeed, if ψ`xψ

−1(z) = ϕ`yϕ
−1(z) for some z ∈ Q, then `x(ψ−1(z)) =

(ψ−1ϕ)`y(ψ−1ϕ)−1(ψ−1(z)).)

Step 5: Find all subsets C of V such that C is a clique in Γ and
∑

v∈C |v| = |Q|−1.
If there are no such C, stop with failure. Else return all loops Q(L) = (Q, ∗), where
L = L(C) = {`1}∪

⋃
v∈C v = {`x : x ∈ Q} and x∗y = `x(y). (The clique property

accounting for |Q| − 1 left translations is at this stage necessary and su�cient by
Lemmas 3.1 and 3.2.)

Denote by A≤` (Q,G) all left automorphic loops (Q, ∗) de�ned on Q with iden-
tity element 1 and satisfying Mlt`(Q, ∗) ≤ G, by A=

` (Q,G) all loops (Q, ∗) ∈
A≤` (Q,G) with Mlt`(Q, ∗) = G, and by A=(Q,G) all loops (Q, ∗) ∈ A≤` (Q,G)
that are automorphic and satisfy Mlt(Q, ∗) = G. Let also C(Q,G,H) be the set
of all loops (Q, ∗) obtained by Algorithm 3.3 with input Q, G and H.
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Lemma 3.4. Let G be a transitive permutation group on Q = {1, . . . , d}. Then

A=
` (Q,G) ⊆ C(Q,G,G1) ⊆ A≤` (Q,G). Moreover, A=(Q,G) ⊆ C(Q,G,G1).

Proof. First let (Q, ∗) ∈ A=
` (Q,G). Then Inn`(Q, ∗) = Mlt`(Q, ∗)1 = G1, and

therefore (Q, ∗) ∈ C(Q,G,G1). Now let (Q, ∗) ∈ C(Q,G,G1). Then Mlt`(Q, ∗) ≤
G because every left translation of (Q, ∗) is in G. Since Inn`(Q, ∗) = Mlt`(Q, ∗)1 ≤
G1 ≤ Aut(Q, ∗), the loop (Q, ∗) is left automorphic. Finally, let (Q, ∗) ∈ A=(Q,G).
Then Mlt`(Q, ∗) ≤ G and G1 = Mlt(Q, ∗)1 = Inn(Q, ∗) ≤ Aut(Q, ∗). Thus
(Q, ∗) ∈ C(Q,G,G1).

Lemma 3.4 can be used to �nd all left automorphic loops on the set Q =
{1, . . . , d} with identity element 1. It su�ces to apply the lemma to all transitive
groups G in Q and discard duplicate loops.

3.2. Searching for �nite simple automorphic loops

Recall that a loop Q is said to be simple if it has no normal subloops except for
Q and 1.

In principle, Algorithm 3.3 returns all �nite left automorphic loops, and hence
also all �nite simple automorphic loops. In practice, the algorithm is too slow to
get to even moderately large orders. In this section we will describe improvements
to the algorithm so that it can check for simple automorphic loops of order up to
several thousands.

The key results are due to Albert and Vesanen. Albert's result is easy to prove,
Vesanen's not so much.

Theorem 3.5 ([3, Theorem 8]). A loop Q is simple if and only if its multiplication
group Mlt(Q) acts primitively on Q.

Theorem 3.6 ([45]). Let Q be a �nite loop. If Mlt(Q) is solvable then Q is
solvable.

Recall that a partition of Q is said to be trivial if it is of the form {Q} or of the
form {{x} : x ∈ Q}. A group G ≤ Sym(Q) preserves a partition {B1, . . . , Bn} of
Q if for every ϕ ∈ G and every 1 ≤ i ≤ n there is 1 ≤ j ≤ n such that ϕ(Bi) = Bj .
A transitive permutation group G ≤ Sym(Q) is primitive if it does not preserve
any nontrivial partition of Q. The degree of G is the cardinality of Q.

It is easy to see that every 2-transitive group G ≤ Sym(Q) is primitive. (Con-
sider a nontrivial partition {B1, . . . , Bn} with n ≥ 1, B1 containing distinct ele-
ments x, y, and let z ∈ B2. Let ϕ ∈ G be such that ϕ(x) = x and ϕ(y) = z. Then
ϕ(B1) 6= Bj for every 1 ≤ j ≤ n.) Unlike �nite 2-transitive groups, �nite primitive
groups are not classi�ed [13]. GAP contains a library of all primite groups of degree
< 2500. MAGMA [12] contains a library of all primitive groups of degree < 4096.

Lemma 3.7. If Q is a loop of order bigger than 4 and H ≤ Aut(Q) then H is
not 3-transitive on Q \ {1}.
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Proof. Suppose that H is 3-transitive on Q \ {1}. Let x, y ∈ Q be such that |{1,
x, y}| = 3 and z = xy 6= 1. Then {x, y, z} is a subset of Q \ {1} of cardinality 3.
Let ϕ ∈ H be such that ϕ(x) = x, ϕ(y) = y and ϕ(z) 6= z. (Here we use |Q| > 4.)
We reach a contradiction with ϕ(z) = ϕ(xy) = ϕ(x)ϕ(y) = xy = z.

Proposition 3.8. All �nite simple nonassociative automorphic loops are found
in the set

⋃
C(Q,G,G1), where the union is taken over sets Q of even order and

over primitive groups G ≤ Sym(Q) that are not solvable and not 4-transitive.

Proof. Let (Q, ∗) be a �nite simple nonassociative automorphic loop of order d > 1
with the identity element 1. Let G = Mlt(Q, ∗). If (Q, ∗) is solvable then it is an
abelian group, a contradiction. By Theorem 2.21, we can assume that d is even.
By Theorem 3.6, G is not solvable. If G is 4-transitive, then G1 ≤ Aut(Q, ∗) is
3-transitive on Q \ {1}, a contradiction with Lemma 3.7. It remains to show that
(Q, ∗) ∈ C(Q,G,G1). This follows from Lemma 3.4.

Let (Q, ∗) ∈
⋃
C(Q,G,G1), where the union is as in Proposition 3.8. Suppose

that we run the algorithm by incrementally increasing the cardinality of Q, and,
for a �xed d = |Q|, by incrementally increasing the order of G. When should
we catalog (Q, ∗) as a newly found �nite simple nonassociative automorphic loop?
We �rst calculate the order of M = Mlt(Q, ∗) ≤ G. If |M | < |G| then (Q, ∗) is
guaranteed to be automorphic (since Inn(Q, ∗) = M1 ≤ G1 ≤ Aut(Q, ∗)) but either
M is not as in Proposition 3.8 or we have already seen (Q, ∗) in C(Q,M,M1), so we
do not store (Q, ∗). If |M | > |G| then (Q, ∗) is either not automorphic (checking
this is expensive), or we will see the same loop later in C(Q,M,M1), so we again do
not store it. If |M | = |G| then (Q, ∗) is a �nite simple nonassociative automorphic
loop and we store it (upon checking for isomorphism against all already stored
loops with the same multiplication group).

This search has been carried out in [29] for d < 2500 and recently by Cameron
and Leemans [7] for d < 4096. The result is somewhat surprising:

Proposition 3.9. There are no �nite simple nonassociative automorphic loops of
order less than 4096.

We remark that Algorithm 3.3 �nds numerous �nite simple nonassociative left
automorphic loops.

Are there any �nite simple nonassociative commutative automorphic loops?
The search for �nite simple commutative automorphic loops can be reduced to
orders 2k by the following result (whose proof, incidentally, required another as-
sociated operation to show that a product of two squares is a square):

Theorem 3.10 ([25]). Let Q be a �nite commutative automorphic loop. Then
Q is a direct product A × B, where A = {x ∈ Q : |x| = 2n for some n} and
B = {x ∈ Q : |x| is odd}. Morever, |A| = 2m for some m and |B| is odd.

With this decomposition at hand, we easily get:
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Theorem 3.11 ([25]). Let Q be a �nite commutative automorphic loop. Then the
Cauchy and Lagrange theorems hold for Q.

It is much harder to deduce solvability in the even case. Grishkov, Kinyon and
Nagy used advanced results on Lie algebras to prove:

Theorem 3.12 ([23]). Every �nite commutative automorphic loop is solvable.

Thus there are no �nite simple nonassociative commutative automorphic loops.

3.3. Commutative automorphic loops of order pq

Recall that a power-associative loop Q is a p-loop if every element of Q has order
that is a power of p. From Theorem 3.11 we easily deduce that, for an odd prime
p, a �nite automorphic loop is a p-loop if and only if |Q| is a power of p.

Let us now consider �nite commutative automorphic loops. Unlike in abelian
groups, the direct factor B from Theorem 3.10 does not necessarily decompose
as a direct product of p-loops. In fact, for certain odd primes p > q, Drápal
constructed a nonassociative commutative automorphic loop Q of order pq, which
therefore does not factor as a direct product of an automorphic loop of order p
and an automorphic loop of order q. We will discuss his construction at the end of
this subsection. First we have a look at commutative automorphic loops of order
pq in general.

Lemma 3.13. Let Q be a power-associative loop. Then Q/Z(Q) is never a non-
trivial cyclic group.

Proof. Suppose that Q/Z(Q) is cyclic of order m > 1. Then there is x ∈ Q \Z(Q)
such that xZ(Q) has order m in Q/Z(Q) and Q =

⋃
0≤i<m xiZ(Q). Therefore any

element of Q can be written as xia for some 0 ≤ i < m and a ∈ Z(Q). With three
elements of Q written in this form, we calculate

(xia · xjb) · xkc = (xixj)xk · abc = xi(xjxk) · abc = xia · (xjb · xkc),

where we have used a, b, c ∈ Z(Q) and power-associativity for 〈x〉. Hence Q is a
group, and the result follows from the well-known fact that, in groups, Q/Z(Q) is
never a nontrivial cyclic group.

Niederreiter and Robinson proved the following result while studying Bol loops
of order pq:

Proposition 3.14 ([40]). Let Q be a left Bol loop of order pq with odd primes
p > q. Then Q contains a unique subloop of order p.

Lemma 3.15. Let Q be a nonassociative commutative automorphic loop of order
pq with odd primes p > q. Then Z(Q) = 1, Q contains a normal subgroup S of
order p, and all elements of Q \ S have order q.
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Proof. We have Z(Q) < Q by assumption. If 1 < Z(Q) then Q/Z(Q) is isomorphic
to Zp or to Zq by Corollary 2.8, a contradiction with Lemma 3.13. Hence Z(Q) = 1.

By Theorem 2.14, Q is solvable. Let S = Q′ < Q. We have 1 < S, else Q is an
abelian group. Let |S| = s and {s, t} = {p, q}. Then |Q/S| = t, and both S and
Q/S are cyclic groups of prime order. Let x ∈ Q \ S. Then |〈xS〉| = |Q/S| = t,
so t divides |x|. By Theorem 2.7, either |x| = st = pq or |x| = t. If |x| = pq then
Q = 〈x〉 is a group, a contradiction. Hence |x| = t.

Let (Q, ◦) be the associated left Bruck loop. By Proposition 3.14, (Q, ◦) con-
tains a unique subloop of order p. Since powers in (Q, ◦) and (Q, ·) coincide, it
follows that Q contains precisely p− 1 elements of order p. Hence s = p.

We will need the following two results:

Theorem 3.16 ([30]). Let Q be a loop such that Inn(Q) is a cyclic group. Then
Q is an abelian group.

Theorem 3.17 (Albert). Let S be a normal subgroup of Q, and let LS = {Lx :
x ∈ S}. For a permutation group G on Q, let GS = {ϕ ∈ G : ϕ|S = idS} and
GQ/S = {ϕ ∈ G : ϕ(xS) = xS for every x ∈ Q}. Then Mlt(Q)S = LS · Inn(Q),
Mlt(Q)Q/S = LS · Inn(Q)Q/S and Inn(Q/S) ∼= (Mlt(Q)S)/(Mlt(Q)Q/S).

Proposition 3.18. Let Q be a nonassociative commutative automorphic loop of
order pq with odd primes p > q. Then there is a normal subgroup C ∼= Zp of
Inn(Q) such that Inn(Q)/C is a cyclic group of order dividing p− 1.

Proof. Let S be the unique normal subgroup of order p in Q, whose existence
is guaranteed by Lemma 3.15. Consider the mapping f : Inn(Q) → Aut(S),
f(ϕ) = ϕ|S . Since ϕ|Sψ|S(x) = ϕ|S(ψ(x)) = ϕ(ψ(x)) = (ϕψ)|S(x) for every
x ∈ S, the mapping f is a homomorphism. Its kernel is equal to C = {ϕ ∈ Inn(Q) :
ϕ|S = idS}. Now, Aut(S) ∼= Aut(Zp) ∼= Zp−1 is cyclic, so Inn(Q)/C ≤ Aut(S) is
a cyclic group of order dividing p − 1. If C is trivial, we deduce that Inn(Q) is
cyclic and Theorem 3.16 then implies that Q is an abelian group, a contradiction.
Thus C is nontrivial.

Let S = 〈s〉 and �x t ∈ Q\S. Since Ls(St) = s(St) = (sS)t = St, the mapping
ψ = Ls|St is a bijection on St. We claim that ψ is a p-cycle. Suppose this is not
the case. Since ψ has no �xed points and p is a prime, ψ must contain nontrivial
cycles of distinct lengths. Then a suitable power of ψ, say ψi, has more than 1
but less than p �xed points. Without loss of generality, let t be a �xed point of
ψi. Then α = L−1t Li

sLt ∈ Mlt(Q) �xes 1. Thus α ∈ Inn(Q) ≤ Aut(Q), and
α|S ∈ Aut(S). Moreover, since α|S is conjugate to ψi, they have the same cycle
structure. The �xed points of α|S then determine a nontrivial proper subgroup of
S ∼= Zp, a contradiction.

Since Q/S is of prime order q, it is an abelian group and Inn(Q/S) = 1.
Then Theorem 3.17 gives 1 = Inn(Q/S) ∼= (LS · Inn(Q))/(LS · Inn(Q)Q/S), so
Inn(Q) = Inn(Q)Q/S . In other words, every ϕ ∈ Inn(Q) satis�es ϕ(xS) = xS for
every x ∈ Q.
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Consider 1 6= ϕ ∈ C. Then ϕ is determined by the value on t, and t 6= ϕ(t) ∈ St.
Because ψ = Ls|St is a p-cycle, there exists some 0 < j < p such that ψj(t) = ϕ(t).
Furthermore, ϕ(skt) = skϕ(t) = Lskψ

j(t) = ψjLsk(t) = ψj(skt) by Proposition
1.3, so ϕ|St = ψj . Because ψj is a p-cycle and ϕk|St = ψjk for every k, the
elements ϕ, ϕ2, . . . , ϕp = 1 are distinct and account for all elements of C. Hence
C ∼= Zp.

Construction 3.19 ([16, Propositions 3.1 and 3.6]). Let p be an odd prime and
t ∈ Zp. De�ne a partial map ft : Zp → Zp by ft(x) = (x+ 1)(tx+ 1)−1. Suppose
that for every i ≥ 1 the value f it (0) is de�ned and there is a unique x ∈ Zp such
that f it (x) = 0. Let d = |{f it (0) : i ≥ 1}|. Then Zp × Zd with multiplication

(i, a)(j, b) = (i+ j, (a+ b)(1 + tf it (0)f jt (0))−1)

is a commutative automorphic loop.

Proposition 3.20 ([28]). Construction 3.19 yields a nonassociative commutative
automorphic loop of order pq for odd primes p > q if and only if q divides p2 − 1,
in which case it yields only one such loop up to isomorphism.

Thanks to Proposition 3.18, all commutative automorphic loops of order pq
could be classi�ed by the tour de force of classifying all loops with trivial center and
metacyclic inner mapping group, a program of Drápal that is nearing completion
(see, for instance, [15]). Another, perhaps easier approach, is to classify all left
Bruck loops of order pq, and then use Theorem 2.13. In particular, if there is a
unique nonassociative left Bruck loop of order pq and q divides p2−1, then it must
correspond to a unique nonassociative commutative automorphic loop of order pq,
constructed by Construction 3.19.

3.4. Commutative automorphic loops of order p3

Proposition 3.21 ([26]). Let p be an odd prime and Q a commutative automor-
phic loop. If |Q| ∈ {p, 2p, 4p, p2, 2p2, 4p2} then Q is an abelian group.

Proof. By Theorem 3.10, it su�ces to prove that all commutative automorphic
loops Q of odd order p and p2 are groups. For |Q| = p this is a special case of
Corollary 2.8, for instance. When |Q| = p2 then Z(Q) is nontrivial by Theorem
2.14, and the case |Z(Q)| = p is excluded by Lemma 3.13.

In view of Proposition 3.21, commutative automorphic loops of order p3 (for
any prime p) are of interest. As above, we can easily show that if such a loop is
nonassociative of odd order p3 then Z(Q) ∼= Zp and Q/Z(Q) ∼= Zp × Zp. There
are commutative automorphic loops of order 8 with trivial center [26].

Consider the following construction of [26]. Let n ≥ 2 be an integer. The
over�ow indicator (., .)n : Zn × Zn → {0, 1} is de�ned by

(x, y)n =

{
1, if x+ y ≥ n,
0, otherwise.
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For a, b ∈ Zn, de�ne Qa,b(Zn) on Zn × Zn × Zn by

(x1, x2, x3)(y1, y2, y3)

= (x1 + y1 + (x2 + y2)x3y3 + a(x2, y2)n + b(x3, y3)n, x2 + y2, x3 + y3).

Then Qa,b(Zn) is a commutative automorphic loop of order n3, Z(Q) = N`(Q) =
Zn × 0× 0, and Nm(Q) = Zn × Zn × 0.

It turns out that all nonassociative commutative automorphic loops of odd
order p3 are of the form Qa,b(Zp). This was shown by De Barros, Grishkov and
the author, who studied quotients of free 2-generated nilpotent class 2 commutative
automorphic loops and also proved:

Theorem 3.22 ([10]). For every prime p, there are precisely 7 commutative au-
tomorphic loops of order p3 up to isomorphism, including the three abelian groups
Zp3 , Zp2 × Zp and Zp × Zp × Zp.

The structure of the free 2-generated commutative automorphic loop of nilpo-
tency class 2 can be found in [10, Theorem 2.3], which is proved by careful asso-
ciator calculus. Lemma 3.23 below gives some insight, and once again shows that
the middle nucleus is of key importance in automorphic loops.

Recall that the associator (x, y, z) is de�ned by (xy)z = x(yz) · (x, y, z).

Lemma 3.23 ([10, Lemmas 2.1 and 2.2]). Let Q be a commutative loop of nilpo-
tency class 2 (that is, Q/Z(Q) is an abelian group). Then (x, y, x) = 1, (x, y, z) =
(z, y, x)−1 and (x, y, z)(y, z, x)(z, x, y) = 1 for every x, y, z ∈ Q. Moreover, Q is
automorphic if and only if (xy, u, v) = (x, u, v)(y, u, v) for every x, y, u, v ∈ Q.

In the automorphic case, we have (xy, u, v) = (x, u, v)(y, u, v), (x, y, uv) =
(x, y, u)(x, y, v), and (x, yu, v) = (x, v, y)(x, v, u)(y, x, v)(u, x, v).

The structure of the free 2-generated commutative automorphic loop of nilpo-
tency class 3 is also known, cf. [11, Theorem 5.4].

3.5. Two constructions of automorphic loops

We conclude the lecture notes with two constructions of automorphic loops.

Construction 3.24 ([24]). Let R be a commutative ring, V an R-module and
E = EndR(V ) the ring of R-endomorphisms of V . Let (W,+) ≤ (E,+) be such
that

(i) ab = ba for every a, b ∈W , and

(ii) 1 + a is invertible for every a ∈W .

De�ne multiplication on W × V by

(a, u)(b, v) = (a+ b, (1 + b)(u) + (1− a)(v)).

Then (W × V, ·) is an automorphic loop.
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A special case of this construction was �rst given in [27] in an e�ort to shed
some light on automorphic loops of order p3. (Automorphic loops of order p2

are known to be groups by [8] or by [34, Theorem 6.1].) A slight variation on
Construction 3.24 was also given in [37] in characteristic 2.

An important special case of Construction 3.24 can be given as follows: Let
R = k < K = V , where k < K is a �eld extension. Let W be a k-subspace of
K such that k1 ∩W = 0. We can identify a ∈ W with the k-endomorphism of
K given by b 7→ ba (the right translation by a in (K, ·)). Then it is easy to see
(cf. [24]) that the conditions (i) and (ii) of Construction 3.24 are satis�ed, and we
obtain an automorphic loop Qk<K(W ) = QR,V (W ) on W ×K.

Let us come back to automorphic loops of order p3. In order to obtain them
as loops Qk<K(W ), we choose k = Fp to be the �eld of order p and K = Fp2 a
quadratic �eld extension of k. If p is odd, we can �nd all suitable k-subspaces W
as follows: The �eld K can be identi�ed with {x+ y

√
d : x, y ∈ k}, where d ∈ k

is not a square. Let

W0 = k
√
d and Wa = k(1 + a

√
d) for 0 6= a ∈ k.

Then every Wa is a 1-dimensional k-subspace of K such that k1 ∩Wa = 0. Con-
versely, if W is a 1-dimensional k-subspace of K such that k1 ∩ W = 0, there
is a + b

√
d in W with a, b ∈ k, b 6= 0. If a = 0 then W = W0. Otherwise

a−1(a + b
√
d) = 1 + a−1b

√
d ∈ W , and W = Wa−1b. Hence there is a one-to-one

correspondence between the elements of k and 1-dimensional k-subspaces W of K
satisfying k1 ∩W = 0, given by a 7→Wa.

Proposition 3.25 ([24]). Let p be a prime and Fp = k < K = Fp2 .

(i) Suppose that p is odd. If a, b ∈ k, then the automorphic loops Qk<K(Wa),
Qk<K(Wb) of order p3 are isomorphic if and only if a = ±b. In particular,
there are (p+ 1)/2 pairwise nonisomorphic automorphic loops of order p3 of
the form Qk<K(W ), where we can take W ∈ {Wa : 0 ≤ a ≤ (p− 1)/2}.

(ii) Suppose that p = 2. Then there are 2 pairwise nonisomorphic automorphic
loops of order p3 of the form Qk<K(W ).

We do not claim that Proposition 3.25 accounts for all automorphic loops of
order p3.

Finally, we present a construction reminiscent of generalized dihedral groups.

Construction 3.26 ([1]). Let (G,+) be an abelian group and m > 1 an even
integer. Let α ∈ Aut(G). De�ne multiplication on Zm ×G by

(i, u)(j, v) = (i+ j, αij((−1)ju+ v)).

Then the resulting loop Dih(m,G,α) is automorphic if and only ifm = 2 or α2 = 1.
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Aboras [2] obtained many structural properties of the dihedral-like automor-
phic loops Dih(m,G,α), which are of interest because they account for many small
automorphic loops.

The special case of Construction 3.26 with m = 2 was originally introduced in
[34], and the following result was obtained there:

Theorem 3.27 ([34, Corollary 9.9]). Let p be an odd prime, and let Q be a loop
of order 2p. Then Q is automorphic if and only if it is isomorphic to the cyclic
group Z2p or to a dihedral-like loop Dih(2,Zp, α) for some α ∈ Aut(Zp). There
are precisely p pairwise nonisomorphic automorphic loops of order 2p.

Coming back full circle, the automorphic loop Q6 from the introduction is iso-
morphic to the loop Dih(2,Z3, α), where α is the unique nontrivial automorphism
of Z3.

4. Open problems

Problem 4.1. Is there a �nite simple nonassociative automorphic loop?

Problem 4.2. Is there an automorphic loop of odd order with trivial middle nu-
cleus?

Problem 4.3. If Q is a �nite automorphic loop and H ≤ Q, does |H| divide |Q|?

Let p be a prime.

Problem 4.4. Find an elementary proof of the fact that automorphic loops of
order p2 are groups.

Problem 4.5. Classify automorphic loops of order p3.

Problem 4.6. Classify commutative automorphic loops of order p4.

Problem 4.7. Classify left Bruck loops of order pq and p2q, where p, q are distinct
odd primes.

Problem 4.8. Classify (commutative) automorphic loops of order pq and p2q,
where p, q are distinct odd primes.

Problem 4.9. Study free commutative automorphic loops with k free generators
and of nilpotency class n. Already the cases (k, n) = (2, 4) and k ≥ 3 are open.

Problem 4.10. Study in detail the mapping Φ : (Q, ·) 7→ (Q, ◦) that associates
a uniquely 2-divisible left Bruck loop (Q, ◦) to a uniquely 2-divisible automorphic
loop (Q, ·) via x ◦ y = (x−1\y2x)1/2. In particular, what is the image of Φ? If
(Q, ◦) ∈ im(Φ), is there also a commutative automorphic loop (Q, ·) such that
(Q, ◦) = Φ(Q, ·)?
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Problem 4.11. Can Proposition 2.12 be extended from left Bruck loops of odd
order to uniquely 2-divisible left Bruck loops, perhaps under di�erent correspon-
dence?

Problem 4.12. Let (Q,+, [., .]) be an algebra in which the condition (2.10) holds,
and let (Q, ·) be the associated linear loop with multiplication x · y = x+ y− [x, y].
Characterize when (Q, ·) is an automorphic loop (beyond the obvious equational
characterization). Are there interesting classes of algebras for which (Q, ·) is al-
ways automorphic?

Problem 4.13. Let (Q,+, [., .]) be a Lie ring satisfying (2.10). Characterize when
the associated linear loop (Q, ·) is automorphic (beyond the obvious equational
characterization).

An alternative theory of solvability in loop theory has been developed in [44],
based on concepts from universal algebra (congruence modular varieties). Let us
call this solvability congruence solvability. Congruence solvability is in general a
stronger concept than solvability. To see whether congruence solvability is the
right concept for loops, theorems previously proved for (classical) solvability in
loops should be revisited. In particular:

Problem 4.14. Are left Bruck (Moufang, commutative automorphic, automorphic)
loops of odd order congruence solvable?
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