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K-loops from classical subgroups of GL(H),
H being a separable Hilbert space

Alper Bulut

Abstract. We study some examples of in�nite dimensional K-loops from subgroups of invert-

ible bounded linear operators GL(H), where H is in�nite dimensional separable Hilbert space.

We use Kreuzer and Wefelscheid method given in [10] to show that if G is one of the classi-

cal complex Banach Lie group in {GL(H), O(H, JR), Sp(H, JQ)}, then the intersection of G and

the set of positive self-adjoint operators form a K-loop with respect to a new binary operation

induced by the group operation in G.

1. Introduction

A Bol loop satisfying the automorphic inverse property is called a K-loop. Karzel
introduced the notion of near-domain (F,⊕, ·) in [4], [5] which is a generalization
of a near-�eld where the additive structure of a near-domain is not necessarily
associative. Kerby and Wefelsheid investigated the additive structure of a near-
domain (F,⊕) with extra axioms, and then they called the new structure a K-loop,
but according to [6], they used the term K-loop only in talks in 1970's and the
beginning of 1980's. On the other hand, the �rst appearance of the term K-loop

in literature goes back to A.A. Ungar's paper in [15].
The early history of the "K-loop" notion, with K named after Karzel, is un-

folded in [12]. For di�erent purposes, the term "K-loop" was already in use earlier
by L.R. Soikis, in 1970 [13], and later but independently by A.S. Basarab, in 1992
[1]. The origin of the "K" in the term K-loop coined by Soikis and by Basarab,
which certainly does not refer to "Karzel", is unclear.

Ungar investigated the Einsten's velocity addition binary operation ⊕ over R3
c .

The elements of R3
c are called relativistically admissible velocities that are vectors

in R3 whose norms are strictly less than c, where c is the vacuum speed of light.
The Einstein velocity addition of x and y in R3

c is given by

x⊕ y =
1

1 + x.y
c2

{
x+ y +

1

c2
γx

1 + γx
(x× (x× y))

}
(1)

In (1) "." and "×" stand for inner product and cross product respectively, and
γx = 1√

1−( ‖x‖
c )2

is called Lorentz factor [15, 17].
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Ungar showed in [15] that Einstein's velocity addition over the R3
c has un-

usual algebraic properties. For instance (R3
c ,⊕) is a non-associative and non-

commutative loop. Ungar stated that this loop can be placed in the context of
K-loop, see [15], that was studied by Kerby and Wefelscheid. In literature, K-loops
are also known as gyrocommutative gorogroups, see [16]. The non-associativity
and non-commutativity of Einstein velocity addition in R3

c can be upgraded to a
weak form of associativity and commutativity by a linear map in End(R3) that is
called Thomas Rotation, see [14].

The weak forms of associativity and commutativity for the x, y, z ∈ R3
c are

given by
x⊕ (y ⊕ z) = (x⊕ y)⊕ tom[x; y](z) (2)

x⊕ y = tom[x; y](y ⊕ x) (3)

Thomas precession (or Thomas rotation) is also called Thomas gyration and de-
noted by gyr[x, y] for x, y ∈ R3

c , and 2 and 3 are called gyroassociative and gy-
rocommutative laws respectively in [16]. It is quiet interesting that some of the
properties of Thomas gyration are identical with the properties of a bijective map
in the de�nition of a near-domain (F,⊕, .), namely da,b : F → F where a, b ∈ F ,
and da,b sends the element x to da,b.x such that a ⊕ (b ⊕ x) = (a ⊕ b) ⊕ +da,b.x
[9]. Ungar's example in physics motivated many people to investigate K-loop
structures, hence many K-loop examples were derived. Kreuzer and Wefelscheid
pioneered an abstract way to construct a K-loop from group transversals [10], and
Kiechle in [7] gave many examples of K-loops derived from classical groups over
ordered �elds. Kiechle showed that

Theorem 1.1. Let R be n-real, and G ≤ GL(n,K) with G = LGΩG, then there

are A ⊕ B ∈ LG and dA,B ∈ ΩG with AB = (A ⊕ B)dA,B such that (LG,⊕) is a

K-loop.

Here R is an ordered �eld and K = R(i), where i2 = −1. L is the set of
positive de�nite hermitian n × n matrices over K and Ω is the unitary group as
given below.

L =
{
A ∈ Kn×n : A = A∗,∀v ∈ Kn\ {0} : v∗Av > 0

}
, (4)

Ω =
{
U ∈ Kn×n : UU∗ = In

}
. (5)

Moreover, LG = L ∩ G and ΩG = Ω ∩ G. Kiechle remarks in [7] that the
construction of K-loops from classical groups over ordered �elds can be generalized
to K-loops from GL(H) by using the polar decomposition theorem, where GL(H)
is the unit group of bounded linear operators over the Hilbert space H.

In the second section we summarize Kerby and Wefelscheid's method in [10]
to form K-loops from group transversals. This method enable us to extend the
examples of K-loops not only from the purely algebraic groups, but also algebraic
groups with additional structures such as groups with di�erentiable manifolds or
topological groups.
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In the third section we form in�nite dimensional K-loops refer to Kiechle's
remark not only from GL(H), but also from some subgroups of GL(H) such as
symplectic and orthogonal classical Banach Lie groups.

2. Preliminaries

Let Q be a nonempty set and let ⊕ : Q×Q→ Q be a binary operation. Consider
the following axioms:

1. For all a, b ∈ Q there exists a unique x ∈ Q such that a⊕ x = b.

2. For all a, b ∈ Q there exists a unique y ∈ Q such that y ⊕ a = b

3. There exists an e ∈ Q satisfying a⊕ e = e⊕ a = a for all a ∈ Q.
(Q,⊕) is called a right loop if (1) and (3) are satis�ed, is called a left loop if (2)
and (3) are satis�ed. (Q,⊕) is a loop if (1), (2), and (3) are satis�ed. A K-loop,
(Q,⊕), is a loop which satis�es (6) (the left Bol identity) and (7) (the automorphic
inverse property) for all a, b and c in Q.

a⊕ (b⊕ (a⊕ c)) = (a⊕ (b⊕ a))⊕ c, (6)

(a⊕ b)−1 = a−1 ⊕ b−1. (7)

Kreuzer and Wefelscheid [10] undertook an axiomatic investigation and provided
a new construction method for K-loops from the groups as follow:

Theorem 2.1. Let G be a group. Let A be a subgroup of G and let K be a subset

of G such that:

1. G = KA is an exact decomposition, i.e., for every element g ∈ G there are

unique elements k ∈ K and a ∈ A such that g = ka.

2. If e is the neutral element of G, then e ∈ K.

3. For each x ∈ K, xKx ⊆ K.

4. For each y ∈ A, yKy−1 ⊆ K.

5. For each k1, k2 ∈ K and α ∈ A, if k1k2α ∈ K, then there exists β ∈ A such

that k1k2α = βk2k1.

Then for all a, b ∈ K there exists unique a ⊕ b ∈ K and da,b ∈ A such that

ab = (a⊕ b)da,b. Moreover, (K,⊕) is a K-loop.

2.1. Classical Banach-Lie Groups of bounded operators

In this section, we follow Pierre de la Harpe [3].
Let H be an in�nite dimensional separable Hilbert space over C. A semi-linear

operator J : H → H is called conjugation if 〈Jx, Jy〉 = 〈x, y〉 and J2 = I.
A semi-linear operator is called anti-conjugation if the last axiom is replaced

by J2 = −I. The conjugation and anti-conjugations will be denoted by JR and JQ
respectively.
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Examples of in�nite dimensional classical complex Banach-Lie groups of bound-
ed operators are given in [3]. Here we only focus GL(H), O(H, JR) and Sp(H, JQ).
Let L(H) be the set of bounded linear operators on H, and let GL(H) be the group
of invertible operators in L(H). We use Pos(H) and U(H) to denote positive
self-adjoint and unitary operators respectively. The Orthogonal and Symplectic
Banach-Lie groups consist of those operators in GL(H) that leave invariant the
following bilinear forms respectively: H×H −→ C; (x, y) 7→ 〈x, JRy〉 and (x, y) 7→
〈x, JQy〉. Therefore the orthogonal and symplectic complex Banach-Lie groups can
be de�ned by

1. O(H, JR) := {T ∈ GL(H) : 〈Tx, JRTy〉 = 〈x, JRy〉},

2. Sp(H, JQ) := {T ∈ GL(H) : 〈Tx, JQTy〉 = 〈x, JQy〉}.

An operator T ∈ L(H) is called self-adjoint if T = T ∗ i.e., 〈Tx, y〉 = 〈x, Ty〉 for
all x, y ∈ H. If T is self-adjoint, then 〈Tx, x〉 is real for each x ∈ H. If T is a
self-adjoint operator we say that T is positive, T > 0, if and only if 〈Tx, x〉 > 0
for all x ∈ H.

Theorem 2.2 ([11]). Let T ∈ L(H). Then there is a U ∈ L(H) such that:

1. T = UA, where A =
√
TT ∗,

2. ‖Ux‖ = ‖x‖ for x ∈ R(A),

3. Ux = 0 for x ∈ R(A)
⊥
.

Remark 2.3. The closure of the range of A is closed, so H = R(A)⊕ R(A)
⊥
. If

T is invertible, then TT ∗ and its positive square root are both invertible, hence

U as well. Therefore, the only solution of Ux = 0 is x = 0, i.e., R(A)
⊥

= {0},
hence H = R(A). That is U is an isometry on H (or U is unitary). The polar
decomposition theorem is unique if T is invertible. There is also reverse polar
decomposition theorem, i.e., for any T ∈ GL(H) there exists unique Q ∈ Pos(H)
and R ∈ U(H) such that T = QR. In this paper we always use the reverse (or
left) polar decomposition theorem.

Corollary 2.4. Let T ∈ Sp(H, JQ), then there exists unique U ∈ U(H)∩Sp(H, JQ)
and P ∈ Pos(H) ∩ Sp(H, JQ) such that T = PU .

Proof. Let T ∈ Sp(H, JQ) ⊆ GL(H), then the reverse polar decomposition theo-
rem for invertible operators indicates that T has already a unique decomposition
T = PU , where P =

√
TT ∗ ∈ Pos(H) and U ∈ U(H). We only need to check that

P and U are also elements of Symplectic Banach Lie group. If T ∈ Sp(H, JQ), then
〈Tx, JQTy〉 = 〈x, JQy〉 for all x, y ∈ H. Letting x = y and using the linearity of the
inner product yield that T ∗JQT = JQ, and this is equivalent to T = J−1Q (T ∗)−1JQ.
Replacing T with PU gives that

T = J−1Q ((PU)∗)−1JQ = J−1Q P−1(U∗)−1JQ = [J−1Q P−1JQ][JQ
−1(U∗)−1JQ].



K-loops from classical subgroups of GL(H) 209

It can be easily veri�ed that J−1Q P−1JQ ∈ Pos(H) and JQ
−1(U∗)−1JQ ∈ U(H) by

using the facts that JQJ
∗
Q = I and J∗Q = −JQ. Uniqueness of the polar decompo-

sition theorem forces that J−1Q P−1JQ = P and JQ
−1(U∗)−1JQ = U , so P and U

are in Sp(H, JQ).

Corollary 2.5. Let T ∈ O(H, JR), then there exists unique U ∈ U(H)∩O(H, JR)
and P ∈ Pos(H) ∩O(H, JR) and such that T = PU .

3. Main results

Theorem 3.1. Let G be one of the classical complex Banach-Lie groups in

{GL(H), O(H, JR), Sp(H, JQ)}, and let Pos(H) and U(H) are collection of pos-

itive self-adjoint operators and unitary operators respectively over C. Let PG :=
G ∩ Pos(H), and UG := G ∩ U(H). Then for all A,B ∈ PG there exist unique

A⊕ B ∈ PG and dA,B ∈ UG such that AB = (A⊕ B)dA,B. Moreover, (PG,⊕) is

a K-loop.

Proof. Let A,B ∈ PG, then A,B ∈ G. G is a group, so AB ∈ G. By polar decom-
position theorem there exists unique M ∈ PG and N ∈ UG such that AB = MN .
If we letM := A⊕B and N := dA,B , then AB = (A⊕B)dA,B . This decomposition
is exact due to uniqueness of M and N .

It is clear that A⊕B = (AB)d−1A,B for all A,B ∈ PG, hence ⊕ is a new binary
operation for PG induced by the group operation in G. We use the Theorem 2.1
to see (PG,⊕) is a K-loop.

1. G = PGUG is an exact decomposition by Theorem 2.2, Corollary 2.4, and
Corollary 2.5.

2. The identity operator I ∈ G since G is a group, and 〈Ix, x〉 = 〈x, x〉 =

‖x‖2 > 0 for all x ∈ H, so I is positive. On the other hand 〈x, x〉 = 〈Ix, x〉 =
〈x, Ix〉 = 〈x, I∗x〉 for all x ∈ H. The last equality indicates that I = I∗,
thus I is self-adjoint, thus I ∈ PG.

3. 〈(PQP )(x), x〉 = 〈Q(P (x)), P ∗(x)〉 = 〈Q(P (x)), P (x)〉 > 0 for P,Q ∈ PG

since Q is positive. Moreover, (PQP )∗ = (P ∗)(Q∗)(P ∗) = PQP . Therefore,
PPGP ⊆ PG for all P ∈ PG.

4. Let T ∈ UG and let P ∈ PG. T ∈ UG implies that T ∗ = T−1. To
see TPT−1 ∈ PG, observe that 〈(TPT−1)(x), x〉 = 〈P (T−1(x)), T ∗(x)〉 =
〈P (T−1(x)), T−1(x)〉 > 0 since P is positive operator, and (TPT−1)∗ =
(T−1)∗P ∗T ∗ = (T ∗)∗PT−1 = TPT−1, thus TPT−1 is positive and self-
adjoint. Therefore, TPGT

−1 ⊆ PG for all T ∈ UG.

5. Let P,Q ∈ PG and let U ∈ UG. Notice that U∗ = U−1 ∈ UG since U
is unitary and UG is a group. We want to show that if PQU ∈ PG, then
there exist β ∈ UG such that PQU = βQP . Assume that PQU ∈ PG, so
(PQU)∗ = PQU = U∗Q∗P ∗ = U∗QP where U∗ ∈ UG.

We conclude that (PG,⊕) is a K-loop.
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