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Autotopisms of some quasigroups

Ivan I. Deriyenko

Abstract. We present one method of construction of some autotopisms for quasigroups satisfy-

ing the identity α(x) · β(x · y) = γ(y).

Denote by Sn the set of all permutations of the set Q = {1, 2, . . . , n}. The
triplet A = (ω, ϕ, ψ), where ω, ϕ, ψ ∈ Sn, is called an autotopism of a quasigroup
(Q, ·) if

ω(x · y) = ϕ(x) · ψ(y)
holds for all x, y ∈ Q.

The set of all autotopisms of a quasigroup of order n form a group. The
order of this group is a divisor of (n!)3 but it cannot exceed (n!)2. Moreover, two
components of an autotopism determine the third one uniquely (see [1] or [5]).
There are quasigroups that have only one (trivial) autotopism. Such quasigroups
are called super rigid. The smallest super rigid quasigroups has 7 elements [3].

In this note we will consider quasigroups satisfying the identity

α(x) · β(x · y) = γ(y), (1)

where α, β, γ ∈ Sn. Such triplet of permutations will be denoted by R = (α, β, γ).
Note that parastrophes of a quasigroup satisfying (1) are pairwise isotopic [4].

Theorem 1. A quasigroup (Q, ·) satisfying the identity (1) has an autotopism of

the form (γβ, α2, βγ).

Proof. Indeed, (1) implies

β(α(x) · β(x · y)) = βγ(y).

Multiplying this identity by α2(x) we obtain

α2(x) · β(α(x) · β(x · y)) = α2(x) · βγ(y).

From this, applying (1) to the left side, we get

γβ(x · y) = α2(x) · βγ(y). (2)

So, A = (γβ, α2, βγ) is an autotopism of (Q, ·).
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Theorem 2. A quasigroup (Q, ·) satisfying (1) satis�es the identity

αk(x) · βk(x · y) = γk(y) (3)

with αk = α3k , βk = β(γβ)
3k−1

2 , γk = γ(βγ)
3k−1

2 , where k = 0, 1, . . . , p − 1 and

αp = α, βp = β, γp = γ.

Proof. Since a quasigroup (Q, ·) satisfying (1) has an autotopism A = (γβ, α2, βγ),
from (1) we obtain

γβγ(y) = γβ(α(x) · β(x · y)) = α2(α(x)) · βγ(β(x · y)) = α3(x) · βγβ(x · y),

which means that in this quasigroup

α1(x) · β1(x · y) = γ1(y),

where α1 = α3, β1 = βγβ, γ1 = γβγ.
Thus, (Q, ·) has an autotopism A1 = (γ1β1, α

2
1, β1γ1) and satis�es the identity

α2(x) · β2(x · y) = γ2(y),

where α2 = α3
1 = α32 , β2 = β(γβ)

32−1
2 , γ2 = γ(βγ)

32−1
2 , and so on.

Corollary. A quasigroup satisfying the identity (1) has an autotopism of the form

Ak = (ωk, ϕk, ψk) with ωk = γkβk = (γβ)3
k

, ϕk = α2
k = α2·3k , ψk = βkγk =

(βγ)3
k

, where k = 0, 1, . . . , p − 1 and ωp = ω, ϕp = ϕ, ψp = ψ. Moreover, then

αk+1 = ϕkαk, βk+1 = ψkβk, γk+1 = ωkγk.

Example. A quasigroup determined by the table

· 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
2 2 8 5 6 4 3 1 7
3 3 6 1 8 7 2 5 4
4 4 5 7 2 1 8 6 3
5 5 1 6 7 8 4 3 2
6 6 3 4 5 2 7 8 1
7 7 4 8 1 3 5 2 6
8 8 7 2 3 6 1 4 5

is an isotope of a quasigroup de�ned in [2]. This quasigroup satis�es (1) with
α = (1287465.3.), β = (18.46.2.357.), γ = (175.28.34.6.), where (175.28.34.6.)
means that this permutation is a composition of cycles (175), (28) and (34).

Let R = (α, β, γ), where α, β, γ are as in the above. According to Theorem 1
this quasigroup has an autotopism A = (ω, ϕ, ψ) such that

ω = γβ = (1287463.5.), ϕ = α2 = (1845276.3.), ψ = βγ = (1364582.7.).
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By Theorem 2, this quasigroup satis�es (3) with R1 = (α1, β1, γ1), where, in
view of Corrollary, α1, β1, γ1 have the form

α1 = ϕα = (1758624.3.), β1 = ψβ = (12.38.4.576.), γ1 = ωγ = (14.275.36.8.).

Then we compute A1 = (ω1, ϕ1, ψ1) and R2 = (α2, β2, γ2):
ω1 = γ1β1 = (1738624.5.),

ϕ1 = α2
1 = (1564782.3.),

ψ1 = β1γ1 = (1426835.7.),

and


α2 = ϕ1α1 = (1845276.3.),

β2 = ψ1β1 = (16.24.3.578.),

γ2 = ω1γ1 = (1.23.475.68.).

A2 = (ω2, ϕ2, ψ2) and R3 = (α3, β3, γ3):
ω2 = γ2β2 = (1843276.5.),

ϕ2 = α2
2 = (1426857.3.),

ψ2 = β2γ2 = (1652348.7.),

and


α3 = ϕ2α2 = (1564782.3.),

β3 = ψ2β2 = (157.28.34.6.),

γ3 = ω2γ2 = (18.2.3.46.375.).

A3 = (ω3, ϕ3, ψ3) and R4 = (α4, β4, γ4):
ω3 = γ3β3 = (1364782.5.),

ϕ3 = α2
3 = (1672548.3.),

ψ3 = β3γ3 = (1285463.7.),

and


α4 = ϕ3α3 = (1426857.3.),

β4 = ψ3β3 = (14.257.36.8.),

γ4 = ω3γ3 = (12.38.4.567.).

A4 = (ω4, ϕ4, ψ4) and R5 = (α5, β5, γ5):
ω4 = γ4β4 = (1426837.5.),

ϕ4 = α2
4 = (1287465.3.),

ψ4 = β4γ4 = (1538624.7.),

and


α5 = ϕ4α4 = (1672548.3.),

β5 = ψ4β4 = (1.23.457.68.),

γ5 = ω4γ4 = (16.24.3.587.).

A5 = (ω5, ϕ5, ψ5) and R6 = (α6, β6, γ6):
ω5 = γ5β5 = (1672348.5.),

ϕ5 = α2
5 = (1758624.3.),

ψ5 = β5γ5 = (1843256.7.),

and


α6 = ϕ5α5 = (1287465.3.) = α,

β6 = ψ5β5 = (18.46.2.357.) = β,

γ6 = ω5γ5 = (175.28.34.6.) = γ.

Relationships between Ai and Ri we can present by the following graph.
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The set autotopisms A,A1, A2, A3, A4, A5 together with the identity auto-
topism E = (ε, ε, ε) forma a cyclic group of order 7. The group of all autotopisms
of this quasigroup has 42 elements.

Note also that in this quasigroup the identity (1) also is satis�ed with α = ε (the
identity permutation) and β = γ = (13.48.26.57.). So, in this case R = (ε, β, β),
and consequently A = (ε, ε, ε), R1 = R, A1 = A.

Remark. A similar results can be obtained for quasigroups satisfying one of the
identities

α(x) · β(yx) = γ(y), (4)

β(xy) · α(x) = γ(y), (5)

β(yx) · α(x) = γ(y), (6)

β(xy) = γ(y) · α(x), (7)

where α, β, γ are �xed permutations of the set Q, used in [4] to the description of
isotopy classes of parastrophes.
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