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Eventually regular perfect semigroups

Roman S. Gigon

Abstract. A congruence p on a semigroup S is called perfect if (ap)(bp) = (ab)p for all a,b € S,
as sets, and S is said to be perfect if each of its congruences is perfect. We show that all eventually
regular perfect semigroups are necessarily regular. Finally, we apply our result to perfect group-
bound semigroups.

1. Introduction and preliminaries

The concept of a perfect semigroup was introduced by Vagner [12]. Groups are very
well-known examples of perfect semigroups. Another examples of such semigroups
are congruence-free semigroups S with the property S = S? (i.e., S is globally
idempotent; note that perfect semigroups have this property). Perfect semigroups
were studied first by Fortunatov (see e.g.[4, 5]) and then by Hamilton and Tamura
[8], Hamilton [7], and by Goberstein [6]. In [1] the authors gave an example of a
cancellative simple perfect semigroup without idempotents.

It is known that any commutative perfect semigroup is inverse, and that all finite
perfect semigroups are regular; recall that a semigroup S is regular if S coincides
with the set Reg(S) of its regular elements, where

Reg(S) ={se€ S :s¢€ sSs}.

We extend the last result for eventually regular semigroups (a semigroup S is even-
tually regular if every element of S has a regular power, that is, for all a € S there
is a positive integer n = n(a) such that a™ € Reg(S) [3]). Moreover, we apply this
result to perfect group-bound semigroups (Corollary 2.2, below). Before we start
our study, we recall some definitions and facts. For undefined terms, we refer the
reader to the books [2, 9, 10].

Denote the set of all idempotents of a semigroup S by Eg, that is,

Es={ec S:e?=e}.
If Ais an ideal of a semigroup S, i.e., ASUSA C A, then the relation

pa=(Ax A)Uls,
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where 1g is the identity relation on S, is a congruence on S (the so-called Rees
congruence on S). It is obvious that A is an idempotent p4-class of S. Finally, we
shall write S/A instead of S/pa.

A generalization of the concept of regularity will also prove convenient. Define a
semigroup S to be idempotent-surjective if and only if whenever p is a congruence on
S and ap is an idempotent of S/p, then ap contains some idempotent of S. Edwards
showed that eventually regular semigroups are idempotent-surjective [3].

Let S be a semigroup and let a € S. Denote by S' the semigroup obtained
from S by adjoining an identity if necessary. Then S'aS! is the least ideal of S
containing a. Denote it by J(a). We shall say that the elements a,b of S are J-
related if J(a) = J(b). Also, an equivalence [J-class containing a will be denoted by
Jo. We can define a partial order on S/J by the rule:

JaSJb — J(a)g'](b)

for all a,b € S (a similar notation may be used for the Green’s relations £ and R,
cf. Section 2.1 of [10]).

We say that a semigroup S without zero is simple if and only if it has no proper
ideals, that is, if and only if SaS = S for every a of S. Further, a semigroup S
with zero is called 0-simple if S is not null (i.e., S? # {0}) and S contains exactly
two ideals (namely: {0} and S). Clearly, S is O-simple if and only if S? # {0} and
5/ ={{0}, 5\ {0}}.

By a 0-minimal ideal of a semigroup S we shall mean an ideal of S that is a
minimal element in the set of all non-zero ideals of S.

The following result of Clifford is well-known.

Lemma 1.1. [2] Any 0-minimal ideal of a semigroup is either null, or it is a 0-
simple semigroup. ]

Let a be an element of a semigroup S. Suppose first that J, is minimal among
the J-classes of S. Then J(a) = J, is the least ideal of S. On the other hand, if J,
is not minimal in S/J, then the set

Ia)={be J(a): Jy < J, & Jp # Ju}

is an ideal of S such that J(a) = I(a) U J, (and this union is disjoint), and if B is a
proper ideal of J(a) and I(a) C B, then I(a) = B. This implies that J(a)/I(a) is a
0-minimal ideal of S/I(a), i.e., J(a)/I(a) is either null, or it is a 0-simple semigroup
(Lemma 1.1). For convenience, we shall write J(a)/ = J(a). The semigroups
J(a)/I(a) (a € S) are the so-called principal factors of S. Remark that we can
think of the principal factor J(a)/I(a) as consisting of the J-class J, = J(a) \ I(a)
with zero adjoined (if I(a) # 0). Clearly, J(a)/I(a) is null if and only if the product
of any two elements of J, always falls into a lower [J-class. In particular, if J,
is a subsemigroup of S, then the principal factor J(a)/I(a) is not null. Finally,
J(a)/I(a) is simple if and only if I(a) is empty.
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Recall that among idempotents in an arbitrary semigroup there is a natural
partial order relation defined by the rule that

e< fee=ef = fe

We say that an idempotent e # 0 of a semigroup S is primitive if it is minimal
(with respect to the natural partial order) within the set of non-zero idempotents
of S. Also, a (0)-simple semigroup is called completely (0)-simple if it is (0)-simple
and contains a primitive idempotent. Notice that in the both cases each non-zero
idempotent of S is primitive. For some equivalent definitions of these notions, we
refer the reader to the book [10] (cf. Section 3.2). Munn showed that a (0)-simple
semigroup S is completely (0)-simple if and only if it is group-bound (a semigroup
S is called group-bound if every element of S has a power which belongs to some
subgroup of S). Obviously, group-bound semigroups are eventually regular.

A semigroup is called (completely) semisimple if each of its principal factors
is either (completely) O-simple or (completely) simple. Recall that a semigroup is
semisimple if and only if all its ideals are globally idempotent (see e.g. [2]).

Observe that every idempotent congruence class of a perfect semigroup S is
globally idempotent. In particular, all ideals of S are globally idempotent, that is,
S is semisimple.

Recall that an idempotent commutative semigroup is semilattice. Clearly, the
least semilattice congruence 7 on an arbitrary semigroup S exists (note that J C
7). This relation induces the greatest semilattice decomposition of S, say [Y;.S,]
(e € Y), where Y = S/n, each S, is an n-class and S = [J{So : @« € Y}. To
indicate this fact we shall always write S = [Y;S,] (o € Y) or briefly S = [Y; S,]-.
Notice that S,58 C Sap for all o, § € Y, where af is the product of o and § in the
semilattice Y.

We say that a semigroup S is intra-regular if for every a € S, a J a? [2]. It is
easy to see that if S is intra-regular, then 7 is a semilattice congruence on S, so we
have the following well-known result [2].

Lemma 1.2. A semigroup S is intra-reqular if and only if n = J, where every
J-class is a simple semigroup. [

We say that a J-class J of a semigroup is regular if consists entirely of regular
elements.

The following result, which is contained in the paper of Jones et al. [11], is due
to Ciric.

Lemma 1.3. Let a J-class J of an eventually reqular semigroup contains an idem-
potent. Then J is reqular. Equivalently, 0-simple eventually reqular semigroups are
reqular. O

We recall now some known results concerning perfect semigroups in general. For
beginning, from the First and Second Isomorphism Theorems we obtain the following
result [5].
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Lemma 1.4. Every homomorphic image of a perfect semigroup is a perfect semi-
group. O

An ideal A of a semigroup S is called completely prime if ab € A implies that
a€Aorbe A
The following fact [5] follows from the definition of a Rees congruence.

Lemma 1.5. Every non-zero ideal of a perfect semigroup is completely prime. [

It is not difficult to see that every chain is perfect. Also, if the elements a, b of
a semilattice A are incomparable, then the congruence induced by the ideal aA is
not perfect.

Lemma 1.6. [5] A semilattice is perfect if and only if it is a chain. O

Let S =[Y;S,]. Assume that S is perfect. In the light of Lemmas 1.4 and 1.6,
Y is a chain. Moreover, from [5] we can extract the following result. We give a
simple proof for the sake of completeness.

Corollary 1.7. Let S = [Y;S,] be a perfect semigroup. Then'Y is a chain and the
following statements hold:
(a) if S does not have a zero, then each S, is simple and Y = S/7J;
(b) if S contains a zero 0, then'Y has a least element Oy, S, is a simple semi-
group for a # Oy, and either So,, = {0} (then Y =2 S/J) or Sy, is a 0-sim-
ple semigroup whose zero is not adjoined (and J, = an \ {0} if a # 0).

Proof. (a). Suppose first that S has no a zero element. As a? € S*a?S!, a € S'a?S!
(Lemma 1.5) and so S is intra-regular. Thus every S, is a simple semigroup and
Y = S/7 (Lemma 1.2).

(b). Let now S contains a zero 0, say 0 € Sp,.. Because Sy, S, C Sy, for all
a €Y, then Sy, S, = Sp, for all & € Y (since S is perfect). This implies that YV
has a least element Oy .

Since Y is a chain and every S,, is a semigroup, then the condition a? = 0 implies
that a € Sy, . Thus S, is a simple semigroup for all o # Oy-.

If So, # {0}, then S3_ = So, # {0}, since it is clear that Sy, is an ideal of
S, i.e., So, is not null. Suppose that A C Sy, is a non-zero ideal of S. Then A
is completely prime (by Lemma 1.5). It follows that A is a non-zero completely
prime ideal of Sy, . Hence the partition {A, So, \ A} of Sp, induces a semilattice
congruence on Sy, . On the other hand, it is well-known that every n-class of S
has no semilattice congruences except the universal relation. In particular, Sy,
possesses this property. It follows that A = Sp,, i.e., So, is a O-minimal ideal of S.
Finally, observe that if 0 is adjoined to Sp, , then the partition

{Sa (@ # 0y), Soy \ {0}, {0}}

of S induces a semilattice congruence on S which is properly contained in the least
semilattice congruence 7, a contradiction, so Sp, is a O-minimal ideal of S whose
zero is not adjoined. Consequently, Sy, is a 0-simple semigroup whose zero is not
adjoined (Lemma 1.1). Clearly, J, = an\ {0} if a # 0. O
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2. The main results

Remark that if p is a semilattice congruence on an eventually regular semigroup S,
then every p-class of S is eventually regular.

Theorem 2.1. Every eventually regular perfect semigroup S is reqular.

Proof. Suppose first that S has no a zero. Then S is a semilattice Y of simple
semigroups S, (« € Y), where each S, is a J-class of S (cf. Corollary 1.7). Since
each S, is an idempotent J-class, then it contains an idempotent element of S
(because S is idempotent-surjective). In the light of Lemma 1.3, S is regular.

Let S has a zero. In view of Corollary 1.7, Y has a least element Oy. Put A =
S\So, - It is evident that the semigroup A is a semilattice of simple semigroups. Take
any a € A. Then the elements a and a? belong to the same simple subsemigroup B
of A. Hence a € Ba?B C Aa?A. Thus A is intra-regular. By the above A is regular.
Finally, consider a 0O-simple semigroup Sp, (see Corollary 1.7). This semigroup is
also eventually regular, so Sp, is regular (by Lemma 1.3). Consequently, S is a
regular semigroup. O

A semigroup is called completely regular if it is a union of groups. Recall from [9]
that a semigroup is completely regular if and only if it is a semilattice of completely
simple semigroups.

Corollary 2.2. Let S = [Y;S,] be a perfect group-bound semigroup. Then S is
reqular, Y is a chain and the following statements hold:
(a) if S does not have a zero, then every S, is a completely simple semigroup
(and Y =2 S/J), that is, S is completely regular;
(b) if S contains a zero, say 0, then' Y has a least element Oy, S, is completely
simple for a # Oy, and either Sy, = {0} (then clearly Y = S/J) or Sy, is
a completely 0-simple semigroup whose zero 0 is not adjoined (and then J, =
an \ {0} if a #0).

In the former case, S is a completely regular semigroup with 0 adjoined.

Proof. (a). Indeed, every S, is a simple (regular) group-bound semigroup, so each
Sq is a completely simple semigroup.

(b). It is sufficient to show that if Sy, # {0}, then Sy, is a completely 0-simple
semigroup. In that case, Sy, is a O-simple (regular) group-bound semigroup. Thus
So, is completely 0-simple semigroup. O

Corollary 2.3. Every perfect group-bound semigroup is completely semisimple. [

Finally, we shall show that an eventually regular perfect semigroup satisfying
one of the following minimal conditions is group-bound (note that any group-bound
semigroup meets both of these conditions). We shall say that a semigroup S satisf
ies the condition min} (resp. min%) if and only if for every J-class J of S, the set
of all L-classes (resp. R-classes) contained in J has a minimal element (for more
details cf. Section 6.6 [2]). Recall only that a regular semigroup satisfies minj if
and only if it meets min.
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Proposition 2.4. Let S be an eventually regular perfect semigroup satisfying minj
or ming. Then S is completely semisimple. In particular, S is group-bound.

Proof. Indeed, in that case, S is regular (Theorem 2.1), so every n-class of S is a
regular subsemigroup of S. In view of the above remark, S satisfies minj and min}
(cf. also Corollary 1.7). As S is semisimple, S is completely semisimple (see Theorem
6.45 in [2]). In particular, S is group-bound. O
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