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On intra-regular and some left regular

['-semigroups
Niovi Kehayopulu and Michael Tsingelis

Abstract. We characterize the intra-regular I'-semigroups and the left regular I'-semigroups M
in which aI'M C MT'«x for every x € M in terms of filters and we prove, among others, that every
intra-regular I'-semigroup is decomposable into simple components, and every I'-semigroup M
for which «I'M C MTz is left regular, is decomposable into left simple components.

1. Introduction and prerequisites

A structure theorem concerning the intra-regular semigroups, another one con-
cerning some left regular semigroups have been given in [3]. These are the two
theorems in [3]:

Theorem 11.4.9. The following conditions on a semigroup S are equivalent:
(1) Every N -class of S is simple.
(2) Every ideal of S is completely semiprime.
(3) For every x € S, z € Sz%8S.
(4) ForeveryxES N(@z)={ye S|z e SyS}.
(5) M
)

(6 Every zdeal of S is a union of N'-classes.

Theorem 11.4.5. The following conditions on a semigroup S are equivalent:
(1) Every N -class of S is left simple.
(2) Every left ideal of S is completely semiprime and two-sided.
(3) For every x € S, z € Sz? and xS C Sz.
(4) ForeveryxeS N(z)={ye S|z e Sy}.
(5) M

(6) E'very left ideal of S is a union of N -classes.

Note that we always use the term “semiprime" instead of “completely semiprime"
given by Petrich in |3]. So the condition (2) in the two theorems above should be
read as “Every ideal (resp. left ideal) of S is semiprime", meaning that if A is an
ideal (resp. left ideal) of S, then for every x € S such that 2% € A, we have x € A.
In the present paper we generalize these results in case of I'-semigroups.
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Let M be a I'-semigroup. An equivalence relation o on M is called left (resp.
right) congruence (on M) if (a,b) € o implies (¢vya, cyb) € o (resp. (aye, byc) € o)
for every ¢ € M and every v € T'. A relation ¢ which is both left and right
congruence on M is called a congruence on M. A congruence o on M is called
semilattice congruence if (ayb,bya) € o and (avya,a) € o for every a,b € M and
every v € I'. A nonempty subset A of M is called a left (resp. right) ideal of M if
MTA C A (resp. ATM C A). A subset A of M which is both a left and right ideal
of M is called an ideal of M. For an element a of M, we denote by L(a), R(a),
I(a) the left ideal, right ideal and the ideal of M, respectively, generated by a, and
we have L(a) = aUMTa, R(a) = aUal'M, I(a) = aUMTaUal' MUMTal' M. We
denote by L the equivalence relation on M defined by £ := {(a,b) | L(a) = L(b)},
by R the equivalence relation on M defined by R := {(a,b) | R(a) = R(b)} and
by Z the equivalence relation on M defined by Z := {(a,b) | I(a) = I(b)}. A
nonempty subset A of M is called a subsemigroup of M if a,b € A and v € T
implies ayb € A, that is, ATA C A. A subsemigroup F of M is called a filter
of M if a,b € F and v € T such that ayb € F implies a € F and b € F. We
denote by A the relation on M defined by N := {(a,b) | N(a) = N(b)} where
N(z) is the filter of M generated by x (z € M). It is well known that the relation
N is a semilattice congruence on M. So, if z € M and « € T', then we have
(z7v2,2) €N, (2y272,2v2) € N, (2727272, 272y2z) € N and so on. A subset A of
M is called semiprime if @ € M and « € T" such that aya € A implies a € A. A
[-semigroup (M,T,.) is called left simple if for every left ideal L of M, we have
L = M, that is, M is the only left ideal of M. A subsemigroup T of M is called
left simple if the I'-semigroup (7,T,.) (that is, the set 7' with the same I" and the
multiplication “." on M) is left simple. Which means that for every left ideal A
of T, we have A = T. A subsemigroup of M which is both left simple and right
simple is called simple. If M is a I'-semigroup and o a semilattice congruence
on M, then the class (a), of M containing a is a subsemigroup of M for every
a € M. Let now M be a I'-semigroup and ¢ a congruence on M. For a,b € M
and v € I', we define (a),vy(b)s := (ayb)s. Then the set M/o := {(a), | a € M}
is a I'-semigroup as well. A T'-semigroup M is said to be a semilattice of simple
semigroups if there exists a semilattice congruence o on M such that the class (x),
is a simple subsemigroup of M for every x € M.

2. Intra-regular I'-semigroups

We characterize here the intra-regular I'-semigroups in terms of filtres and we prove
that every intra-regular I'-semigroup is decomposable into simple subsemigroups.

Definition 1. (cf. [2]) A I-semigroup M is called intra-regular if
x € MTxyzI'M

for every € M and every v € T.
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Lemma 2. (cf. [1]) If M is a T-semigroup, then Z C N.

Theorem 3. Let M be a I'-semigroup. The following are equivalent:
(1) M is intra-regular.

)
YN =T.
) For every ideal I of M, we have I = | (z)n.

xzel
) (x)n s a simple subsemigroup of M for every x € M.
) M is a semilattice of simple semigroups.
) Every ideal of M is semiprime.

Proof. (1) = (2). Let a e M and T :={y € M | x € MTyI'M}. T is a filter of
M. In fact: Take an element v € T' (T # @)). Since M is intra-regular, we have
x € MTayal'M = (MTx)yzT'M C (MTM)yaT'M C MT2T' M,

then x € T, and T is a nonempty subset of M. Let a,b € T and v € I". Then
ayb € T. Indeed: Since b € T', we have x € MT')['M. Since a € T, x € MT'al'M.
Since M is intra-regular, we have

@ € MTayal' M C MT(MTbI M )y(MTal M)T' M
= (MTM)T(bT MyMTa)T(MT M)
C MT(bT M~yMTa)T'M.

We prove that bI'MyMTa C MT'(ayb)I' M. Then we have
z € MT (MF(avb)FM) M C MT(ayb)TM,

and ayb € T. For this purpose, let bduyvpa € bI' M~yMTa, where u,v € M and
d,p € I'. Since M is intra-regular, bduyvpa € M and v € I', we have

bouyvpa € MT (bduyvpa)y(bduyvpa)T' M
= (MTbbuyv)p(ayb)d(uyvpal M)
C MT(ayb)I' M,

so bduyvpa € MT(ayb)I'M. Let a,b € M and v € T such that ayb € T. Then
a,b € T. Indeed: Since ayb € T, we have

x € MT'(ayb)TM = MTay(bI'M) C MT'aI'M and

@ € (MTa)ybI'M C MTbT M,

so a,b € T. Let now F be a filter of M such that z € F. Then T C F. Indeed:
Let a € T. Then z € MT'al'M, so x = uyapv for some u,v € M, v,p € I'. Since
u,apv € M, uy(apv) € F and F is a filter of M, we have u € F' and apv € F.
Since a,v € M, apv € F and F is a filter, we have a € F and v € F,s0 a € F.
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(2) = (3). Let (a,b) € N. Then a € N(a) = N(b). Since a € N(b), by (2), we
have b € MTaI'M C a UMTaUal'M U MT'aI'M = I(a). Since I(a) is an ideal
of M containing b, we have I(b) C I(a). Since b € N(a), by symmetry, we get
I(a) C I(b). Then I(a) = I(b), and (a,b) € Z. Thus we have N' C Z. On the
other hand, by Lemma 2, Z C N. Thus N = 7.

(3) = (4). Let I be an ideal of M. If y € I, then y € (y)» C |J (x)a. Let

xel

y € U (x)ny. Then y € (x)n for some x € I. Then, by (3), (y,z) € N =TI,

zel
so I(y) = I(z). Since = € I and I(z) is the ideal of M generated by x, we have

I(x) CI. Thus we have y € I(y) = I(z) C I, and y € I.

(4) = (5). Let = € M. Since N is a semilattice congruence on M, (x)x is a
subsemigroup of M. Let I be an ideal of (z)x. Then I = (z)p. In fact: Let
y € (z)n. Take an element z € I and an element v € T (I,T" # 0). The set
MTzyzyzI'M is an ideal of M. Indeed, it is a nonempty subset of M, and we
have

MTU(MTUzyzy2T’'M) = (MUTM)Tzyzy2TM C MTzyzv2T'M and

(MTzyzyzl' M)TM = MTzyzyzl' (MTM) C MTzyzyzI'M.
By hypothesis, we have MT'zyzyzI'M = U (t)n-
teEMT zyzyzI'M

Since zyzyzyzyz € MTUzyzyzI'M, we have (zyzyzyzyz)y C MTzyzyzI'M.
Since (27z,2) € N and z € I C (x)n, we have (zy27zv272)n = (2)n = (T)Ar-
Then y € (z)n € MT2vy2v2I'M and y = adzyzy2Eb = (adz)yzy(2£b) for some
a,be M, ¢ eT.

We prove that adz, z&€b € (x)ar. Then, since I is an ideal of (z)ar, we have
(adz)yzy(26b) € ()N TIT(x)ar C I, and y € I. We have

adz € (adz)n = (a)nd(2)n = (a)nd(y)w (since (2)n = (2)n = (Y)n)

(a)nd(adzyzyz€b)n
(a)nd(a)no(zyzy2Eb)
(a)
= (

a)n0(zy2y2Eb) nr (since (ada,a) € N)

ad( z’yz’ysz))N
yn = (@)

and

zEb € (2Eb) i
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(5) = (6). Since N is a semilattice congruence on M.

(6) = (7). Suppose o be a semilattice congruence on M such that (z), is a
simple subsemigroup of M for every x € M. Let I be an ideal of M, x € M and
v € I such that ayz € I. The set I N (x), is an ideal of (z),. In fact: Since
zyx € I and xyx € (x),, the set I N (x), is a nonempty subset of (z), and, since
(), is a subsemigroup of M, we have

() T(IN(2)s) C ()TN (2)oT'(z)ey € MTIN(z), CIN(x), and
(IN(@)e)(x)e CIT(z)s N (2)oI'(2)e CITM N (z)s CIN(x),.

Since (z), is a simple subsemigroup of M, we have I N (z), = (2),, and © € I.

(7) = (1). Let a € M and v € . Then a € MTayal'M. Indeed: The set
MTayal'M is an ideal of M. This is because it is a nonempty subset of M and

MT(MTayal' M) = (MTM)Tayal' M C MTayal' M,
(MTayal' M)TM = MTayal'(MT'M) C MTayal' M.

By hypothesis, MTayal'M is semiprime. Since (ava)y(aya) € MTayal' M, we
have aya € MT'ayal'M, and a € MTayal'M. Thus M is intra-regular. O

3. On some left regular I'-semigroups

Again using filters, we characterize here the left regular I'-semigroups M in which
aI’'M C MTx for every x € M and we prove that this type of I'-semigroups are
decomposable into left simple components. If zI'M C MT'x for every x € M,
then ATM C MTA for every A C M. Indeed: If a € A,y € ' and b € M,
then ayb € al'M C MTa C MT'A. Thus if A is a left ideal of M, then A is a
right ideal of M as well. As a consequence, the left regular I'-semigroups in which
aI’'M C MTz for every x € M, are left regular and left duo. We also remark that
the left regular I'-semigroups are intra-regular. Indeed: Let a € M. Since M is left
regular, we have a € MTaya C MT'(MTavya)ya C MTayal'M. The right regular
I'-semigroups are also intra-regular, and the right regular I'-semigroups for which
MTxz C zI'M for every x € M are right regular and right duo, and decomposable
into right simple subsemigroups.

Definition 4. (cf. [2]) A T-semigroup M is called left (vesp. right) regular if
x € MTzvyx (resp. x € xyal'M) for every x € M and every v € T.

Lemma 5. (cf. [1]) If M is a T-semigroup, then L C N and R C N.

Theorem 6. Let M be a I'-semigroup. The following are equivalent:
(1) M is left reqular and xT'M C MTx for every x € M.
(2) N(z) ={y € M | x € MTy} for every x € M.
B)YN=L.
(4) For every left ideal L of M, we have L = |J (x)nr-
el
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(5) (x)n is a left simple subsemigroup of M for every x € M.
(6) M is a semilattice of left simple semigroups.
(7) Every left ideal of M is semiprime and two-sided.

Proof. (1) = (2). Let z € M and T := {y € M | € MTy}. The set T is a
filter of M containing z. In fact: Take an element v € T (T # @). Since M is left
regular, we have

x € MTaxyx = (MTx)yx C (MTM)yz C MTz,

then x € T, and T is a nonempty subset of M. Let a,b € T and v € I'. Then
ayb € T. Indeed: Since b,a € T, we have x € MT'b and x € MT'a. Since M is left
regular, we have

x € MTaxyx C MT'(MTb)y(MTa) = (MTM)I'(byMTa)
C MT(byMTa).

We prove that byMTa C MT'ayb. Then we have
x € MT(MTayb) = (MTM)T (ayb) C MT (avyd),

and ayb € T. Let now byupa € byMTa for some v € M, y € I'. Since M is left
regular, we have

byupa € MT (byupa)y(byupa) = (MTbyu)u(ayb)y(upa)
c MF((cwb)I‘M)
C MT(MTa~vb) (since zI'M C MTxz Vax € M)
C MTavb.

Let a,b € M and v € I such that ayb € T. Then a,b € T. Indeed: Since
avyb € T, we have x € MTayb C (MT'M)I'b C MTb, so b € T. By hypothesis,
ayb € al’'M C MTa. Then x € MTayb C MT'(MTa) C MTa, so a € T. Let now
F be a filter of M such that x € F. Then T' C F. Indeed: Let a € T. Then
x € MTa, that is x = upa for some u € M, p e I'. Sinceue M, pe T, upa € F
and F is a filter of M, we have u € F' and a € F, then a € F.

(2) = (3). Let (a,b) € N. Then a € N(a) = N(b). Since a € N(b), by (2), we
have b € MT'a C aU MTa = L(a), so L(b) C L(a). Since b € N(a), by symmetry,
we get L(a) C L(b). Then we have L(a) = L(b), and (a,b) € L. By Lemma 5,
LCN,soL=N.

(3) = (4). Let L be a left ideal of M. If y € L, then y € (y)or € U (z),. Let

xzeL
y € U ()p. Then y € (x) for some z € L. Then, by (3), (y,z) € N = L, so

€L
L(y) = L(z). Since x € L and L(z) is the left ideal of M generated by x, we have

L(z) CL. Theny € L(y) = L(z) C L,soy € L.
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(4) = (5). Let L be a left ideal of (z)rr. Then L = (z)nr. In fact: Let y € ()
Take an element z € L and an element v € T' (L, T # 0). Since MT 27z is a left ideal
of M, by hypothesis, we have MTzyz = |J (¢)a. Since zyzyz € MTz2yz,
teMT zyz

we have (zvzyz)p € MTzvz. Since (z2vz,2) € N and z € L C (z)u, we have
(zy2y2)n = (2)n = (w)n. Then y € (z)p C© MT'zyz, thus y = auzyz for some
a € M and p € T. We prove that auz € (x)a. Then, since L is a left ideal of
(x)ar, we have (apz)yz € (x)NTL C L, and y € L. We have

apz € (apz)y = (a)ap(2)n = (@) p(y)a (since (2)v = (2)n = (Y)n)
= (a)vplapzyz)n = (a)vpla) vp(zy2)a

= (a)np(zy2)n = (apzyz)n
= (y)

Yv = (T)n

(5) = (6). Since N is a semilattice congruence on M.

(6) = (7). Let o be a semilattice congruence on M such that (z), is a left simple
subsemigroup of M for every x € M. Let L be a left ideal of M and z € M,
v € ' such that xyxz € L. The set LN (z), is a left ideal of (z),. Indeed: The set
LN (x), is a nonempty subset of (z), (since xyx € L and xyzx € (x),) and

()eT(LN(2)s) C () TLN (z)s(2)eg € MTLN(2)y € LN (2),.

Since (z), is a left simple subsemigroup of M, we have L N (), = (z),, then
x € L. Thus L is semiprime. Let now L be a left ideal of M. Then LT'M C L.
Indeed: Let y € L, v € I' and x € M. Since L is a left ideal of M, we have
xyy € MT'L C L. The set L N (zyy), is a left ideal of (zvyy),. Indeed:

0 #LN(zvy)s C (z7y)s (since zyy € L and zvy € (zyy),) and
(7Y)oT(L N (27Y)0) C (27Y)o 'L N (27y)o ' (27y)e € MTL N (27Y)0-

Since (zvy), is left simple, we have L N (zvy)s = (27Y)o = (y72)s, s0 yyx € L.

(7) = (1). Let z € M and v € I'. Since MTayz is a left ideal of M, by
hypothesis it is semiprime. Since (zyz)y(xyz) € MTayz, we have xyx € MTzvyx,
and x € MT'zvyx, thus M is left regular. Let now x € M. Then 2zI'M C MTx.
Indeed: Since M is left regular, we have x € MTazyx C (MTM)T'x C MTx, so
MTz is a nonempty subset of M. In addition, MT'(MTz) = (MT'M)T'z C MTz,
so MTx is a left ideal of M. By hypothesis, MT'z is a right ideal of M as well. Since
MTz is an ideal of M containing =, we have I(x) C MTz. On the other hand,
2aT’M CaxUMTzUzI'M U MT2I'M = I(x). Thus we obtain 2T'M C MTz. O

The right analogue of Theorem 6 also holds, and we have the following:

Theorem 7. Let M be a I'-semigroup. The following are equivalent:
(1) M is right reqular and MTx C 2I'M for every x € M.
(2) N(z) ={ye M |z €yI'M} for every x € M.
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)
)
r€R
) (z)nr is a right simple subsemigroup of M for every x € M.
) M is a semilattice of right simple semigroups.
) Every right ideal of M is semiprime and two-sided.
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