Relations between n-ary and binary comodules

Biljana Zekovich

Abstract. We construct a binary algebra $R=C^{\otimes (n-1)}/I$ for an n-ary algebra C and prove that M is an n-ary left C-module if and only if M is a binary left R-module. In the dual case, for an n-ary coalgebra C, we construct a binary coalgebra:

$$C^{\square(n-1)} = \bigcap_{j=1}^{n-2} \operatorname{Ker} \left[\Delta \otimes 1_C^{\otimes (n-2)} - 1_C^{\otimes j} \otimes \Delta \otimes 1_C^{\otimes (n-2-j)} \right] \subset C^{\otimes (n-1)}$$

and prove that M is an n-ary right C-comodule if and only if M is a binary right $C^{\square(n-1)}$ -comodule. In the end, we prove that for n-ary finite generated coalgebra C over a field k, $C^{\square(n-1)}$ is the binary coalgebra, on the other hand, C^* is an n-ary algebra, for which, we construct the binary algebra $R = (C^*)^{\otimes (n-1)}/I$. If C is a finite-dimensional n-ary coalgebra over a field k, then C^* is a n-ary algebra and $(C^{\square(n-1)})^* \cong (C^*)^{\otimes (n-1)}/I$. Dually, if C is an n-ary finite generated algebra over a field k, then $R = C^{\otimes (n-1)}/I$ is a binary algebra and C^* is an n-ary coalgebra. Moreover, $(C^*)^{\square(n-1)} \cong (C^{\otimes (n-1)}/I)^*$.

1. Introduction

Let k be a ground commutative associative ring with a unit, C and M modules over k. In what follows, \otimes is a tensor product over k. All homomorphisms are k-linear maps. In [3], the concept of n-ary algebra (C, m) is defined, where

$$m: C \otimes \cdots \otimes C \to C$$

is n-ary multiplication, which is associative. It means that the following diagram is commutative:

$$C^{\otimes(2n-1)} \xrightarrow{m \otimes 1_C^{\otimes(n-1)}} C^{\otimes n}$$

$$\downarrow^{n}$$

$$C^{\otimes n} \xrightarrow{m} C$$

i.e.,

$$m \circ (m \otimes 1_C^{\otimes (n-1)}) = m \circ (1_C^{\otimes i} \otimes m \otimes 1_C^{\otimes (n-i-1)}).$$

2010 Mathematics Subject Classification: $20\mathrm{N}15$

Keywords: n-ary (co)algebra, n-ary (co)module, isomorphism of binary (co)algebras

326 B. Zekovich

The concept of n-ary coalgebra (C, Δ) is defined in [4], where

$$\Delta: C \to C \otimes \cdots \otimes C$$

is n-ary comultiplication, which is coassociative, that is the following diagram is commutative:

$$C \xrightarrow{\Delta} C^{\otimes n}$$

$$\downarrow 1_C^{\otimes i} \otimes \Delta \otimes 1_C^{\otimes (n-i-1)}$$

$$\downarrow C^{\otimes n} \xrightarrow{\Delta \otimes 1_C^{\otimes (n-1)}} C^{\otimes (n-1)}$$

i.e.,

$$(\Delta \otimes 1_C^{\otimes (n-1)}) \circ \Delta = (1_C^{\otimes i} \otimes \Delta \otimes 1_C^{\otimes (n-i-1)}) \circ \Delta.$$

Similary, the concept of n-ary bialgebra (C, m, Δ) is introduced, where m is an associative n-ary multiplication and Δ is a coassociative n-ary comultiplication and Δ is a homomorphism of n-ary algebras. An example of n-ary algebra is given in [6]. We do not suppose the existence of an unit and a counit.

In the paper [3], the notion of homomorphism of n-ary algebras

$$(C, m_C) \rightarrow (C', m_{C'})$$

is defined as a morphism $f: C \to C'$, such that the following diagram is commutative

$$C^{\otimes n} \xrightarrow{f^{\otimes n}} (C')^{\otimes n}$$

$$\downarrow^{m_{C'}}$$

$$C \xrightarrow{f} C'$$

i.e.,

$$f \circ m_C = m_{C'} \circ f^{\otimes n}.$$

Let C be an n-ary coalgebra and a finitely generated projective k-module. Denote by C^* the k-module $\operatorname{Hom}(C,k)$. Then C^* is an n-ary algebra with multiplication $l_1 * \cdots * l_n$, where for $c \in C$

$$(l_1 * \cdots * l_n)(c) = \sum_{(c)} l_1(c_{(1)}) \cdots l_n(c_{(n)})$$
(1)

if

$$\Delta(c) = \sum_{(c)} c_{(1)} \otimes \cdots \otimes c_{(n)} \in C^{\otimes n}.$$

Conversely, let C be an n-ary algebra and a finitely generated projective k-module. Define an n-ary comultiplication in $C^* = \text{Hom}(C, k)$ by the rule:

$$(\Delta l)(x_1 \otimes \cdots \otimes x_n) = l(x_1 \cdots x_n) \tag{2}$$

where $x_1, \ldots, x_n \in C$. Hence we use the isomorphism of k-modules:

$$(C \otimes \cdots \otimes C)^* = C^* \otimes \cdots \otimes C^*$$

(cf. [2]), because C is a finitely generated projective k-module. Then, C^* is an n-ary coalgebra. If C is an n-ary (co)algebra, then $(C^*)^* \cong C$ (cf. [3] and [4]).

In [5] are defined the concepts of a right (left) n-ary (co)modules in the following way: k-module M is called a $right\ n$ -ary C-comodule, where C is an n-ary coalgebra, if there is a map $\rho: M \to M \otimes C^{\otimes (n-1)}$, such that the following diagram is commutative:

$$M \xrightarrow{\rho} M \otimes C^{\otimes (n-1)}$$

$$\downarrow 1_{M} \otimes 1_{C}^{\otimes i} \otimes \Delta \otimes 1_{C}^{\otimes (n-i-2)}$$

$$M \otimes C^{\otimes (n-1)} \xrightarrow{\rho \otimes 1_{C}^{\otimes (n-1)}} M \otimes C^{\otimes 2(n-1)}$$

i.e.,

$$(1_M \otimes 1_C^{\otimes i} \otimes \Delta \otimes 1_C^{\otimes (n-i-2)}) \circ \rho = (\rho \otimes 1_C^{\otimes (n-1)}) \circ \rho.$$

k-module M is called a left n-ary C-module, where C is an n-ary algebra, if there is a map $\gamma: C^{\otimes (n-1)} \otimes M \to M$, such that the following diagram is commutative:

$$C^{\otimes (n-1)} \otimes M \xrightarrow{\gamma} M$$

$$\uparrow_{C}^{\otimes (n-1)} \otimes \gamma \qquad \qquad \uparrow_{\gamma}$$

$$C^{\otimes 2(n-1)} \otimes M \xrightarrow{1_{C}^{\otimes i} \otimes m \otimes 1_{C}^{\otimes (n-i-2)} \otimes 1_{M}} C^{\otimes (n-1)} \otimes M$$

i.e.,

$$\gamma \circ (1_C^{\otimes (n-1)} \otimes \gamma) = \gamma \circ (1_C^{\otimes i} \otimes m \otimes 1_C^{\otimes (n-i-2)} \otimes 1_M).$$

Now, we define the concept of an n-ary ideal: a submodule I of the module C is called an n-ary ideal, if

$$C^{\otimes i} \otimes I \otimes C^{\otimes (n-i-1)} \subseteq I$$
,

where $0 \le i \le n-1$, C is an n-ary algebra.

2. Relations between *n*-ary and binary modules

Let C be an n-ary algebra over commutative ring k. There is not necessarily a unit in C, but the multiplication is associative, i.e.,

$$(c_1 \cdots c_n)c_{n+1} \cdots c_{2n-1} = c_1 \cdots c_j(c_{j+1} \cdots c_{j+n})c_{j+n+1} \cdots c_{2n-1}$$
 (3)

for all j = 0, ..., n-1 and $c_1, ..., c_{2n-1} \in C$. Consider the submodule I in the tensor-degree $C^{\otimes (n-1)}$ (see [4]), which is generated by all differences:

$$(c_1 \cdots c_n) \otimes c_{n+1} \otimes \cdots \otimes c_{2n-2} - c_1 \otimes \cdots \otimes c_j \otimes (c_{j+1} \cdots c_{j+n}) \otimes c_{j+n+1} \otimes \cdots \otimes c_{2n-2}$$

for $c_1, \ldots, c_{2n-2} \in C$ and $j = 0, \ldots, n-2$. Then, I is an n-ary ideal in the n-ary algebra $C^{\otimes (n-1)}$. Denote by R the factor-module $C^{\otimes (n-1)}/I$.

Theorem 2.1. R is an associative binary k-algebra with respect to multiplication

$$(c_1 \otimes \cdots \otimes c_{n-1} + I)(c_n \otimes \cdots \otimes c_{2n-2} + I) = (c_1 \cdots c_n) \otimes c_{n+1} \otimes \cdots \otimes c_{2n-2} + I \quad (4)$$

Proof. Let us check that the multiplication (4) is correctly defined. It is sufficient to show that:

$$[(c_1 \cdots c_n) \otimes c_{n+1} \otimes \cdots \otimes c_{2n-2} + I [c_{2n-1} \otimes \cdots \otimes c_{3n-3} + I]$$

$$= [c_1 \otimes \cdots \otimes c_j \otimes (c_{j+1} \cdots c_{j+n}) \otimes c_{j+n+1} \otimes \cdots \otimes c_{2n-2} + I]$$

$$\cdot [c_{2n-1} \otimes \cdots \otimes c_{3n-3} + I]$$

for all $c_1, ..., c_{3n-3} \in C$.

Similar equality holds after multiplication by $c_{2n-1} \otimes \cdots \otimes c_{3n-3} + I$, on the left. By (4), we have:

$$[(c_1 \cdots c_n) \otimes c_{n+1} \otimes \cdots \otimes c_{2n-2} + I] [c_{2n-1} \otimes \cdots \otimes c_{3n-3} + I]$$

=
$$[(c_1 \cdots c_n)c_{n+1} \cdots c_{2n-1}] \otimes c_{2n} \otimes \cdots \otimes c_{3n-3} + I$$

On the other hand:

$$[c_1 \otimes \cdots \otimes c_j \otimes (c_{j+1} \cdots c_{j+n}) \otimes c_{j+n+1}! \otimes \cdots \otimes c_{2n-2} + I] [c_{2n-1} \otimes \cdots \otimes c_{3n-3} + I]$$

$$= [c_1 \cdots c_j (c_{j+1} \cdots c_{j+n}) c_{j+n+1} \cdots c_{2n-2} c_{2n-1}] \otimes c_{2n} \otimes \cdots \otimes c_{3n-3} + I.$$

By the associativity(3), the previous products are equal. The condition:

$$[c_{2n-1} \otimes \cdots \otimes c_{3n-3} + I] [(c_1 \cdots c_n) \otimes c_{n+1} \otimes \cdots \otimes c_{2n-2} + I]$$

= $[c_{2n-1} \otimes \cdots \otimes c_{3n-3} + I] [c_1 \otimes \cdots \otimes c_j \otimes (c_{j+1} \cdots c_{j+n}) \otimes c_{j+n+1} \otimes \cdots \otimes c_{2n-2} + I]$

is checked in a similar way. Consequently, the multiplication in R is well defined. Let us show that it is associative. We have:

$$[(c_1 \otimes \cdots \otimes c_{n-1} + I)(c_n \otimes \cdots \otimes c_{2n-2} + I)] (c_{2n-1} \otimes \cdots \otimes c_{3n-3} + I)$$

$$= [(c_1 \cdots c_n) \otimes c_{n+1} \otimes \cdots \otimes c_{2n-2} + I] (c_{2n-1} \otimes \cdots \otimes c_{3n-3} + I)$$

$$= [(c_1 \cdots c_n)c_{n+1} \cdots c_{2n-1}] \otimes c_{2n} \otimes \cdots \otimes c_{3n-3} + I.$$

On the other hand,

$$(c_1 \otimes \cdots \otimes c_{n-1} + I) [(c_n \otimes \cdots \otimes c_{2n-2} + I) (c_{2n-1} \otimes \cdots \otimes c_{3n-3} + I)]$$

$$= (c_1 \otimes \cdots \otimes c_{n-1} + I) [(c_n \otimes \cdots \otimes c_{2n-1}) \otimes c_{2n} \otimes \cdots \otimes c_{3n-3} + I]$$

$$= [c_1 \cdots c_{n-1} (c_n \otimes \cdots \otimes c_{2n-1})] \otimes c_{2n} \otimes \cdots \otimes c_{3n-3} + I$$

By (3), we obtain that the multiplication in R is associative.

Theorem 2.2. M is an n-ary left C-module if and only if M is a binary left R-module.

Proof. Suppose that M is an n-ary left C-module. If $c_1, \ldots, c_{n-1} \in C$ and $m \in M$, then we put:

$$(c_1 \otimes \cdots \otimes c_{n-1} + I)m = (c_1 \otimes \cdots \otimes c_{n-1})m.$$

The definition of the ideal I and the n-ary C-module implies that $I \cdot m = 0$. So, M is a left R-module.

Conversely, if M is a left R-module, then for $c_1, \ldots, c_{n-1} \in C$ and $m \in M$, we put

$$(c_1 \otimes \cdots \otimes c_{n-1})m = (c_1 \otimes \cdots \otimes c_{n-1} + I)m.$$

We see that M is an n-ary left C-module.

What is proved here is an equivalence of categories between the category of n-ary left modules over C and the category of left modules over R.

3. Dual situation

Let C be an n-ary coalgebra over a field k. Denote by $C^{\square(n-1)}$ the set:

$$\bigcap_{j=1}^{n-2} \operatorname{Ker}[\Delta \otimes 1_C^{\otimes (n-2)} - 1_C^{\otimes j} \otimes \Delta \otimes 1_C^{\otimes (n-2-j)}] \subset C^{\otimes (n-1)}.$$

In the other words, $C^{\square(n-1)}$ contains all elements

$$f = \sum c_1 \otimes \cdots \otimes c_{n-1} \in C^{\otimes (n-1)},$$

such that

$$\sum \Delta c_1 \otimes c_2 \otimes \cdots \otimes c_{n-1} = \sum c_1 \otimes \cdots \otimes c_j \otimes \Delta c_{j+1} \otimes c_{j+2} \otimes \cdots \otimes c_{n-1}$$

for all j = 0, ..., n - 2.

Theorem 3.1. The n-ary comultiplication in C induces a comultiplication:

$$\Lambda': C^{\square(n-1)} \to C^{\square(n-1)} \otimes C^{\square(n-1)}$$

i.e., $C^{\square(n-1)}$ is a binary coalgebra.

Proof. Define the map

$$\Delta': C^{\otimes (n-1)} \to C^{\otimes (n-1)} \otimes C^{\otimes (n-1)}$$

by the following rule:

$$\Delta'(c_1 \otimes \cdots \otimes c_{n-1}) = \Delta c_1 \otimes c_2 \otimes \cdots \otimes c_{n-1} \in C^{\otimes n} \otimes C^{\otimes (n-2)} = C^{\otimes (n-1)} \otimes C^{\otimes (n-1)}.$$

330 B. Zekovich

It is necessary show that

$$\Delta'(C^{\square(n-1)}) \subseteq C^{\square(n-1)} \otimes C^{\square(n-1)}.$$

Let $f \in C^{\square(n-1)}$. Then, for $j = 1, \ldots, n-2$:

$$\begin{split} &\left\{\left[\Delta\otimes 1_C^{\otimes(n-2)} - 1_C^{\otimes j}\otimes\Delta\otimes 1_C^{\otimes(n-2-j)}\right]\otimes 1_C^{\otimes(n-1)}\right\}\Delta'(f)\\ &= \left\{\left[\Delta\otimes 1_C^{\otimes(n-2)} - 1_C^{\otimes j}\otimes\Delta\otimes 1_C^{\otimes(n-2-j)}\right]\otimes 1_C^{\otimes(n-1)}\right\}(\Delta\otimes 1_C^{\otimes(n-2)})f\\ &= \left\{\left[(\Delta\otimes 1_C^{\otimes(n-1)} - 1_C^{\otimes j}\otimes\Delta\otimes 1_C^{\otimes(n-1-j)})\otimes 1_C^{\otimes(n-2)}\right](\Delta\otimes 1_C^{\otimes(n-2)})\right\}f = 0 \end{split}$$

by the coassociativity. Analogously, for j = 1, ..., n-2:

$$\left\{1_C^{\otimes (n-1)} \otimes \left[\Delta \otimes 1_C^{\otimes (n-2)} - 1_C^{\otimes j} \otimes \Delta \otimes 1_C^{\otimes (n-2-j)}\right]\right\} \Delta'(f) = 0,$$

see [2].

Theorem 3.2. k-module M is an n-ary right C-comodule if and only if M is a binary right $C^{\square(n-1)}$ -comodule.

Proof. If M is a binary right $C^{\square(n-1)}$ -comodule, then M is an n-ary right C-comodule, because $C^{\square(n-1)} \subset C^{\otimes(n-1)}$.

Conversely, let M be an n-ary right C-comodule and $\rho: M \to M \otimes C^{\otimes (n-1)}$. It is necessary show that

$$\rho(M) \subseteq M \otimes C^{\square(n-1)},$$

i.e.,

$$(\Delta \otimes 1_C^{\otimes (n-2)} - 1_C^{\otimes j} \otimes \Delta \otimes 1_C^{\otimes (n-2-j)})\rho = 0.$$

This follows from the definition of an n-ary C-comodule.

What is proved here is an equivalence of categories between the category of n-ary right comodules over C and the category of right comodules over $C^{\square(n-1)}$.

4. Isomorphisms of binary (co)algebras

In this part, as in previous, we shall suppose that k is a field.

Theorem 4.1. Let C be an n-ary finite dimensional coalgebra over the field k. Then $C^{\square(n-1)}$ is a binary coalgebra. Moreover, C^* is an n-ary algebra, for which we construct the binary algebra $R = (C^*)^{\otimes (n-1)}/I$. Then there exists an isomorphism of binary algebras:

$$(C^{\square(n-1)})^* \cong (C^*)^{\otimes(n-1)}/I.$$

Proof. By definition:

$$C^{\square(n-1)} = \bigcap_{j=1}^{n-2} \operatorname{Ker}[\Delta \otimes 1_C^{\otimes (n-2)} - 1_C^{\otimes j} \otimes \Delta \otimes 1_C^{\otimes (n-2-j)}].$$

In other words, we obtain the exact sequence of the vector spaces:

$$0 \to C^{\square(n-1)} \to C^{\otimes(n-1)} \xrightarrow{\varphi} \bigoplus_{i=1}^{n-2} C^{\otimes(2n-2)},$$

where

$$\varphi(x) = \left(\Delta \otimes 1_C^{\otimes (n-2)} - 1_C \otimes \Delta \otimes 1_C^{\otimes (n-3)}\right)(x) + \cdots + \left(\Delta \otimes 1_C^{\otimes (n-2)} - 1_C^{\otimes (n-2)} \otimes \Delta\right)(x).$$

Moving to the dual finite dimensional spaces, we obtain the exact sequence:

$$0 \leftarrow (C^{\square(n-1)})^* \leftarrow (C^{\otimes(n-1)})^* \xleftarrow{\varphi^*} \bigoplus_{i=1}^{n-2} (C^{\otimes(2n-2)})^*$$
 (5)

Since C has finite dimension:

$$(C^{\otimes(n-1)})^* = (C^*)^{\otimes(n-1)}$$
$$(C^{\otimes(2n-2)})^* = (C^*)^{\otimes(2n-2)}$$

Moreover, for l_1, \ldots, l_{2n-2} from j-th summand $(C^*)^{\otimes (2n-2)}$, we have:

$$\varphi^*(l_1 \otimes \cdots \otimes l_{2n-2}) = (l_1 * \cdots * l_n) \otimes l_{n+1} \otimes \cdots \otimes l_{2n-2}$$
$$-l_1 \otimes \cdots \otimes l_j \otimes (l_{j+1} * \cdots * l_{j+n}) \otimes l_{j+n+1} \otimes \cdots \otimes l_{2n-2}$$
(6)

In that way, by the exactness of the sequence (5), we obtain that:

$$(C^{\square(n-1)})^* \cong (C^*)^{\otimes(n-1)}/I,$$

where I is the subspace generated by all elements of the form (6). We need to show that the constructed isomorphism

$$(C^*)^{\otimes (n-1)}/I \to (C^{\square (n-1)})^*$$

is an isomorphism of binary algebras. Let

$$l_1, \dots, l_{2n-2} \in C^*$$
 and $f = \sum c_1 \otimes \dots \otimes c_{n-1} \in C^{\square(n-1)}$.

Then,

$$[(l_1 \otimes \cdots \otimes l_{n-1} + I)(l_n \otimes \cdots \otimes l_{2n-2} + I)](f)$$

$$= [(l_1 * \cdots * l_n) \otimes l_{n+1} \otimes \cdots \otimes l_{2n-2} + I](f)$$

$$= \mu(l_1 \otimes \cdots \otimes l_{2n-2})(\Delta \otimes 1_C^{\otimes (n-2)})(f)$$

But, for $u, v \in (\mathbb{C}^{\square(n-1)})^*$ and $f \in \mathbb{C}^{\square(n-1)}$:

$$(u*v)(f) = \mu(u \otimes v)\Delta'(f) == \mu(u \otimes v)(\Delta \otimes 1^{\otimes (n-2)})f$$

Let

$$u = l_1 \otimes \cdots \otimes l_{n-1} + I, \quad v = l_n \otimes \cdots \otimes l_{2n-2} + I.$$

Then,

$$\mu(u \otimes v)(\Delta \otimes 1^{\otimes (n-2)}) = \mu(l_1 \otimes \cdots \otimes l_{2n-2})(\Delta \otimes 1^{\otimes (n-2)})$$

i.e., the map

$$R \to (\mathbf{C}^{\square(n-1)})^*$$

is a homomorphism of binary algebras.

Analogically, we prove:

Theorem 4.2. Let C be an n-ary finite dimensional algebra over a field. Then, $R = C^{\otimes (n-1)}/I$ is a binary algebra, and C^* is an n-ary coalgebra. Moreover,

$$(C^*)^{\square(n-1)} \cong R^*.$$

References

- [1] N. Burbaki, Algebra, Moscow, 1962.
- [2] N. Burbaki, Commutative algebra, Mir, Moscow, 1971.
- [3] **B. Zekovich**, On n-ary bialgebras. I, (Russian), Chebyshevskii Sb. 4 (2003), N3, 65 73.
- [4] B. Zekovich, On n-ary bialgebras. II, (Russian), Chebyshevskii Sb. 4 (2003), N3, 73 – 80.
- [5] B. Zekovich, n-ary comodules over n-ary (co)algebras, Algebra and Discrete Math. (2008), N4, 80 – 89.
- [6] B. Zekovich, Example of n-ary bialgebra, Days of Diffraction 2012, 250-253.

Received June 28, 2014

Faculty of Natural Science Department of Mathematics University of Montenegro Podgorica, Montenegro E-mail: biljanaz@t-com.me