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On generalized associativity in groupoids

Reza Akhtar

Abstract. Following an approach developed by Niemenmäa and Kepka, we prove that if a

division groupoid G satis�es the identity Rx1Lx2 . . . Rx2n−1Lx2ny = Lx2nRx2n−1 . . . Lx2Rx1y

for some n 6= 2, then G is an abelian group. Using equational reasoning, we also give a new

proof of a result of Niemenmäa and Kepka that a division groupoid in which the generalized

associative law x1(x2(. . . xn−1xn) . . .)) = ((. . . (x1x2) . . .)xn−1)xn holds must be a group.

1. Introduction

Let G be a groupoid, with composition written as juxtaposition. For a ∈ G,
we de�ne the left multiplication map La : G → G by x 7→ ax and the right
multiplication map Ra : G → G by x 7→ xa. If these maps are surjective for all
a ∈ G, we call G a division groupoid. If these maps are bijective for all a ∈ G, we
call G a quasigroup. For more on quaisgroups, we refer the reader to [2].

Since the operation on a groupoid is not in general associative, direct study of
such objects is usually rather di�cult. One way around this problem is to con-
struct an auxiliary group whose properties re�ect those of the groupoid operation,
and then use this group to study the original structure. This approach was ex-
ploited successfully by Niemenmäa and Kepka in [1], in which they showed that
any division groupoid satisfying the identity

In : x1(x2(. . . (xn−1xn) . . .)) = ((. . . (x1x2) . . .)xn−1)xn

is in fact a group. While it is clear that In constitutes a generalization of associa-
tivity, it is far from obvious that it implies associativity.

At the end of [1], the authors de�ne a groupoid identity M = N to be linear
if M and N contain the same set of indeterminates, and each such indeterminate
occurs exactly once on each side. They then pose the question of determining which
linear groupoid identities imply associativity. Considering that the associative law
(xy)z = x(yz) may be written (in terms of the multiplication maps) as RzLxy =
LxRzy, it is perhaps natural to consider the following family of linear groupoid
identities:

Jn : Rx1Lx2 . . . Rx2n−1Lx2ny = Lx2nRx2n−1 . . . Lx2Rx1y
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as generalizations of the associative law, which is the case n = 1. Modifying the
techniques of [1], we show, in the �rst part of this article, that if n > 2, then a
division groupoid satis�es Jn if and only if it is an abelian group. In the second
part of the article, we use equational reasoning to give a much shorter proof of
the original Niemenmäa-Kepka result that In implies associativity. The �rst part
of that proof is a relatively straightforward argument that any division groupoid
satisfying In is in fact a quasigroup; this is essentially the same as the reasoning in
the original paper [1]. In the second part of the proof, however, we use an inductive
argument to show that any quasigroup satisfying In implies associativity, thereby
circumventing the need to introduce an auxiliary group structure. The ideas in
this part of the proof were inspired by output from Prover9 for the implication
I4 =⇒ I3; however, our proof follows a di�erent path from that outlined in the
Prover9 output.

Following [1], we make the following de�nitions. Let G be a groupoid and P (G)
the set of permutations of G.

AL(G) = {f ∈ P (G) : f(xy) = g(x)y for some g ∈ P (G) and all x, y ∈ G}

AR(G) = {g ∈ P (G) : f(xy) = g(x)y for some f ∈ P (G) and all x, y ∈ G}

BL(G) = {f ∈ P (G) : f(xy) = xg(y) for some g ∈ P (G) and all x, y ∈ G}

BR(G) = {g ∈ P (G) : f(xy) = xg(y) for some f ∈ P (G) and all x, y ∈ G}

We say that G is AL-transitive if for all x, y ∈ G there exists f ∈ AL(G)
such that f(x) = y. The notions of AR−, BL− and BR−transitivity are de�ned
similarly.

A key property undergirding both parts of this paper is a rigidity principle
which appears in [1] as Lemma 2.5. We give a slightly modi�ed version of this
below.

Lemma 1.1. [1, Lemma 2.5] Suppose a division groupoid G is BL-transitive. If
f, f ′ ∈ AL(G) and f(a) = f ′(a) for some a ∈ G, then f = f ′. The same is true if
G is assumed to be AL-transitive and f, f ′ ∈ BL(G).

Proof. Suppose �rst that G is BL-transitive and f, f ′ ∈ AL(G), a ∈ G are such
that f(a) = f ′(a). Select c ∈ G arbitrarily, and use surjectivity of Lc to �nd
d ∈ G such that a = cd. Next, given z ∈ G, use BL-transitivity to �nd h ∈ BL(G)
such that h(a) = z. Let g, g′, k ∈ P (G) witness that the formulas f(xy) = g(x)y,
f ′(xy) = g′(x)y, and h(xy) = xk(y) hold for x, y ∈ G. Now

f(z) = f(h(a)) = f(h(cd)) = f(ck(d)) = g(c)k(d) = h(g(c)d) = h(f(cd))

= hf(a) = hf ′(a) = hf ′(cd) = h(g′(c)d) = g′(c)k(d) = f ′(ck(d))

= f ′(h(cd)) = f ′(h(a)) = f ′(z).

The proof of the second statement is similar.
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We will also need the following key result:

Proposition 1.2. [1, Proposition 3.4] Let G be a quasigroup which is both AL-
and BL-transitive and satis�es AL(G) ⊆ AR(G), BL(G) ⊆ BR(G). Then there
exists a binary operation ∗ such that (G, ∗) is a group and xy = A(x) ∗ c ∗ B(y)
for some c ∈ G and some automorphisms A,B of (G, ∗).

2. A generalized form of associativity

In this section, we consider the identity

Jn : Rx1
Lx2

. . . Rx2n−1
Lx2n

y = Lx2n
Rx2n−1

. . . Lx2
Rx1

y

as another generalization of the associative law. We may rewrite Jn in two di�erent
ways:

Lx2
. . . Rx2n−1

Lx2n
y · x1 = Lx2n

Rx2n−1
. . . Lx2

(yx1), (1)

Rx1
Lx2

. . . Rx2n−1
(x2ny) = x2n ·Rx2n−1

. . . Lx2
Rx1

y. (2)

These formulas witness that if G is a groupoid in which Jn is satis�ed, then
Lx2n

Rx2n−1
. . . Lx2

∈ AL(G) ∩ AR(G) and Rx1
Lx2

. . . Rx2n−1
∈ BL(G) ∩ BR(G).

In particular, if G is a division groupoid, then G is both AL-transitive and BL-
transitive.

We are now ready to prove our main result.

Theorem 2.1. Let G be a division groupoid and n > 2. Then G satis�es Jn if
and only if G is an abelian group.

Proof. Suppose �rst that G is a division groupoid satisfying Jn. We argue �rst
that G must be a quasigroup. Given a ∈ G, �x b ∈ G, and use surjectivity of
the multiplication maps to select c1, . . . , c2n−2 such that Lc1Rc2 . . . Rc2n−2Lab = b.
Now Lc1Rc2 . . . Rc2n−2

La ∈ AL(G), so by Lemma 1.1, Lc1Rc2 . . . Rc2n−2
La = 1G.

Therefore, La is injective.

Next, we show that G satis�es the remaining hypotheses of Proposition 1.2.
Given f ∈ AL(G), �x a ∈ G and use surjectivity of the multiplication maps to
select d1, . . . , d2n−1 ∈ G such that Ld1Rd2 . . . Ld2n−1a = f(a). Because we have
Ld1

Rd2
. . . Ld2n−1

and f are both members of AL(G), Lemma 1.1 implies that
f = Ld1

Rd2
. . . Ld2n−1

, so f ∈ AR(G) also. Thus, AL(G) ⊆ AR(G). The proof of
the inclusion BL(G) ⊆ BR(G) is similar.

Now we use Proposition 1.2 to deduce the existence of a binary operation + on
G such that (G,+) is a group and xy = A(x) + c+B(y) for some automorphisms
A and B of (G,+). (Even though (G,+) is not assumed to be an abelian group,
we will still use additive notation to avoid confusion with the groupoid operation
on G.) The identity

Jn : Rx1
Lx2

. . . Rx2n−1
Lx2n

y = Lx2n
Rx2n−1

. . . Lx2
Rx1

y
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implies an identity in (G,+); when this is written out, each of the indeterminates
x1, . . . , xn occurs in exactly one term on each side, with some automorphism of
(G,+) applied to it. For example, in the case n = 2 we have:

A2x2 +Ac+ABA2x4 +ABAc+ABABy +ABc+AB2x3 + c+Bx1

= Ax4+c+BA
2x2+BAc+BABAy+BABc+BAB

2x1+Bc+B
2x3.

In general, the automorphisms applied to the indeterminates x1, . . . , x2n on
the left are (respectively, in order):

B,A2, (AB)B, (AB)A2, (AB)2B, (AB)2A2, . . . , (AB)n−1B, (AB)n−1A2

and on the right the automorphisms are:

(BA)n−1B2, (BA)n−1A, . . . , (BA)2B2, (BA)2A, (BA)B2, (BA)A,B2, A.

For 2 6 i 6 2n, set xi =

{
B−1(c) if i is odd,
A−1c if i is even.

Next, set y = A−1(c) and substitute these values into the identity to obtain:
d + Bx1 = (BA)n−1B2x1 for some d ∈ G. Evaluating at x1 = 0, the fact that B
and (BA)n−1B2 are automorphisms of G forces d = 0, so Bx1 = (BA)n−1B2x1
and hence (BA)n−1B = 1G.

Now for i 6= 2, 1 6 i 6 n, set y = (BA)−1(c); then, substitute this and the
same values for xi (as above) into the identity to obtain A2x2+d

′ = (BA)n−1Ax2
for some d′ ∈ G. Reasoning as before, we have d′ = 0, so (BA)n−1A−1 = 1G.
Thus, A−1 = B, so B = (BA)n−1B = 1G, which in turn implies A = 1G.

Therefore, xy = x+ c+ y, and so we compute:

(xy)z = (x+c+y)z = (x+c+y)+c+z = x+c+(y+c+z) = x(y+c+z) = x(yz).

This shows that the quasigroup G is, in fact, a group. Now that we know that G
has a neutral element e, simply set all xi, i 6= 1, 3 equal to e in the identity Jn
to obtain Rx1Rx3 = Rx3Rx1 . Applying this equality of functions to e, we have
x1x3 = x3x1 for all x1, x3 ∈ G, so G is abelian.

Conversely, if G is an abelian group, then the identities RxLy = LyRx, RxRy =
RyRx and LxLy = LyLx hold in G. Now all left and right multiplication maps
commute with each other, so Jn must hold.

3. The Niemenmäa-Kepka Theorem

We conclude by giving a new proof of the main result of [1]. The �rst part of the
proof (Proposition 3.1 below) follows the reasoning of [1, Theorem 4.1].

Proposition 3.1. Let n > 3. Then a division groupoid satisfying In is a quasi-
group.
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Proof. Note that In can be interpreted in two ways:

Lx1 . . . Lxn−2(xn−1xn) = Rxn−1 . . . Rx3Rx2x1 · xn, (3)

Rxn . . . Rx3(x1x2) = x1 · Lx2 . . . Lxn−1xn. (4)

In particular, for any division groupoid G satisfying In, the �rst formula shows
that Lx1 . . . Lxn−2 ∈ AL(G), and the second formula that Rxn . . . Rx3 ∈ BL(G).
Since all left and right multiplication maps are surjective, it follows that G is both
AL-transitive and BL-transitive.

We now show that for a ∈ G, the map La is injective. To this end, �x b ∈ G and
use surjectivity of the left multiplication maps to select y1, . . . , yn−3 ∈ G such that
Ly1

. . . Lyn−3
Lab = b. By the rigidity principle (Lemma 1.1), Ly1

. . . Lyn−3
La = 1G;

so La has a left inverse and is hence injective. The proof of the injectivity of Ra

is similar.

We are now ready to give a new proof of [1, Theorem 4.1]. To prepare, de�ne

λ(x1, . . . , xn) = ((x1x2) · · ·xn−1)xn,

ρ(x1, . . . , xn) = x1(x2 · · · (xn−1xn)).

Then In is simply the statement λ(x1, . . . , xn) = ρ(x1, . . . , xn). All of the
identities in the list below can be proved by direct calculation.

Lemma 3.2. The following formulas hold for any m > 1:

• (HL) λ(x1, . . . , xm, y) = λ(x1, . . . , xm)y,

• (HR) ρ(y, x1, . . . , xm) = yρ(x1, . . . , xm),

• (CL) λ(λ(x1, . . . , x`), x`+1, . . . , xm) = λ(x1, . . . , xm),

• (CR) ρ(x1, . . . , x`, ρ(x`+1, . . . , xm)) = ρ(x1, . . . , xm),

• (DL) λ(yx1, x2, . . . , xm) = λ(y, x1, x2, . . . , xm),

• (DR) ρ(x1, . . . , xm−1, xmy) = ρ(x1, . . . , xm−1, xm, y).

Theorem 3.3. A quasigroup satisfying In is a group.

Proof. We will argue that when n > 4, In implies In−1, and then apply induction.
The designation at the end of each line shows which statement from Lemma 3.2
was used to deduce it from the previous line.
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y(λ(x1, . . . , xn−1)ρ(z1, . . . , zn−2))
= y(λ(x1, . . . , xn−1, ρ(z1, . . . , zn−2))) (HL)
= y(ρ(x1, . . . , xn−1, ρ(z1, . . . , zn−2))) (In)
= ρ(y, x1, . . . , xn−1, ρ(z1, . . . , zn−2))) (HR)
= ρ(y, x1, . . . , xn−2, xn−1, z1, . . . , zn−2) (CR)
= ρ(y, x1, . . . , xn−2, ρ(xn−1, z1, . . . , zn−2)) (CR)
= λ(y, x1, . . . , xn−2, ρ(xn−1, z1, . . . , zn−2)) (In)
= λ(y, x1, . . . , xn−2)ρ(xn−1, z1, . . . , zn−2) (HL)
= ρ(λ(y, x1, . . . , xn−2), xn−1, z1, . . . , zn−2) (HR)
= λ(λ(y, x1, . . . , xn−2), xn−1, z1, . . . , zn−2) (In)
= λ(y, x1, . . . , xn−1, z1, . . . , zn−2) (CL)
= λ(λ(y, x1, . . . , xn−1), z1, . . . , zn−2) (CL)
= λ(ρ(y, x1, . . . , xn−1), z1, . . . , zn−2) (In)
= λ(yρ(x1, . . . , xn−1), z1, . . . , zn−2) (HR)
= λ(y, ρ(x1, . . . , xn−1), z1, . . . , zn−2) (DR)
= ρ(y, ρ(x1, . . . , xn−1), z1, . . . , zn−2) (In)
= yρ(ρ(x1, . . . , xn−1), z1, . . . , zn−2) (HR)
= y(ρ(x1, . . . , xn−1)ρ(z1, . . . , zn−2)) (HR).

Now cancel y from the left, and then cancel ρ(z1, . . . , zn−2) from the right to
obtain λ(x1, . . . , xn−1) = ρ(x1, . . . , xn−1), which is In−1.
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