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Flocks, groups and heaps, joined with semilattices

Arthur Knoebel

Abstract. This article describes the lattice of varieties generated by those of �ocks and near

heaps. Flocks and heaps are two ways of presenting groups by a ternary operation rather than

a binary one. Their varieties joined with that of ternary semilattices create the varieties of near

�ocks and near heaps. This is done by �nding normal forms for words that make up free algebras.

Simple sets of identities de�ne these varieties. Identities in general are decidable. Each near �ock

is a Pªonka sum of �ocks, and each near heap is a Pªonka sum of heaps. An algorithm translates

any binary group identity to one in a ternary operation satis�ed by near heaps.

1. Introduction

This article merges groups, which arise from composing permutations, with semi-
lattices, which are partial orders with least upper bounds. This is not done by
imposing an order on groups, of which there is an extensive literature, but by
joining their varieties. The varietal join of groups with semilattices is achieved
seamlessly with operations having three arguments instead of the usual two. There
are several ways to do this. We look at �ocks and heaps.

Figure 1 shows the lattice of these varieties. In each box are the algebras, the
name of their variety, and the identities de�ning it. The top box, containing all
of the varieties, is the new variety of near �ocks. We prove that these varieties
are related as depicted, and decompose algebras higher up into those lower down,
wherever possible.

The traditional binary operation × of a group has �ve desirable properties:
associativity, unique solvability in each argument, and hence the existence of a
unity, from which follow inverses and cancellation. There are several ways to
change the binary operation to a ternary one [, , ], where these properties diverge.
Our way de�nes it by:

[x, y, z] = (x× y−1)× z.
This satis�es (1) and (2), which together are called the para-associative law. This
operation is also uniquely solvable in each argument, which implies cancellation.
However there is neither a unity nor an inverse operation.

A set with a ternary operation satisfying the para-associative law and being
solvable in each argument is a �ock in the original sense. But solvability is not
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de�nable by identities. To do so requires adding a unary operation x that cap-
tures regularity in the sense of von Neumann: for each x, the element x satis�es
[x, x, x] = x. This is not necessarily the inverse, although it may be is some cases,
and in other cases it may be the identity function. When x is the identity function
we have heaps.

Near Flocks
nF
(1)�(6)

Flocks
F
Add (7) to above

Near Heaps
nH
Add (8) to above

Heaps
H
All the above

Semilattices
sL
Add (9) to above

Trivial Algebras
O
All the above

...........................................................................................................

...........................................................................................................

...........................................................................................................

...........................................................................................................

...........................................................................................................

...........................................................................................................

...........................................................................................................

[v, w, [x, y, z]] ≈ [[v, w, x], y, z], (1)

[v, w, [x, y, z]] ≈ [v, [y, x, w], z], (2)

[x, y, z] ≈ [x, y, z], (3)

x ≈ x, (4)

[x, x, x] ≈ x, (5)

[x, x, y] ≈ [x, x, y] ≈ [y, x, x] ≈ [y, x, x], (6)

[x, x, y] ≈ y, (7)

x ≈ x, (8)

[x, x, y] ≈ [x, y, y]. (9)

Figure 1. Lattice of varieties of �ocks, heaps and semilattices, and their de�ning identities.
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The binary operation ∧ of semilattices may be turned into a ternary operation:

[x, y, z] = (x ∧ y) ∧ z.

Then the equation [x, y, x] = x always has the solution y = x although it may not
be unique. Nevertheless we set x = x, the identity function. Although it could
be dropped in semilattices and heaps, for uniformity in comparing varieties we
type algebras with a ternary operation and a unary operation, that is the type is
< 3, 1 >, except where otherwise noted later in this article.

For groups there is also the triple composition:

[x, y, z] = (x× y)× z,

without a middle inverse y−1. This satis�es associative laws and solvability. The
inverse operation x = x−1 may be again added to the type as the solution to
[x, x, x] = x. But this is not the main line of investigation, and will be passed
over.

The lack of a unity is no loss and may be an advantage. In the study of
vector spaces, where a base-free presentation favors no particular axes, just as in
the physical world no particular directions are preferred, so a presentation with no
origin should be applauded, as it goes along with the universe having no designated
center. Still, the ternary operation has a physical meaning, at least for vector
spaces, it is the completion of a parallelogram, that is, it is the fourth vertex,
d = [a, b, c], of a parallelogram when the other three vertices are a, b and c.

With the de�nition of the varieties by ever increasing sets of identities as we go
downward in Figure 1, it is clear that the lines represent set-theoretical inclusion
as we go upwards. It remains to be proven that the joins and meets are varietal:
for example, that nF is the smallest variety that includes both F and nH, and that
H is the largest variety included in both F and nH.

To do this for joins, we �nd for each variety a normal form for its terms. These
constitute the free algebras. The identities in each variety are decidable.

Algebras in the joins are built from algebras below them. A near �ock is a
Pªonka sum of �ocks, which is a special kind of extension of �ocks by a semilattice.
A near heap is a Pªonka sum of heaps.

Through the next four sections we descend from the top of the lattice of Figure
1. Since the operation x has no e�ect on the variety nH, because of identity (8),
it will eventually be left out in the treatment of the varieties lower in the lattice.

The next to last section spells out the close connection between heaps and
groups as an adjoint situation that is almost a categorical equivalence. The last
section translates any group identity to its counterpart in heaps.

2. Near �ocks

The variety nF of near �ocks is de�ned by the set nF of identities (1)�(6), and is
at the top of the lattice of Figure 1. Free algebras are built with normal words.
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With these it will be proven in the next section that the variety of near �ocks is
the join of those of �ocks and near heaps.

First, we derive some consequences of the identities de�ning near �ocks. Only
some of what is needed is written out here. More identities may be manufactured
by their re�ection. The re�ection of an identity is it written backwards, literally.
For instance, the re�ection of (2), [vw[xyz]] ≈ [v[yxw]z], is [z[wxy]v] ≈ [[zyx]wv].
Since the re�ections of (1)�(6) are consequences of these axioms, a re�ection of
any consequence of (1)�(6) is also a consequence of them.

Proposition 2.1. These identities for near �ocks follow from (1)− (6).

[[w, x, x], y, z] ≈ [[w, y, z], x, x] (10)

[[w, y, x], x, z] ≈ [[w, y, z], x, x], (11)

[[x, y, z], [x, y, z], w] ≈ [x, x, [y, y, [z, z, w]]]. (12)

[[x, v, w], [y, v, w], [z, v, w]] ≈ [[x, y, z], v, w]. (13)

Proof.

(10). [[w, x, x], y, z] ≈ [[x, x, w], y, z] (6)

≈ [x, x, [w, y, z]] (1)

≈ [[w, y, z], x, x] (6).

(11). [[w, y, x], x, z] ≈ [w, y, [x, x, z]] (1)

≈ [w, y, [z, x, x]] (6)

≈ [[w, y, z], x, x] (1).

(12). [[x, y, z], [x, y, z], w] ≈ [[x, y, z], [x, y, z], w] (3)

≈ [[[x, y, z], z, y], x, w] (2)

≈ [[[x, y, y], x, w], z, z] (11), (10)

≈ [[x, y, y], x, [z, z, w]] (1), (6)

≈ [x, x, [y, y, [z, z, w]]] (1), (11).

(13). [[x, v, w], [y, v, w], [z, v, w]] ≈ [[[x, v, w], w, v], y, [z, v, w]] (2)

≈ [[[[x, v, w], w, v], y, z], v, w] (1)

≈ [[[[x, y, z], v, v], v, w], w, w] (10), (11)

≈ [[x, y, z], v, w] (1), (5).

Identities (10) and (11) of this proposition suggest isolating pairs of adjacent
variables when one is barred and the other is not.

Normal near �ock words, introduced in the next de�nition, will serve as the
elements of free near �ocks. A distinction is made between terms and words.
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De�nition 2.2. In contrast to a term, built with variables and operations sym-
bols, a word is simply a �nite string of these letters with no ternary operation sym-

bols but with single bars over some of the letters. For example,
[
x2, x1, [x4, x1, x4]

]
is a term, and x2x1x4x1x4 is a word. A letter adjacent to itself barred, xixi or
xixi, is called a skew pair. Let |w| be the length of a word, that is, the num-
ber of occurrences of letters in it. A normal near �ock word, or simply normal
word in this section, is a word, w = wφwσ, with two parts, namely a �ock part
wφ and a semilattice part wσ � their names will be motivated later. The �ock
part wφ is of odd length in which no variable xi and its bar xi are adjacent,
in either order. The semilattice or skew part wσ is of even length and is a se-
quence, xi1xi1xi2xi2 . . . xikxik , of skew pairs xixi with the indices in increasing
order: i1 < i2 < · · · < ik. All letters occurring in the �ock part wφ must occur in
the semilattice part wσ, but not all the letters in wσ need be in wφ. For example,
here are the parts of a normal word:

w = x5x5x2x5x6x2x2 x2x2x5x5x6x6x9x9,

wφ = x5x5x2x5x6x2x2,

wσ = x2x2x5x5x6x6x9x9.

De�nition 2.3. To de�ne free near �ocks we need to manipulate words with some
operators: the �rst operator wρ reverses the order of the variables; for example,
(x1x2x3)ρ is x3x2x1. Note that (uvw)ρ = wρvρuρ for words u, v and w. The
second operator d joins semilattice parts: vσ d wσ is the string of all skew pairs
xixi for all variables xi in v or w, put in order of increasing index with no skew pair
occurring more than once. The third transforms a word w of odd length back into
a term wβ by appropriately inserting pairs of brackets to form ternary operations
all associated to the left; for example, the word w = x5x5x2x2x5x6x2 becomes the
term wβ = [[[x5, x5, x2], x2, x5], x6, x2]. The fourth is an algorithm, given in the
next de�nition, that normalizes any term.

De�nition 2.4. Here is how to turn any near �ock term t into a normal near
�ock word tν by using (1)�(6). Let xi1 , xi2 , . . . , xin be the variables of t with
i1 < i2 < . . . < in. As a running example, consider t = [[x2, x2, x1], [x1, x2, x1], x1].
Use (3) to push all bars of t onto individual variables, and (4) to eliminate more
than one bar on a variable. The example becomes [[x2, x2, x1], [x1, x2, x1], x1].

With (5) create a skew pair xixi for each variable xi in t not already in such
a pair. Use (10) and (11) to move these skew pairs, one at a time, to the extreme
right, in order of increasing index. The example has now become

[[[[x2, x2, x1], [x1, x2, x1], x1], x1, x1], x2, x2].

No skew pair will now be across a bracket. Then use (1) and (2) to associate all
occurrences of [, , ] to the far left. So we have

[[[[[x2, x2, x1], x1, x2], x1, x1], x1, x1], x2, x2].
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At this point we may as well remove the brackets and work with the resulting
word w = wυwσ. Here wσ is the semilattice part � the word xi1xi1xi2xi2 . . . xinxin
of all skew pairs that have been moved. The remainder wυ of w on the right will
be reworked to give the �ock part. The example turns into a word with parts

wυ = x2x2x1x1x2x1x1 and wσ = x1x1x2x2.

Remember that at any time the operator β can return brackets, associated to the
left.

Up to now the algorithm has been deterministic; there have been no choices
that might make a di�erence. But new skew pairs may appear in wυ as a result
of having moved old ones to the right; for example, when x1x1 is removed from
the middle of wυ, then x2x2 is a new skew pair. Now there will be choices as to
which order to eliminate these unnecessary skew pairs. The next proposition will
show that these choices make no di�erence in the �nal outcome.

With (10) and (11) move skew pairs as they appear over to their corresponding
pairs in wσ on the right, and eliminate duplicates with (5). The remaining part of
the word on the left, with no skew pairs, is the desired �ock part wφ. Our term,
t = [[x2, x2, x1], [x1, x2, x1], x1] has become the normal word tν = x2 x1x1x2x2.

Proposition 2.5. The outcome of the algorithm of De�nition 2.4 does not depend
on the order of eliminating skew pairs.

Proof. By induction on the length |wυ| of what is to become the �ock part of a
word w. Suppose the proposition is true when the length is less than n. Assume
a particular wυ has length n. Consider sequences, p = 〈p1, p2, . . .〉, of occurrences
pi of skew pairs that appear in it and that are being successively eliminated; call
them paths. Think of two di�erent paths, p = 〈p1, p2, . . .〉 and q = 〈q1, q2, . . .〉.
We will show that, after removing the skew pairs in them, we arrive at the same
�ock part wφ. There are three possibilities for the �rst pairs: p1 and q1 are the
same; p1 and q1 are not the same but overlap; p1 and q1 do not overlap, that is,
they are disjoint. We dispose of these possibilities in order.

Suppose that p1 is q1, and this skew pair is eliminated from both paths, Then
the remaining words will be the same and have length less than n. By the induction
hypothesis, after all the remaining skew pairs are eliminated from the two paths,
we end up with the same word.

Next suppose that p1 and q1 overlap, that is, we have for example xixixi in
wυ with p1 being xixi and q1 being xixi. Eliminating either skew pair leaves the
same word of lesser length, and the induction hypothesis applies again.

Now assume the two paths start out with disjoint skew pairs, that is, a path can
start out at either p1 or q1, which are not the same. In particular new paths can
start as p′ = 〈p1, q1, . . .〉 and q′ = 〈q1, p1, . . .〉. Now, by the induction hypothesis,
the elimination of the same �rst skew pairs of p and p′ will end up with the same
word, since they start out the same; and so will q and q′. As p1 and q1 are disjoint,
what is left after they are both removed is the same word r. Its length |r| is less
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than n, and hence we are led to the same normal word no matter in what order
skew pairs of r are thrown out. So p′ and q′ will terminate the algorithm at the
same �ock part, and hence so will p and q.

We now extend the use of φ from designating the �ock part of a normal word
to its use as an operator that creates the normal �ock part from any word of odd
length. Similarly σ becomes the operator that creates the semilattice part

De�nition 2.6. Write FnF(α) for the set of all normal words for near �ocks, each
with a �nite number of letters from the set {xi | i < α}. Turn this into an algebra
of type 〈3, 1〉, soon to be proven a near �ock. For normal words u, v, w de�ne the
�ock part [u, v, w]φ of the operation [u, v, w] to be the string (uφvφρwφ)φ, and the
semilattice part [u, v, w]σ to be uσ d vσ dwσ. (The operation d is associative; see
De�nition 2.3.) The operation w adds bars to those variables in the �ock part
that have none and removes bars from those that do, it leaves the semilattice part
alone. Write F nF(α) for the algebra 〈FnF(α); [, , ], 〉.

Proposition 2.7. For each nonzero cardinal α, F nF(α) is a near �ock.

Proof. We prove that the identities (2), (3) and (4) are satis�ed in F nF(α); the
others are proven similarly.

(2). Let u, v, w, x, y and z be normal words. It su�ces to prove (2) separately
on the �ock parts and the semilattice parts of words.

For the �ock parts on each side of (2), we expand them to a common word:

[v, w, [x, y, z]]φ = (vφwφρ[x, y, z]φ)φ = (vφwφρ(xφyφρzφ)φ)φ = (vφwφρxφyφρzφ)φ,

[v, [y, x, w], z]φ = (vφ[yxw]φρzφ)φ = (vφ(yφxφρwφ)φρzφ)φ = (vφwφρxφyφρzφ)φ.

In the �rst line, Proposition ?? tells us that (uvwφ)φ = (uvw)φ for words u, v, w.
In the second line, we also use the fact that wφρ = wρφ.

The semilattice parts are equal since d is associative and commutative.

(3) [u, v, w] = [u, v, w]. For the �ock part this follows from the fact that

wφ = wφ. So each path eliminating skew pairs from w has a corresponding path
in w. For the semilattice parts of u, v, w, the bar has no e�ect.

(4) w = w. The operation toggles the bar operation on the �ock part, leaving
the semilattice part alone.

Theorem 2.8. For each nonzero cardinal α, F nF(α) is the free near �ock on α
generators.

Proof. We verify the universal property that characterizes free algebras: for any
near �ock A generated by α elements ai (i < α), there is a unique homomorphism
h from F nF(α) to A such that h(xi) = ai. To that end de�ne h : FnF(α)→ A by
h(w) = wβ(ai1 , . . . , ain) where xi1 , . . . , xin are the letters of the normal word w.
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First we prove that h is a homomorphism, that is, it preserves the operations;
then we prove that it is unique. Preserving the operation [, , ] means that

h([u, v, w]) = [h(u), h(v), h(w)] (u, v, w ∈ FnF(α)),

which is equivalent to
[u, v, w]β ≈ [uβ , vβ , wβ ]. (14)

This last requires a proof by induction on the length |v| of the middle argument
v.

If v is a single variable y, then identity (1) only, when applied to the left side
of (14), will move all brackets of the normal word w to the left without any need
of reversals by (2). Now suppose v = [x, y, z] with x, y, z normal near �ock words
of length less than v. We calculate that

[u, v, w]β = [u, [x, y, z], w]β

= [[u, z, y], x, w]β (2)

= [[uβ , zβ , yβ ], xβ , wβ ] (induction hypothesis twice)

= [uβ , [xβ , yβ , zβ ], wβ ] (2)

= [[uβ , [x, y, z]β , wβ ] (induction hypothesis)

= [uβ , vβ , wβ ].

Since the bar does not change the order of the variables, h preserves it:

h(w) = wβ = wβ = h(w).

To show φ is unique, let g : FnF(α)→ A be another homomorphism such that
g(xi) = ai (i < α). Then, if xi1 , . . . , xin are the letters of a normal word w, we have
that g(w) = wβ(ai1 , . . . , ain) = h(w), since a homomorphism preserves terms.

Write nF for the set of identities (1)− (6) de�ning near �ocks.

Proposition 2.9.

(a) For any near �ock term t there exists a unique normal near �ock word w
such that nF ` t ≈ wβ.

(b) For any normal near �ock words v and w, nF ` vβ ≈ wβ i� v = w.

Proof. Existence falls out of De�nition 2.4. Uniqueness follows from Theorem 2.8:
as normal words, like v and w, make up F nF(α), a free near �ock of the variety
de�ned by the identities of nF, we conclude (b), from which follows uniqueness.

Corollary 2.10. The equational theory of near �ocks is decidable.

Proof. From (b) of Proposition 2.9, for terms t1 and t2 of type 〈3, 1〉,

nF ` t1 ≈ t2 i� tν1 = tν2 .

This is true since nF ` tνβ ≈ t. Here tν is the normal near �ock word obtained
from a term t by the algorithm of De�nition 2.4.
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3. Flocks

The set F of identities (1)�(7) de�ne the variety F of �ocks. Originally �ocks
were de�ned by Dudek [6] as a nonempty set A with a ternary operation [, , ] that
satis�es (1)�(2) and is uniquely solvable in each argument: for all a, b and c in
A there are unique x, y, z such that [x, a, b] = c, [a, y, b] = c, and [a, b, z] = c.
It is not possible to de�ne unique solvability by identities in [, , ] alone without
additional operations (see the end of this section for why not). However, by [6,
Proposition 3.2], unique solvability does allow us to de�ne a unary operation −:

x is the unique y such that [x, y, x] = x.

Adding (7) to those identities de�ning near �ocks simpli�es the theory since
(7) allows all skew pairs to be removed from normal �ock words. With them free
algebras are de�ned and used to prove that the variety of near �ocks is the join of
�ocks and near heaps. Finally, it is shown that each near �ock is a Pªonka sum of
�ocks by a semilattice.

De�nition 3.1. As before, words are strings of letters, some with bars. But now,
a normal word for �ocks is a word of odd length in which no skew pairs occur,
that is, neither xixi nor xixi occur. They are merely the �ock parts of normal
near �ock words.

We pass between terms and words similarly to what was done in the last section.
A normal �ock word is obtained from any term by using the identities (1)�(6) to
push all bars onto individual letters and eliminate multiple bars. Identities (10),
(11) and (7) eliminate skew pairs. Identities (1) and (2) associate brackets to the
left. With brackets removed, this is a normal �ock word.

De�nition 3.2. To de�ne the free �ock on α generators, let FF(α) be the set
of normal �ock words on the set of α letters {xi | i < α}. Then F F(α) is the
algebra 〈FF(α); [, , ], 〉 of type 〈3, 1〉. Here, for normal �ock words, u, v and w,
the ternary operation [u, v, w] is the catenation of them, (uvρw)φ, with the order
of the letters in the middle argument v reversed to vρ. This is followed by erasing
any skew pairs that arise. The unary operation w removes bars from letters in w
that have them and adds them otherwise.

The next proposition is on the way to showing that F F(α) is a free �ock.

Proposition 3.3. For any non-zero cardinal α, F F(α) is a �ock.

Proof. Axiom (7) is satis�ed since, for normal �ock words w and v = xi1 . . . xin ,

[v, v, w] = (vvρw)φ = (xi1 . . . xinxin . . . xi1w)φ = wφ = w.

Cancelling inner letters by the operator φ also works when some of the letters of
v are barred.
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It was proven in Proposition 2.7 that F nF(α) satis�es (1)�(6). With the help
of (7), these proofs may be extended to F F(α). For example, to prove (1), let
v, w, x, y, z be normal �ock words. For all xi appearing in any of v, . . . , z, use (7)
to add the skew pair xixi at the right side of each word v, . . . , z. Then (1) holds for
these words since their modi�cations are normal near �ock words. Use (7) again
to wipe out all skew pairs, returning v, . . . , z to satisfy (1).

The proof of the next theorem builds on that for free near �ocks.

Theorem 3.4. For any non-zero cardinal α, F F(α) is the free �ock on α gener-
ators.

Proof. It was just proven that F F(α) is a �ock. The argument that F F(α) satis�es
the universal property for freedom is like that for Theorem 2.8.

Proposition 3.5.

(a) For each term t of type 〈3, 1〉, there is a unique normal �ock word w such
that F ` t ≈ wβ.

(b) For any normal �ock words v and w, F ` vβ ≈ wβ i� v = w.

Proof. By Proposition 2.9 there is a unique normal free near �ock word w such
that nF ` t ≈ vβ . Eliminating the semilattice part of v give w.

Corollary 3.6. The equational theory of �ocks is decidable.

Proof. Like that of Corollary 2.10.

The proofs and structure of normal forms suggest building any free near �ock
as a subalgebra of a product of a free �ock and a free semilattice. To set the
stage, here is a sort review of semilattices. They are traditionally binary algebras
with one operation ∨ that is idempotent, commutative and associative. A term-
equivalent variety with a ternary operation [, , ] and a unary operation is obtained
by `stammering' the binary operation, and making the unary a dummy:

[x, y, z] = (x ∨ y) ∨ z,
x = x.

An example of a semilattice lies in the semilattice parts wσ of normal near
�ock words w. They make up the free semilattice F sL(α) on α generators xixi
(i < α). The ternary operation [uσ, vσ, wσ] is the word consisting of all skew pairs
xixi occurring in any of uσ, vσ or wσ, arranged in order of ascending index, that
is, [uσ, vσ, wσ] = uσ d vσ d wσ. Bar does nothing. F sL(α) is term-equivalent to
the semilattice of all nonempty �nite subsets of a set with α elements. It is almost
a distributive lattice in that every interval of it is a distributive lattice with the
operations of union and intersection. All that is missing to make it distributive is
the empty set, a bottom element.
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Theorem 3.7. For any nonzero cardinal α, the free near �ock F nF(α) is isomor-
phic to a subalgebra of the product, F F(α)×F sL(α), of a corresponding free �ock
and free semilattice. The carrier of the subalgebra is {〈wφ, wσ 〉 | w ∈ FnF(α)}.

Proof. De�ne a function h : FnF(α)→ FF(α)×FsL(α) by h(w) = 〈wφ, wσ 〉. That
h is an injection follows from the de�nition of normal words. It is a homomorphism
since it preserves the operations:

h(w) = h
(
wφwσ

)
= h

(
wφwσ

)
= h

(
wφwσ

)
= 〈wφ, wσ 〉 = 〈wφ, wσ 〉 = h(w);

and h([u, v, w] = [h(u), h(v), h(w)] similarly.

With this theorem we may check the top part of Figure 1.

Theorem 3.8.

(a) The variety of near �ocks is the join of those of �ocks and semilattices:
nF = F ∨ sL.

(b) The variety of near �ocks is the join of those of �ocks and near heaps:
nF = F ∨ nH.

Proof. (a). The inclusions of their de�ning identities are passed to the varieties
themselves, and hence F∨sL ⊆ nF. As each free near �ock F nF(α) is a subalgebra
of a product of a �ock and a semilattice (Theorem 3.7), we have that F nF(α)
belongs to the join F ∨ sL. As any near �ock A is a homomorphic image of a free
near �ock, it follows that A is in the join. Therefore, nF ⊆ F ∨ sL.

(b). This follows from (a) by the inclusion of varieties: sL ⊆ nH ⊆ nF.

In the language of extensions and Pªonka sums more can be said about the
structure of near �ocks. We �rst de�ne extensions and prove Theorem 3.10. Then
we de�ne connecting homomorphisms that turn this extension into a Pªonka sum.

De�nition 3.9. An extension (or union or sum) of a nonempty set A of algebras
by another algebra B (all of the same type) is an algebra E and a congruence θ
of E such that:

1. each congruence class of θ that is an algebra is isomorphic to a member of
A;

2. each member of A is isomorphic to some congruence class of θ; and

3. E/θ is isomorphic to B.

This de�nition came from specializing Mal'cev's de�nition for classes of al-
gebras to individual algebras [11]. In turn, his de�nition grew out of classical
extensions in group theory, where not every coset is a subgroup. However, when
B is idempotent, say a semilattice, then all the congruence classes of E/θ will be
subalgebras.
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Theorem 3.10. Each near �ock A is an extension of �ocks by a semilattice.

The proof of this theorem proceeds by a series of lemmas and interspersed
de�nitions. Easy proofs are omitted without mention.

Now assume that A is a near �ock. A congruence θ of A is found such that A
is an extension of its congruence classes a/θ by its quotient A/θ.

De�nition 3.11. On A de�ne the binary relation:

a 6 b if [a, a, b] = b. (15)

Lemma 3.12.

(a) The relation 6 is a quasi-order.
(b) The operations and [, , ] preserve 6.

Proof. (a). Re�exivity is clear from (5). To prove transitivity, suppose that a 6 b
and b 6 c, that is, [a, a, b] = b and [b, b, c] = c. Then by (1),

[a, a, c] = [a, a, [b, b, c]] = [[a, a, b], b, c] = [b, b, c] = c,

and hence a 6 c.
(b). Bar is preserved by (3). We prove that 6 preserves [, , ] in its middle

argument; the other arguments are simpler.
We assume that b 6 d, that is [b, b, d] = d, and prove that [a, b, c] 6 [a, d, c],

with the help of (1), (2), (5), (10) and (12):

[[a, b, c], [a, b, c], [a, d, c]] = [a, a, [b, b, [c, c, [a, d, c]]]] = [a, a, [b, b, [a, d, [c, c, c]]]]

= [a, a, [b, b, [a, d, c]]] = [b, b, [a, d, c]]

= [a, d, [b, b, c] = [a, [b, b, d], c]

= [[a, d, c].

De�nition 3.13. On A de�ne the binary relation θ by:

a θ b if a 6 b and b 6 a.

Lemma 3.14. The relation θ is a congruence of A.

Proof. By Lemma 3.12, 6 is a quasi-order preserving and [, , ]. Therefore, θ is
an equivalence relation preserving the operations.

Lemma 3.15. Each coset of θ is a �ock.

Proof. First one must prove that, for any element of e of A, the coset e/θ is an
algebra, that is, it is closed to the operations and [, , ]. To prove closure to ,
suppose a ∈ e/θ. Then a θ e, and hence from the de�nition of θ,

[a, a, e] = e and [e, e, a] = a.
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From the �rst equation, with the identities for near �ocks we get that [a, a, e] =
[a, a, e] = [a, a, e] = e, and so a 6 e. From the second, similarly e 6 a, and thus
a ∈ e/θ.

To prove closure to [, , ], suppose a, b, c ∈ e/θ. As before, [a, a, e] = e and
[e, e, a] = a, and likewise for b and c. From these equations, Proposition 2.1, and
the axioms for near �ocks, we deduce that

[[a, b, c], [a, b, c], e] = [[a, b, c], [a, b, c], e] = [[[a, b, c], c, b], a, e]

= [[a, b, b], a, [c, c, e]] = [[a, b, b], a, e]

= [a, a, [b, b, e]] = [a, a, e] = e.

Hence [a, b, c] 6 e, and with less work e 6 [a, b, c]; therefore, [a, b, c] ∈ e/θ.
To show that e/θ is a �ock one need only show that (7) is an identity in e/θ;

that is, show [a, a, b] = b for all a and b related by θ; but this last implies a 6 b,
that is, [a, a, b] = b.

Lemma 3.16. The quotient A/ θ is a semilattice.

Proof. We need only prove (8) and (9) in A/ θ. For the latter, this amounts to
showing that [a, a, b] θ [a, b, b] for any a and b in A. Arguing with the axioms and
Proposition 2.1 as before, we show that [[a, a, b], [a, a, b], [a, b, b]] = · · · = [a, b, b],
which implies [a, a, b] 6 [a, b, b]. The converse of this relation is proven similarly,
and so the two sides are related by θ. This completes the proof of Theorem
3.10.

This extension is re�ned with Pªonka sums [13], which are de�ned here only
for near �ocks. In [7, Theorem 11] a Pªonka sum of heaps is also called a `strong
semilattice of heaps'. We need the partial order found in any semilattice S:

r 6 s if [r, r, s] = s (r, s ∈ S).

De�nition 3.17. A near �ock A is a Pªonka sum of �ocks if it is the union of a
family {As | s ∈ S} of disjoint �ocks indexed by a semilattice S together with a
family of homomorphisms, {hrs : Ar → As | r 6 s in S}, that evaluate the ternary
and unary operations of A:

[a, b, c]A = [(hπ(a),s(a), hπ(b),s(b), hπ(c),s(c)]
As , where s = [π(a), π(b), π(c)]S ;

(16)

(a)
A

= hπ(a),s(a)
As
, where s = π(a)

S
. (17)

Here the homomorphisms are assumed to be functorial in that hst◦hrs = hrt when
r 6 s 6 t; and π is the projection map from the disjoint �ocks to their indices:
π(a) = s if a ∈ As. The class of Pªonka sums of �ocks is denoted sPF.
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The next theorem follows from the more general theory of Pªonka [15, Theorem
7.1]. It is also proven in [7, Section 4]; but we sketch another proof that depends
in part on Theorem 3.10.

Theorem 3.18. Every Pªonka sum of �ocks is a near �ock, and every near �ock
is a Pªonka sum of �ocks. In short, nF = sPF.

Proof. That a Pªonka sum of �ocks is a near �ock follows from proving that the
identities satis�ed by a Pªonka sum A are precisely those common to the stalks
As and semilattices. This follows from verifying by induction on terms that for
any term t with n variables,

tA(a1, . . . , an) = tAs(hs1,s(a1), . . . , hsn,s(an)) (ai ∈ Asi);

here s is the semilattice join of the si.
For the other direction, by Theorem 3.10, A is the extension of �ocks by a

semilattice. Let θ be the congruence in De�nition 3.13. To create a Pªonka sum
take the index set S to be the set A/θ of congruence classes a/θ of θ, and de�ne
the projection, π(a) = a/θ. De�ne the connecting homomorphisms by

h a
θ ,
b
θ
(x) = [x, b, b] (a, b ∈ A and x ∈ a/θ). (18)

It remains to be proven that these homomorphisms are well-de�ned and functorial,
and that the operations are evaluated correctly.

These connecting homomorphisms are well-de�ned since di�erent choices of
related a's and related b's yield the same answer for (18). In detail, supposing
x ∈ a1/θ, a1θa2 and b1θb2, we know that b1 = [b1, b2, b2] and �nd that

h a1
θ ,

b1
θ

(x)=[x, b1, b1]=[x, b1, [b1, b2, b2]]=[x, [b2, b1, b1], b2]=[x, b2, b2]=h a2
θ ,

b2
θ

(x).

They are functorial since, if a 6 b 6 c and x ∈ a/θ, then

h b
θ ,
c
θ
(h a

θ ,
b
θ
(x)) = h b

θ ,
c
θ
([x, b, b]) = [[x, b, b], c, c] = [x, [c, b, b], c] = [x, c, c] = h a

θ ,
c
θ
(x).

They evaluate correctly according to (16) and (17) since for a, b, c in A and
d = [a, b, c], we have in A/θ that

s = [π(a), π(b), π(c)] =

[
a

θ
,
b

θ
,
c

θ

]
=

[a, b, c]

θ
=
d

θ
,

and hence, with the help of (13) and (5),

[(hπ(a),s(a), hπ(b),s(b), hπ(c),s(c)] = [h a
θ ,
d
θ
(a)]h b

θ ,
d
θ
(b)]h c

θ ,
d
θ
(c)]

= [[a, d, d], [b, d, d], [c, d, d]]

= [[a, b, c], d, d]

= [[a, b, c], [a, b, c], [a, b, c]]

= [a, b, c].
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For the unary operation, since s = π(a)
S

= π(a) = a
θ , we check that hπ(a),s(a) =

h a
θ ,
a
θ
(a) = [a, a, a] = a.

A free near �ock may also be described as a Pªonka sum; this is a re�nement
of Theorem 3.7. We realize this by looking closely at the de�nition of FnF(α).

Theorem 3.19. For a nonzero cardinal α, the free near �ock FnF(α) is the Pªonka
sum of the free �ocks FF(w) indexed by elements w of the free semilattice FsL(α).
Here the FF(w) are free �ocks on generators that are the skew pairs xixi in w.

The article [17] also describes free near �ocks as Pªonka sums of �ocks, but
assumes the free �ocks FF(w) are already known.

The lattice of subvarieties of nF has been described in [5] and [18, Section 4.3].

Theorem 3.20. The lattice of varieties of near �ocks is isomorphic to the product
of the lattice of varieties of �ocks and the two-element lattice.A subvariety of nF is
either a subvariety K of F, or a join, K∨ sL, of it with the variety of semilattices.

There is a curiosity about the �ocks 〈A; [, , ]〉 originally de�ned by (1), (2) and
the unique solvability of [, , ]. The class F3 of all such is categorically isomorphic
to F. However, F is a variety, but F3 is not. To understand this, let A be the
set {xn0 | n ≥ 1, n odd} of words in FF(1). This set is closed to [, , ] and thus it
is a subalgebra of 〈FF(1); [, , ]〉. Because there is no bar, the operation [, , ] is not
solvable in it. Hence F3 is not closed to taking subalgebras, and so fails to be a
variety. Therefore, F3 is not de�nable by identities.

4. Near heaps

The variety nH of near heaps is the class of algebras satisfying the identities: (1)�
(6) and (8). The last identity means that the bar operation may be omitted, and
we will do so for the remainder of this article, changing the type of near heaps,
heaps and semilattices from 〈3, 1〉 to 〈3〉, only retaining the ternary operation [, , ].
With that understanding, the de�ning identities are equivalent to

[v, w, [x, y, z]] ≈ [[v, w, x], y, z], (1)

[v, w, [x, y, z]] ≈ [v, [y, x, w], z], (2)

[x, x, x] ≈ x, (19)

[x, x, y] ≈ [y, x, x], (20)

which is the way Hawthorn and Stokes [7] introduced near heaps.
These identities hold in any group when [x, y, z] is interpreted as x(y−1z), and

in any semilattice when [x, y, z] is interpreted as x(yz). In this section a new
normal form describes the elements of free near heaps. In the next, the variety of
near heaps is proven to be the join of the varieties of heaps and semilattices, in
fact, Pªonka sums.
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De�nition 4.1. Near heap words w now have no bars, they are simply �nite
sequences of letters xi. With bars no more, twin pairs take the place of skew
pairs; a twin pair is a double occurrence xixi of the same letter adjacent to itself.

A normal near heap word is in two parts: on the left will be the heap part wφ̂, a
string of odd length of isolated occurrences of individual letters; on the right will
be the semilattice part wσ̂, a string of twin pairs, one for each letter occurring
in w, and ordered by increasing indices, with no twin pair duplicated. Hats over
operators indicate their adjustment to there no longer being any bars. Recall that
wβ restores brackets, associated to the left.

A normal near heap word w is derived from nH for any term t built from the
ternary operation and letters alone. To convert t use (1) and (2) to associate all
the brackets to the left; (2) may change the order of the letters. Move to the right
side any twin pair by using (10) and (11). (They have no bars now.) Reorder
these pairs by increasing indices, removing duplicate pairs with (5). If some letter
is isolated on the left side and does not occur on the right, triplicate it with (19)
to create a twin pair, and move the twin pair to the side, absorbing it among the
twin pairs already ordered there.

For example, if t is [x3, x2, [x2, x1, x3]], then, with the algorithm in the proof

of the next lemma, w is x3x1x3 x1x1x2x2x3x3 with wφ̂ = x3x1x3 and wσ̂ =
x1x1x2x2x3x3.

De�nition 4.2. For any cardinal α, the algebra F nH(α) has as carrier FnH(α) of
all normal near heap words with letters from {xi | i < α} and a ternary operation
de�ned by,

[u, v, w] = (uφ̂vφ̂ρwφ̂)φ̂(uσ̂ d vσ̂ d wσ̂),

where uσ̂ d vσ̂ d wσ̂ is the sequence of all twin pairs in order of increasing index
without repetition.

Proposition 4.3. For any cardinal α, F nH(α) is a near heap.

Proof. When the operation, x = x, is introduced into the type, the identities of
nH follow readily from those of nF.

Theorem 4.4. For any cardinal α, F nH(α) is the free near heap on α generators.

Proof. We use the universal mapping property of free algebras. Let A be a near
heap generated by {ai | i < α}. De�ne h on a w of FnH(α) in the letters
xi1 , xi2 , . . . , xin by h(w) = wβ(ai1 , ai2 , . . . , ain). Proving that h is the unique
homomorphism of F nH(α) to A taking xi to ai parallels the proof of Theorem
2.8.

Proposition 4.5.

(a) For any near heap term t, there is a unique normal near heap word w such
that nH ` t ≈ wβ.

(b) For any normal near heap words v and w, nF ` vβ ≈ wβ i� v = w.
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Proof. Existence comes from the algorithm of De�nition 4.1, which uses only the
identities of nH and their consequences.

Uniqueness and part (b) parallel the proof of Proposition 2.9.

Corollary 4.6. The equational theory of near heaps is decidable.

Proof. Like that of Corollary 2.10.

5. Heaps

These were de�ned in Section as algebras satisfying the identities (1)�(8). As the
last identity makes the bar pointless, these identities are equivalent to (1), (2)
and

[x, x, y] ≈ y ≈ [y, x, x] (21)

in algebras with only a ternary operation. Let H be this last set of identities.
It is proven that the variety nH of near heaps is the smallest variety containing
heaps and semilattices. Even better, any near heap is a Pªonka sum of heaps
over a semilattice. From results in the literature, the lattice of subvarieties of
nH is sketched, and their subdirectly irreducibles are determined modulo those of
heaps. The equivalence of these varieties with the traditional ones for ordinary
groups and semilattices with binary operations will be addressed in Section 6.
Heaps were �rst studied by Prüfer [16] in the context of commutative groups
where [x, y, z] = x− y + z.

Of all the free algebras in this article, free heaps are the simplest to describe;
their elements are just the left part, the heap part, of normal near heap words.

De�nition 5.1. A normal heap word is a string of letters of odd length in which
no letter occurs next to itself. The set FH(α) of normal heap words on the alphabet
{i| i < α} is the carrier of the algebra FH(α) with the ternary operation

[u, v, w] = (uvρw)φ̂.

Proposition 5.2. For α a nonzero cardinal, FH(α) is a heap.

Proof. As a heap is a near heap, only axiom (21) needs be proven:

[v, v, w] = (vvρw)φ̂ = (xi1xi2 . . . xinxin . . . xi2xi1w)φ̂ = w,

when v = xi1xi2 . . . xin ; here (7) cancels duplicate pairs successively.

Theorem 5.3. For α a nonzero cardinal, FH(α) is the free heap on α generators.

Proof. This parallels the proof for Theorem 2.8.

Proposition 5.4.

(a) For any heap term t, there is a unique normal heap word such that H ` t≈wβ.
(b) For any normal heap words v and w, nF ` vβ ≈ wβ i� v = w.
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Proof. This is like that of Proposition 3.5.

Corollary 5.5. The equational theory of heaps is decidable.

Proof. Similar to that for Corollary 2.10.

Theorem 5.6. For any nonzero cardinal α, the free near heap on α generators is
isomorphic to a subalgebra of the product of the free heap and the free semilattice,
both on α generators. Symbolically, F nH(α) ↪→ FH(α)× F sL(α).

Proof. De�ne the function FnH(α) ↪→ FH(α) × FsL(α) by h(w) = 〈wφ̂, wσ̂ 〉. It is
a homomorphism since it preserves the ternary operation:

h([u, v, w]) = 〈 [u, v, w]φ̂, [u, v, w]σ̂ 〉

= 〈(uφ̂vφ̂ρwφ̂)φ̂, (uσ̂vσ̂wσ̂)σ̂ 〉

= 〈 [uφ̂, vφ̂, wφ̂], [uσ̂, vσ̂, wσ̂]〉

= [〈uφ̂, uσ̂ 〉, 〈vφ̂, vσ̂ 〉, 〈wφ̂, wσ̂ 〉]
= [h(u), h(v), h(w)].

Theorem 5.7. The variety of hear heaps is the join of the varieties of heaps and
semilattices: nH = H ∨ sL; that is, it is the smallest variety containing them.

Proof. It is the proof of Theorem 3.8 mutatis mutandis.

Theorem 5.8. The lattice of Figure 1 is a sublattice of the lattice of all varieties
of algebra with one ternary operation and one unary operation.

Proof. Note that the free algebras of the di�erent varieties in Figure 1 being non-
isomorphic shows that the inclusions in it are proper. That each join of Figure
1 is the smallest variety including those below it is covered by Theorems 3.8 and
5.7. For the each meet of the �gure, recall that the meet of two varieties is their
intersection, and that the inclusions of the varieties in Figure 1 correspond to that
of their generating sets, for example, that F ∩ nH = H.

The next theorem follows immediately from Theorem 3.10. It is also proven in
[7, Section 4] in a di�erent language, and also follows from [18, Theorem 4.3.2].

Theorem 5.9. Every Pªonka sum of heaps is a near heap, and every near heap
is a Pªonka sum of heaps. In short, nH = sPH.

In parallel with Theorem 3.19, a free near heap may also be described as a
Pªonka sum of free heaps over a free semilattice (see also [17] and [18, Theorem
4.3.8]).
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6. Types for groups and heaps

This section clari�es the relationship between groups with a binary operation and
heaps with a ternary one. We view their varieties as categories. Two functors
pass back and forth between them, giving almost a categorical equivalence. To
make clear what is preserved, the intermediary of pointed heaps is introduced.
The point serves as an identity element and can be chosen arbitrarily in a heap.
Some of these ideas and results were presented noncategorically by Baer [1] and
Certaine [3], where there are many references to their origins. See [6] for related
concepts.

De�nition 6.1. The variety G of groups is the class of all algebras 〈G;×,−1 , e〉
of type 〈2, 1, 0〉 satisfying these identities:

x× (y × z) ≈ (x× y)× z,
x× x−1 ≈ 1 ≈ x−1 × x,

1× x ≈ x ≈ x× 1.

The variety pH of pointed heaps consists of all algebras 〈G; [, , ], e〉 of type 〈3, 0〉
satisfying identities (1)�(2) and (21).

Surprisingly, no additional identities beyond these de�ning heaps are needed
to de�ne pointed heaps. Identities cannot nail the constant e � its choice is
arbitrary!

The varieties G and pH are term-equivalent and hence categorically isomorphic.
To see this, replace the three operations x × y, x−1 and 1 in a group by the two
operations [x, y, z] = x × y−1 × z and e = 1 in a pointed heap, and replace the
operations [x, y, z] and e in a pointed heap by x× y = [x, e, y], x−1 = [e, x, e], and
1 = e in a group. Now we de�ne an adjoint situation between pH and G.

De�nition 6.2. The function D : pH → H drops the constant e as an operation
from any pointed heap 〈A; [, , ], e〉. Homomorphisms are left alone by D(h) = h,
although there may be more of them in H. The function E : H → pH uses the
axiom of choice to add to each heap 〈A; [, , ]〉 an arbitrary element e of A. A
homomorphism h : A→ A′ in H is mapped by E to one in pH by the formula:

E(h)(a) = [h(a), h(e), e′] (a ∈ A),

where e and e′ are the constants chosen by E.

Theorem 6.3. The functions D : pH → H and E : H → pH are functors, and D
is both a right and left adjoint of E.

Proof. That D and E are indeed functors is straightforward to verify.
To show that D is a left adjoint of E, it is easiest to prove an equivalent

universal situation: for all A in H, there exists an B in pH and a homomorphism
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f : A→ D(B) such that for all B′ in pH and all homomorphisms h : A→ D(B′)
there is a unique homomorphism h̄ : B → B′ such that this diagram commutes:

A
f−−−−→ D(B)

h

y yD(h)

D(B′) D(B′)

Byh
B′

It follows that D is a left adjoint of E by Theorem 27.3 of [8].
It is proven similarly that D is a right adjoint of E.

How far this adjunction falls short of a categorical equivalence is seen in a
proposition that traces how common concepts pass across. Its proof is routine.
But its statement needs the Cayley representation of elements of a group as per-
mutations.

De�nition 6.4. For any pointed heap A, CayA = {fab | a, b ∈ A}, where fab is
the function given by fab(c) = [a, b, c].

In the following, SubA, ConA and AutA mean respectively the sets of all
subalgebras, congruences and automorphisms of an algebra A. For sets F1 and
F2 of functions, F1 ◦ F2 means complex composition: {f1 ◦ f2 | fi ∈ Fi}.

Proposition 6.5. For A,A1,A2 in pH and their images DA, DA1, DA2 in H:

(1) Sub (DA) = the set of congruence classes of A;

(2) Con (DA) = Con A;

(3) Aut (DA) = Aut A ◦ Cay A = Cay A ◦ Aut A;

(4) Hom (DA1, DA2) = Cay A2 ◦ Hom (A1,A2);

(5) DA1 ×DA2 = D(A1 ×A2).

Since the congruences are the same under D, so are the simple algebras and
subdirectly irreducibles.

Dudek [6, Section 4] approaches the groups in �ocks by looking at the binary
operations, x ·a y = [x, a, y], which are isomorphic groups in a given �ock.

Pªonka sums of groups are developed in [14].

7. Transfer of identities

What do the identities de�ning a variety of ordinary groups become when trans-
fered to a corresponding variety of near heaps? This section starts with algo-
rithms for modifying identities to de�ne varieties of a new type, then a theorem
justi�es them, and two examples follow. There are two or three steps, depending
on whether the subvariety is only a variety of heaps or it is a join of one with
semilattices (Theorem 3.20). Notation is from Section 6. Regularity is needed.
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De�nition 7.1. An identity is regular if each variable occurring in a term on one
side of it occurs also in the term on the other side. A variety is regular if it can
be de�ned by regular identities. The regularization of a variety K is the variety
de�ned by the regular identities satis�ed by K.

Step 1 � from G to pH. Here is the recipe for the �rst step to translate a term
t of type 〈2, 1, 0〉 to one of type 〈3, 0〉; it follows the scheme in Section 6.

• Replace each product t1 × t2 of subterms t1 and t2 of t by [t1, e, t2].

• Replace each inverse t−11 of a subterm t1 of t by [e, t1, e].

• Replace the constant 1 by e.

Write t for the translated term, and t1 ≈ t2 for the translation of an identity
t1 ≈ t2. For a set K of identities de�ning a variety of groups, let K be the set of
translations.

Step 2 � from pH to H. Assume w is a variable not in any of the identities
de�ning H, a subvariety of pH. Replace the constant e by w in all the identities
of K. Write K for the set modi�ed identities.

Step 3 � from H to sH. If a subvariety of nH is the join of a subvariety K of
H with sL, then the identities K de�ning K must be regularized. One can do this
for an identity, t1 ≈ t2, by adding to the right side of the term t1 the pair xx for
any variable x that appears only in t2 to get [t1, x, x] ≈ t2, and likewise for t2 .

Theorem 7.2.

(1) For K a subvariety of G de�ned by a set K of identities, the set K of term-
translated identities of Step 1 de�nes K, the subvariety of pH of pointed heaps
term-equivalent to the groups of G.

(2) For a subvariety K of pH de�ned by a set K of identities, the set K of trans-
lated identities of Step 2 de�nes the subvariety, K = D(K), of H.

(3) For a subvariety K of nH with a de�ning set K of identities, a de�ning set of
identities for its join, K ∨ sL, with the variety of semilattices is given by the
regularization K of K, as done in Step 3.

Proof. (1). This follows from term-equivalence of G of pH.

(2). We must show that, if an identity t1 ≈ t2 is satis�ed by an algebra A of
K, then its translation t1 ≈ t2 is satis�ed by D(A), and conversely. Write the
terms as ti(x1, . . . , xn, e) where the ti are of type 〈3〉. Then the translated terms
will be ti(x1, . . . , xn, w) with w replacing e. We will show that t1(a1, . . . , an, b) =
t2(a1, . . . , an, b) for all a1, . . . , an, b in A. De�ne an automorphism α of A by
α(x) = [x, b, e]. Then α(b) = e. So
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α(t1(a1, . . . , an, b)) = t1(α(a1), . . . , α(an), α(b))

= t1(α(a1), . . . , α(an), e)

= t2(α(a1), . . . , α(an), e)

= t2(α(a1), . . . , α(an), α(b))

= α(t2(a1, . . . , an, b)).

Therefore, t1(a1, . . . , an, b) = t2(a1, . . . , an, b). The converse is proven by replacing
w by e.

We have shown for any identity t1 ≈ t2 and any algebra A of K that

A � t1 ≈ t2 i� D(A) � t1 ≈ t2.

This equivalence also applies to the sets of identities:

K � K i� K � K.

Therefore, K de�nes K since K de�nes K.
(3). Let t1 ≈ t2 be an identity of K ∨ sL. We must show that it is derivable

from the regularization K of K. As an identity satis�ed by K ∨ sL, t1 ≈ t2 is
satis�ed by K, and so is derivable from K alone. Such a derivation is a sequence of
identities, each one of which is either in K or derivable from previous ones using
the rules of equational logic. Now regularize each identity in this derivation. This
is a derivation from K of the regularization t1 ≈ t2 of the original identity, with the
proviso that some new identities must be interpolated to accommodate instances
of substitution in equation logic.

Two examples illustrate this process. The identities of De�nition 6.1, which
de�ne groups, translate to identities that are seen to be equivalent to (1), (2) and
(21), which de�ne heaps. If the binary commutative law, x× y ≈ y × x, is added,
it becomes

[x,w, y] ≈ [y, w, x] (22)

in the �rst two steps. This is already regular, and so Step 3 is not needed. Hence
the join of semilattices and commutative groups is de�ned by (1),(2), (21) and
(22).

Elementary 2-groups are de�ned by the identity, x × x ≈ 1. The �rst and
second steps give [x,w, x] ≈ w, and the third regularizes it:

[x,w, x] ≈ [w, x, x]. (23)

So the join of semilattices and 2-groups is de�ned by (1), (2), (21) and (23).
As 2-groups are commutative, it is an elementary exercise to show directly in

the language of heaps that (22) follows from (23).
A note on the references. Some of the notions in this paper have an extensive

literature reaching back more than a century. A sampling is included here, from
which the reader may �nd more, as well as related concepts.
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