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Characterizing monomorphisms of actions

on directed complete posets (S-dcpo)

Mojgan Mahmoudi and Mahdieh Yavari

Abstract. Domain Theory is a branch of mathematics that studies special kinds of partially
ordered sets (posets) commonly called domains. It was introduced in the 1970s by Scott as a
foundation for programming semantics and provides an abstract model of computation, and has
grown into a respected �eld on the borderline between Mathematics and Computer Science.

In this paper we take domains as ordered algebraic structures and consider the actions of

a partially ordered monoid which is itself a domain, on them. To study algebraic notions, in

particular injectivity and �atness, in the categories so obtained, one needs to know the di�erent

kinds of monomorphisms, their properties and the relations between them. This is what we are

going to discuss in this paper.

1. Introduction and preliminaries

Domain theory is a branch of mathematics that studies special kinds of partially
ordered sets (posets) commonly called domains. It was introduced in the 1970s
by Scott as a foundation for programming semantics and provides an abstract
model of computation using order structures and topology, and has grown into a
respected �eld on the borderline between Mathematics and Computer Science [1].

Relationships between domain theory and logic were noted early on by Scott
[10], and subsequently developed by many authors, including Smyth [11], Abram-
sky [2], and Zhang [12]. There has been much work on the use of domain logics
as logics of types and of program correctness, with a focus on functional and
imperative languages.

In this paper we take domains as ordered algebraic structures and consider
the actions of a pomonoid which is itself a domain, on them. To study algebraic
notions, in particular injectivity and �atness, in the categories so obtained, one
needs to know the properties of di�erent kinds of monomorphisms and the relations
between them. This is what we are trying to do in the following.

First we recall some preliminaries needed in the sequel. The reader can �nd
more details in [2, 4, 5, 6]. Let Pos denote the category of all partially ordered
sets (posets) with order-preserving (monotone) maps between them. A non-empty
subsetD of a partially ordered set is called directed, denoted byD ⊆d P , if for every
a, b ∈ D there exists c ∈ D such that a, b 6 c; and P is called directed complete,
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or brie�y a dcpo, if for every D ⊆d P , the directed join
∨d

D exists in P . A dcpo
which has a bottom element ⊥ is said to be a cpo.

A dcpo map or a continuous map f : P → Q between dcpo's is a map with the
property that for every D ⊆d P , f(D) is a directed subset of Q and f(

∨d
D) =∨d

f(D). A dcpo map f : P → Q between cpo's is called strict if f(⊥) =⊥. Thus
we have the category Dcpo (Cpo) of all dcpo's (cpo's) with (strict) continuous
maps between them.

A po-monoid S is a monoid with a partial order 6 which is compatible with
the binary operation (that is, for s, t, s′, t′ ∈ S, s 6 t and s′ 6 t′ imply ss′ 6 tt′).
Similarly, a dcpo (cpo)-monoid is a monoid which is also a dcpo (cpo) whose binary
operation is a (strict) continuous map.

Recall that an (right) S-act or an S-set for a monoid S is a set A equipped with
an action A × S → A, (a, s)  as, such that ae = a (e is the identity element of
S) and a(st) = (as)t, for all a ∈ A and s, t ∈ S. Let Act-S denote the category
of all S-acts with action preserving maps (f : A → B with f(as) = f(a)s, for all
a ∈ A, s ∈ S). Let A be an S-act. An element a ∈ A is called a zero, �xed, or a

trap element if as = a, for all s ∈ S.
For a po-monoid S, an (right) S-poset is a poset A which is also an S-act whose

action λ : A × S → A is order-preserving, where A × S is considered as a poset
with componentwise order. The category of all S-posets with action preserving
monotone maps between them is denoted by Pos-S.

Also, for a dcpo (cpo)-monoid S, an (right) S-dcpo (S-cpo) is a dcpo (cpo) A
which is also an S-act whose action λ : A× S → A is a (strict) continuous map.

Notice that in the de�nition of an S-cpo, the continuity of the action implies
that it is also strict. This is because, since ⊥S 6 e and the action is continuous,
we have ⊥A⊥S 6 ⊥Ae = ⊥A and so ⊥A⊥S 6 ⊥A. Also, ⊥A 6 ⊥A⊥S . Therefore,
⊥A⊥S = ⊥A and the action is strict. Also, note that the bottom element of an
S-cpo in not necessarily a zero element. For example, consider the cpo-monoid
S = {s, e} where e is the identity element of S, e 6 s, and ss = s. Take the S-cpo
A = {⊥A, a}, where ⊥A 6 a, with the action ⊥As = a = as. We see that ⊥A is
not a zero element.

A (possibly empty) subset B of an S-dcpo (S-cpo) A is called a sub S-dcpo
(sub S-cpo) of A if B is both a sub dcpo (sub cpo) and a subact of A.

By an S-dcpo map (S-cpo map) between S-dcpo's (S-cpo's), we mean a map
f : A → B which is both (strict) continuous and action preserving. We denote
the category of all S-dcpo's (S-cpo's) and S-dcpo (S-cpo) maps between them by
Dcpo-S (Cpo-S).

A separately (or semi-)cpo-monoid is a monoid which is also a cpo whose right
and left translations Rs : S → S, t  ts and Ls : S → S, t  st are strict
continuous.

Now, let S be a separately cpo-monoid. A separately S-cpo is a cpo A which
is also an S-act with the action A× S → A such that every Rs : A → A, a  as
and La : S → A, s  as, are strict continuous. The category of all separately
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S-cpo's with action preserving strict continuous maps between them is denoted by
Sep-Cpo-S.

Finally, let S be a monoid with identity e. By a cpo S-act, we mean an S-act
in the category Cpo. In other words, a pair (A; (λs)s∈S) is called a cpo S-act if A
is a cpo, and each λs : A → A, a  as, is a cpo map, called an action, such that
for all s, t ∈ S, and a ∈ A, denoting λs(a) by as we have:

(1) a(st) = (as)t;
(2) ae = a.
By a cpo S-act map between cpo S-acts, we mean a cpo map which is also

action preserving. The category of all cpo S-acts with cpo S-act maps between
them is denoted by CpoAct-S .

De�nition 1.1. A morphism h : A → B in Dcpo-S (Cpo-S, Sep-Cpo-S,
CpoAct-S) is called order-embedding provided that for all x, y ∈ A, h(x) 6 h(y) if
and only if x 6 y.

In this paper, �rst we characterize di�erent kinds of monomorphisms namely
regular, strict, strong and extremal in [3], in the categories Dcpo-S, Cpo-S, Sep-
Cpo-S and CpoAct-S and see that they are the same as order-embeddings. Then,
we study the relation of monomorphisms with one-one morphisms and see that
in the categories Dcpo-S, Sep-Cpo-S, CpoAct-S , Dcpo and Cpo, monomor-
phisms are exactly one-one morphisms. Also, we show that under some conditions
the same result is true for the category Cpo-S. In the last section we consider
some categorical properties of monomorphisms and regular monomorphisms, in the
mentioned categories, the properties such as factorization properties of morphisms
and some categorical properties related to limits and colimits.

2. Characterization of monomorphisms

In this section we characterize di�erent kinds of monomorphisms in categories
Dcpo-S, Cpo-S, Sep-Cpo-S and CpoAct-S , also we study their relation with
one-one morphisms. First, we recall some related de�nitions from [3].

De�nition 2.1. Let E andM be classes of morphisms in a category C. Then, the
pair (E ,M) is called a factorization structure for morphisms in C and C is called
(E ,M)-structured provided that:

(1) each of E andM is closed under composition with isomorphisms,
(2) C has (E ,M)-factorizations (of morphisms); that is, each morphism f in C

has a factorization f = he, with e ∈ E and h ∈M, and
(3) C has the unique (E ,M)-diagonalization property; that is, for each commu-

tative square

A
e−−−−→ B

f
y yg
C

h−−−−→ D
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with e ∈ E and h ∈ M, there exists a unique diagonal; that is, a morphism
d : B → C such that de = f and hd = g.

De�nition 2.2. A monomorphism h : A→ B in a category C is called:
(1) regular if it is an equalizer of a pair of morphisms;
(2) strict if it has the universal property that given any morphism h′ : A′ → B

such that rh = sh implies rh′ = sh′, for all r, s : B → C, there exists a
unique morphism h̄ : A′ → A with h′ = hh̄;

(3) strong provided that C has the unique (Epi,{h})-diagonalization property
(Epi is the class of all epimorphisms);

(4) extremal provided that if h = me, where e is an epimorphism, then e is an
isomorphism.

2.1. Monomorphisms and order-embeddings

In this subsection, we characterize di�erent kinds of monomorphisms such as reg-
ular, strict, strong and extremal in Dcpo-S, Cpo-S, Sep-Cpo-S and CpoAct-S .

Remark 2.3. Notice that order-embeddings are one-one, and hence monom-
orphisms in the categories Dcpo-S, Cpo-S, Sep-Cpo-S and CpoAct-S . But
the converse is not necessarily true. For example, take S = {e, s} where s 6 e and
s2 = s. Then S is a dcpo (cpo, separately cpo)-monoid. Now, take A = {⊥, a, a′}
with the order ⊥ 6 a, a′, a ‖ a′, and de�ne the action on A as follows: ⊥ is
a zero element and as = a′s = ⊥. Also, take B to be the three element chain
3 = {0, 1, 2} with 0 6 1 6 2, and de�ne the action on B as follows: 0 is a zero
element and 1s = 2s = 0. Now, de�ne h : A→ B as h(⊥) = 0, h(a) = 1, h(a′) = 2.
Then h is one-one and hence a monomorphism in these categories, but it is not an
order-embedding.

Theorem 2.4. A monomorphism h : A → B in Dcpo-S, Cpo-S, Sep-Cpo-S
and CpoAct-S is regular if and only if it is order-embedding.

Proof. Let h : A → B be a regular monomorphism in Dcpo-S (Cpo-S, Sep-
Cpo-S, CpoAct-S). Then h is the equalizer of morphisms g1, g2 : B → C. Note
that, the equalizer of g1 and g2 in these categories is E = {b ∈ B : g1(b) = g2(b)}
with order and action inherited from B (see also [7], [8], [9]). Hence there exists
an isomorphism between E and A, so h is an order-embedding.

Conversely, let h : A → B be an order-embedding in one of the categories
Dcpo-S, Cpo-S, Sep-Cpo-S or CpoAct-S . In each category, we de�ne two
morphisms whose equalizer is h.

(i). InDcpo-S, consider the disjoint union (B×{1})∪(B×{2}) of B with itself,
which is the coproduct BtB by Theorem 2.4 of [7]. Take B′ to be the quotient (Bt
B)/θ(H), where θ(H) is the congruence generated by H = {((h(a), 1), (h(a), 2)) :
a ∈ A}. Now, consider the natural epimorphism q : BtB → B′ and the coproduct
maps g1, g2 : B → BtB. We prove later on that h is the equalizer of qg1 and qg2.
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(ii). In Cpo-S, we consider the same S-dcpo B′ as de�ned in (i). Since in
this case h is strict, h(⊥A) = ⊥B , and then [(⊥B , 1)]θ(H) = [(⊥B , 2)]θ(H) is the
bottom element of B′. So, B′ is an S-cpo. Also qg1 and qg2 introduced in part (i)
are strict, because qg1(⊥B) = [(⊥B , 1)]θ(H) and qg2(⊥B) = [(⊥B , 2)]θ(H). We will
see that h is the equalizer of qg1 and qg2 in Cpo-S.

(iii). In Sep-Cpo-S, B is a separately S-cpo, and hence by Remark 3.3 of
[8], B is also an S-cpo. So, from the discussion given in (ii), B′ which introduced
in part (i), is an S-cpo. Now again by applying Remark 3.3 of [8], we get that
B′ is a separately S-cpo. This is because, B is a separately S-cpo, and so for
every b ∈ B and s ∈ S we have b⊥S = ⊥B and ⊥Bs = ⊥B , therefore for every
b ∈ B, s ∈ S, and i = 1, 2, we have [(b, i)]⊥S = [(b⊥S , i)] = [(⊥B , i)] and
[(⊥B , i)]s = [(⊥Bs, i)] = [(⊥B , i)]. Also, similar to part (ii), qg1 and qg2 are strict
continuous maps. We will see later on that h is the equalizer of qg1 and qg2.

(iv). In CpoAct-S , similar to (i), take the coporoduct of B with itself (which is
called the coalesced sum, see [9]), and apply the same argument to de�ne q, g1, g2.
We show that h is the equalizer of qg1 and qg2.

Now, we prove that h is the equalizer of qg1 and qg2 in all the above cases.

It is clear that (qg1)h = (qg2)h. Consider an S-dcpo (an S-cpo, a separately S-
cpo, a cpo S-act) map k : C → B with (qg1)k = (qg2)k. Notice that k(C) ⊆ h(A).
This because, on the contrary if x ∈ k(C) \ h(A), then since x 6∈ h(A), we get
qg1(x) 6= qg2(x) but since x ∈ k(C) and (qg1)k = (qg2)k, we have qg1(x) = qg2(x)
which is a contradiction. On the other hand, since h is an order-embedding, it
is one-one, and so there exists a map h′ : B → A such that h′h = idA. Now we
see that k′ = h′k : C → A is the unique S-dcpo (S-cpo, separately S-cpo, cpo
S-act) map with hk′ = k. First, we prove that k′ preserves the order. To see
this, let x, x′ ∈ C, x 6 x′. Then k(x) 6 k(x′). Since k(C) ⊆ h(A), there exist
a, a′ ∈ A, k(x) = h(a) and k(x′) = h(a′). Therefore, h(a) 6 h(a′), and so a 6 a′

(since h is an order-embedding). Now, h′h(a) 6 h′h(a′) (since h′h = idA) and
hence k′(x) = h′k(x) = h′h(a) 6 h′h(a′) = h′k(x′) = k′(x′). Also, k′ preserves the
action. To show this, let x ∈ C and s ∈ S, then k′(xs) = h′k(xs) = h′(k(x)s) =
h′(h(a)s) = h′(h(as)) = as where k(x) = h(a), a ∈ A. On the other hand,
k′(x)s = h′k(x)s = h′h(a)s = as. To see that k′ is continuous, let D ⊆d C.
Then k′(D) ⊆d A, since k′ is order-preserving. Also for each d ∈ D, there exists
ad ∈ A with k(d) = h(ad) and T = {ad : d ∈ D,h(ad) = k(d)} ⊆d A. This is
because, if ad1 , ad2 ∈ T , then d1, d2 ∈ D ⊆d C. Therefore, there exists d3 ∈ D
with d1, d2 6 d3. Now, k(d1), k(d2) 6 k(d3) and so h(ad1), h(ad2) 6 h(ad3) for
some ad3 ∈ A, and hence ad1 , ad2 6 ad3 , since h is an order-embedding. Now,

k′(
∨d

D) = h′k(
∨d

D) = h′h(a) = a where k(
∨d

D) = h(a), a ∈ A. On the other

hand,
∨d
d∈D k

′(d) =
∨d
d∈D h

′k(d) =
∨d
d∈D h

′h(ad) =
∨d
d∈D ad. It is enough to

prove that
∨d

T =
∨d
d∈D ad = a. For every d ∈ D, ad 6 a, since h(ad) = k(d) 6

k(
∨d

D) = h(a) and h is an order-embedding. If a′ ∈ A is also an upper bound
of T in A, then for every d ∈ D, h(ad) 6 h(a′) and so k(d) = h(ad) 6 h(a′)

which implies h(a) = k(
∨d

D) =
∨d
d∈D k(d) 6 h(a′). Thus a 6 a′, since h is an
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order-embedding. Therefore,
∨d

T = a. Notice that hk′ = k and k′ is unique with
this property. Also, in the case where h and k are strict, then so is k′.

De�nition 2.5. Recall from [4] that considering Dcpo-S (Cpo-S, Sep-Cpo-S,
CpoAct-S) as a concrete category over Set, a monomorphism h is said to be an
embedding over Set if whenever g is a map between S-dcpo's (S-cpo's, separately
S-cpo's, cpo S-acts) such that hg is an S-dcpo (an S-cpo, a separately S-cpo, a
cpo S-act) map, then g itself is an S-dcpo (an S-cpo, a separately S-cpo, a cpo
S-act) map.

As a consequence of Theorem 2.4 we have:

Corollary 2.6. If h : A → B is a regular monomorphism in Dcpo-S (Cpo-S,
Sep-Cpo-S, CpoAct-S) then h is an S-dcpo (an S-cpo, a separately S-cpo, a cpo

S-act) embedding over Set.

Proof. Suppose that h : A → B is a regular monomorphism in Dcpo-S (Cpo-S,
Sep-Cpo-S, CpoAct-S). By Theorem 2.4, h is an order-embedding. Now, let
g : C → A be a function between S-dcpo's (S-cpo's, separately S-cpo's, cpo S-
acts) such that hg is an S-dcpo (an S-cpo, a separately S-cpo, a cpo S-act) map.
Then we prove that g is an S-dcpo (an S-cpo, a separately S-cpo, a cpo S-act)
map. First, we show that g preserves the action. This is because, for x ∈ C and
s ∈ S,

h(g(xs)) = (hg)(xs) = ((hg)(x))s = (h(g(x)))s = h(g(x)s)

and so g(xs) = g(x)s, since h is one-one. Also, g preserves the order. To see
this, let x, x′ ∈ C with x 6 x′. Then, h(g(x)) 6 h(g(x′)). Now, since h is an
order-embedding we have g(x) 6 g(x′). Finally, g is continuous. To show this, let
D ⊆d C. Then g(D) ⊆d A, since g preserves the order. Further,

h(g(

d∨
D)) = (hg)(

d∨
D) =

d∨
d∈D

(hg)(d) =

d∨
d∈D

h(g(d)) = h(

d∨
d∈D

g(d))

and so g(
∨d
d∈DD) =

∨d
d∈D g(d). Also, h(g(⊥C)) = hg(⊥C) =⊥B= h(⊥A) and

g(⊥C) =⊥A.

Now, we will study the relation of di�erent kinds of monomorphisms. First
recall the following proposition.

Proposition 2.7. [3] If the category C has equalizers and pushouts, also regu-

lar monomorphisms in C are closed under composition, then a monomorphism is

regular if and only if it is extremal.

Theorem 2.8. For a monomorphism h : A → B in Dcpo-S (Sep-Cpo-S,
CpoAct-S) the following are equivalent:

(1) h is regular,

(2) h is strict,

(3) h is strong,

(4) h is extremal.
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Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are general category-theoretic
results. For implication (4)⇒ (1), since these categories are complete and cocom-
plete (see [7], [8], [9]), and by Theorem 2.4, regular monomorphisms are exactly
order-embeddings and hence they are closed under composition, applying Propo-
sition 2.7, we get that any extremal monomorphism is regular.

Lemma 2.9. If h : A → B is a morphism in Dcpo-S (Cpo-S) then h′ : A →
<h(A)>, to the sub S-dcpo (sub S-cpo) of B generated by h(A), with h′(a) = h(a)
for all a ∈ A, is an epimorphism in Dcpo-S (Cpo-S).

Proof. Let h : A → B be a morphism in Dcpo-S (Cpo-S). Then take h′ : A →
<h(A)>, to the sub S-dcpo (sub S-cpo) of B generated by h(A), with h′(a) = h(a)
for all a ∈ A. To show that h′ is an epimorphism, consider g1, g2 : <h(A)> → C
such that g1h

′ = g2h
′. Since for all D ⊆ h(A), g1(D) = g2(D) and g1 and g2

are continuous, it is straightforward to show that g1(<h(A)>) = g2(<h(A)>).
Therefore, h′ is an epimorphism in Dcpo-S (Cpo-S).

Remark 2.10. Notice that, if h : A→ B is a morphism in the category Dcpo-S
(Cpo-S), then h(A) is not necessarily an S-dcpo (S-cpo). To see this, consider
A = (N)⊥ where the natural numbers N is considered with the discrete order and
⊥ 6 n, for all n ∈ N. Also consider B = (N∞)⊥ where N∞ = N ∪ {∞} and the
order on N is the usual one and ⊥ 6 n 6∞, for all n ∈ N. It is straightforward to
show that A and B with the identity action are S-dcpo's (S-cpo's). Now, de�ne
the map h : A → B by h(⊥) = ⊥ and h(n) = n, for all n ∈ N. We get h is
a (strict) continuous map and h(A) = (N)⊥ is not an S-dcpo (S-cpo). This is

because D = N is a directed subset of h(A) and
∨d

D =
∨d N =∞ 6∈ h(A).

Lemma 2.11. A monomorphism h : A→ B in Cpo-S is order-embedding if it is

extremal.

Proof. Suppose that h : A → B is an extremal mono in Cpo-S and consider
h′ : A → <h(A)>, h′(a) = h(a) for all a ∈ A. It is clear that h = ih′, where
i : <h(A)> ↪→ B. Also by Lemma 2.9, h′ is an epimorphism in Cpo-S. Hence, by
the de�nition of extremal monomorphisms, h′ is an isomorphism in Cpo-S, and
consequently h is an order-embedding.

As a consequence of Lemma 2.11 and Theorem 2.4, we have:

Corollary 2.12. For a monomorphism h : A → B in Cpo-S, the following are

equivalent:

(1) h is regular,

(2) h is strict,

(3) h is strong,

(4) h is extremal.

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are general category-theoretic
results. For implication (4) ⇒ (1), by Lemma 2.11 and Theorem 2.4, we get the
result.
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2.2. Monomorphisms and one-one morphisms

In this subsection, we study the relation between monomorphisms and one-one
morphisms in the categories Dcpo-S, Dcpo, Cpo, Sep-Cpo-S, and CpoAct-S .

Remark 2.13. Notice that inDcpo-S, monomorphisms are exactly one-one mor-
phisms (see [7]). Furthermore, in Dcpo, Cpo, Sep-Cpo-S, and CpoAct-S by ap-
plying the adjoint pairs given in Corollary 2.5 and Theorem 3.4 of [6], Corollary 4.4
of [8] and Corollary 4.2 of [9] and the fact that right adjoints preserves limits, we
get that monomorphisms are exactly one-one morphisms. In the category Cpo-S,
whenever ⊥S = e or >S = e, monomorphisms are exactly one-one morphisms (by
the adjoint pairs given in Corollaries 3.2 and 3.7 of [6]).

Remark 2.14. In Remark 2.3, we see that in the categories Dcpo-S, Cpo-S,
Sep-Cpo-S, and CpoAct-S , order-embeddings are monomorphisms, but the con-
verse is not necessarily true. But it is clearly shown that in the ordered structures,
if h : A → B is a monomorphism and A is a chain then we have h is an order-
embedding.

Lemma 2.15. If h : A → B is a monomorphism in Cpo-S such that for every

a, a′ ∈ A with h(a) = h(a′), we have a ⊥S= a′ ⊥S=⊥A, then h is one-one.

Proof. Let h : A→ B be a monomorphism in Cpo-S with the property mentioned
in the hypothesis and h(a) = h(a′) for some a, a′ ∈ A. Then a = a′. This is
because, on the contrary if a 6= a′, then there exist S-cpo maps g, k : S → A given
by g(s) = as and k(s) = a′s, for s ∈ S where hg = hk while g 6= k, which is a
contradiction. Therefore, h is one-one.

As a corollary of Lemma 2.15, we have:

Theorem 2.16. If h : A → B is a monomorphism in Cpo-S and for every

a ∈ A, a⊥S = ⊥A, then h is one-one.

Theorem 2.17. If h : A → B is a monomorphism in Cpo-S and ⊥A is a zero

element then h is one-one.

Proof. Let h : A → B be a monomorphism in Cpo-S such that ⊥A is a zero
element. To see that h is a monomorphism in Dcpo-S, let g1, g2 : D → A be
S-dcpo maps such that hg1 = hg2. Then, consider D⊥ the S-cpo where ⊥ is a
zero element, and de�ne g′i : D⊥ → A for i = 1, 2 by

g′i(d) =

{
gi(d) if d 6= ⊥
⊥A if d = ⊥

It is clear that g′1 and g′2 are S-cpo maps and hg′1 = hg′2. So g′1 = g′2, and hence
g1 = g2. Therefore h is a monomorphism in Dcpo-S, and so h is one-one by
Remark 2.13.
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As a consequence of Theorem 2.17 we get the following corollary.

Corollary 2.18. If S is a cpo-monoid whose bottom element is a zero element or

S is left zero as a semigroup, then in Cpo-S monomorphisms are exactly one-one

morphisms.

Proof. Let S be a cpo-monoid whose bottom element is a zero element and A be an
S-cpo. Then ⊥A is a zero element (for all s ∈ S, ⊥As = (⊥A⊥S)s = ⊥A(⊥Ss) =
⊥A⊥S = ⊥A). So by Theorem 2.17, in Cpo-S, monomorphisms are exactly one-
one morphisms. In the case where S is left zero as a semigroup, since ⊥S is zero
element, the result follows similarly.

3. Monomorphisms and regular monomorphisms

We have divided this section into two subsections as follows:

3.1. Factorization properties of morphisms

Let E ′ be the class of order-embeddings in Dcpo-S, Cpo-S, Sep-Cpo-S, and
CpoAct-S . Then, in the following theorem we show that Dcpo-S, Cpo-S, Sep-
Cpo-S, and CpoAct-S have unique (Epi, E ′)-diagonalization property.

Corollary 3.1. Dcpo-S, Cpo-S, Sep-Cpo-S, and CpoAct-S have unique (Epi,
E ′)-diagonalization property.

Proof. By Theorem 2.4, every order-embedding is a regular monomorphism in
the mentioned categories and by Theorem 2.8 and Corollary 2.12 every regular
monomorphism is a strong monomorphism. Now, by the de�nition of a strong
monomorphism we get the result.

Theorem 3.2. Dcpo-S and Cpo-S have (Epi, Mono)-factorization.

Proof. Let f : A → B be a morphism in Dcpo-S (Cpo-S). Then, take f ′ : A →
<f(A)> by f ′(a) = f(a). So by Lemma 2.9, f ′ is an S-dcpo (S-cpo) epimorphism
and f = if ′, where i : <f(A)> ↪→ B is an S-dcpo (S-cpo) monomorphism.

Remark 3.3. The factorization mentioned in Theorem 3.2, is not necessarily
unique. To see this, consider A = (N∞)⊥, where N∞ = N ∪ {∞} has been
considered with the discrete order, ⊥ 6 n for all n ∈ N∞ and the action on A
is the identity action. Also consider B =⊥ ⊕N∞ ⊕ > where the order on N is
the usual one, ∞ ‖ n for all n ∈ N, and the action on B is the identity action.
De�ne the map f : A → B as f(⊥) =⊥ and f(n) = n, for all n ∈ N∞. It is
straightforward to show that A and B are S-dcpo's (S-cpo's) and f is an S-dcpo
(S-cpo) map. Furthermore, f is an epimorphism in Dcpo-S (Cpo-S). To prove
this, let g1, g2 : B → D be S-dcpo (S-cpo) maps with g1f = g2f . Then, g1(n) =

g1(f(n)) = g2(f(n)) = g2(n), for all n ∈ N∞ ∪ {⊥}. Also g1(>) = g1(
∨d N) =
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∨d
n∈N g1(n) =

∨d
n∈N g2(n) = g2(

∨d N) = g2(>), since g1(n) = g2(n), for all n ∈ N.
Therefore, g1(>) = g2(>) and so g1 = g2. Hence, f is an epimorphism and it has
the factorization f = idBf . Now, let C =⊥ ⊕((N ⊕ >) ∪ {∞}) where the order
on N is the natural one, n 6 > for all n ∈ N, ∞ ‖ n for all n ∈ (N ⊕ >), and
the action on C is the identity action. Then de�ne f ′ : A→ C by f ′(⊥) =⊥ and
f ′(n) = n, for all n ∈ N ∪ {∞}. It is clear that f ′ is an S-dcpo (S-cpo) map.
Also f ′ is an epimorphism in Dcpo-S (Cpo-S) (the proof of the fact that f ′ is an
epimorphism is similar to proof of the fact that f is an epimorphism) and f = if ′

where i is an inclusion map from C to B. Hence, we have two factorizations for
f , which are not equal.

Theorem 3.4. The category Dcpo-S (Cpo-S, CpoAct-S) has neither

(Onto,Mono)-diagonalization property nor (Epi,Mono)-diagonalization property.

Proof. Suppose that A = {⊥A, a1, a2, a3} where⊥A is the bottom element, a2 6 a3
and a1 ‖ a2, a3, B = {⊥B , b1, b2} where the order on B is ⊥B6 b1 6 b2, C = {⊥C
, c1, c2} where ⊥C is the bottom element and c1 ‖ c2 and D = {⊥D, d1, d2, d3}
where ⊥D is the bottom element, d1 ‖ d2 and d1, d2 6 d3. It is clear that A, B,
C and D with the identity action are S-dcpo's (S-cpo's, cpo S-acts). Now, de�ne
e : A → B as e(⊥A) =⊥B , e(a1) = b1 and e(a3) = e(a2) = b2, f : A → C as
f(⊥A) =⊥C , f(a1) = c1 and f(a2) = f(a3) = c2, h : C → D as h(⊥C) =⊥D,
h(c1) = d1 and h(c2) = d3, g : B → D as g(⊥B) =⊥D, g(b1) = d1 and g(b2) = d3.
It is straightforward to show that e, g, f and h are S-dcpo (S-cpo, cpo S-act)
maps and ge = hf , but if there exists an S-dcpo (an S-cpo, a cpo S-act) map
k : B → C, such that ke = f and hk = g, then k(b1) = k(e(a1)) = f(a1) = c1
and k(b2) = k(e(a2)) = f(a2) = c2 but c1 66 c2, which is a contradiction (because
k is an order-preserving and b1 6 b2). So Dcpo-S (Cpo-S, CpoAct-S) does not
have (Onto,Mono)-diagonalization property. Also Dcpo-S (Cpo-S, CpoAct-S)
does not have (Epi,Mono)-diagonalization property.

3.2. Limits and colimits

The following theorem is easily proved, and it is in fact a corollary of the next
result.

Theorem 3.5. In Dcpo-S (Cpo-S, Sep-Cpo-S, CpoAct-S) we have:

(1) The class of monomorphisms is closed under products;

(2) Let {fα : A→ Bα|α ∈ I} be a family of monomorphisms. Then their

product morphism f : A→
∏
Bα is also a monomorphism.

Theorem 3.6. Let {fα : A → Bα|α ∈ I} be a source of monomorphisms in the

categories Dcpo-S (Cpo-S, Sep-Cpo-S, CpoAct-S). Then the morphism f :
A→ limBα (existing by the universal property of limits) is also a monomorphism.

Proof. Let {fα : A → Bα|α ∈ I} be a source of monomorphisms in one of the
categories mentioned in the hypothesis. To prove that f : A → limBα is a
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monomorphism, let g1, g2 : C → A be such that fg1 = fg2. Then, fg1(c) = fg2(c)
for all c ∈ C. Also for all c ∈ C and α ∈ I, πα(fg1(c)) = fα(g1(c)) = fα(g2(c)) =
πα(fg2(c)), where πα : limBα → Bα is a limit morphism. Hence, fαg1 = fαg2 for
all α ∈ I, and since fα is a monomorphism, we have g1 = g2.

Proposition 3.7. In Dcpo-S (Cpo-S, Sep-Cpo-S, CpoAct-S) we have:

(1) The class of regular monomorphisms is closed under products;

(2) Let {fα : A→ Bα|α ∈ I} be a family of regular monomorphisms. Then

their product morphism f : A→
∏
Bα is also a regular monomorphism.

Proof. We just prove (1) in Dcpo-S and the rest are proved similarly.
Let {fα : Aα → Bα|α ∈ I} be a family of regular monomorphisms in Dcpo-

S. We show that f =
∏
fα :

∏
Aα →

∏
Bα where f((aα)α∈I) = (fα(aα))α∈I

is an order-embedding and so by Theorem 2.4, it is a regular monomorphism.
Suppose that f((aα)α∈I) 6 f((a′α)α∈I) for (aα)α∈I , (a′α)α∈I ∈

∏
Aα. We have

f((aα)α∈I) 6 f((a′α)α∈I) if and only if (fα(aα))α∈I 6 (fα(a′α))α∈I if and only if
fα(aα) 6 fα(a′α), for all α ∈ I if and only if aα 6 a′α, for all α ∈ I (since each
fα is an order-embedding) if and only if (aα)α∈I 6 (a′α)α∈I . So f is a regular
monomorphism.

Theorem 3.8. Let {fα : A→ Bα|α ∈ I} be a source of regular monomorphisms in

Dcpo-S (Cpo-S, Sep-Cpo-S, CpoAct-S). Then the morphism f : A → limBα
(existing by the universal property of limits) is also a regular monomorphism.

Proof. Let {fα : A → Bα|α ∈ I} be a source of regular monomorphisms in one
of the categories mentioned in the hypothesis. To prove that f : A → limBα
is a regular monomorphism, by Theorem 2.4 it is enough to show that f is
an order-embedding. To see this, let f(a) 6 f(a′) where a, a′ ∈ A. We have
fα(a) = πα(f(a)) 6 πα(f(a′)) = fα(a′), for all α ∈ I (πα : limBα → Bα is a limit
morphism). So a 6 a′, because by Theorem 2.4, fα is an order-embedding, for
every α ∈ I and hence f is an order-embedding and also it is a regular monomor-
phism.

Proposition 3.9. InDcpo-S, Sep-Cpo-S and CpoAct−S, the class of monomor-

phisms and regular monomorphisms are closed under coproducts.

Proof. Assume that {fα : Aα → Bα|α ∈ I} is a family of monomorphisms
and

∐
fα :

∐
Aα →

∐
Bα is the coproduct morphism. We show that

∐
fα

de�ned by (
∐
fα)(a, α) = (fα(a), α), a ∈ Aα, α ∈ I, is a monomorphism.

By Remark 2.13, it is enough to show that
∐
fα is one-one. To see this, let

(
∐
fα)(a, α) = (

∐
fα)(a′, α′) where a ∈ Aα, a

′ ∈ Aα′ , α, α′ ∈ I. Therefore,
(fα(a), α) = (fα(a′), α′) and so α = α′ and fα(a) = fα(a′). Since fα is one-
one we have a = a′. Consequently, (a, α) = (a′, α) = (a′, α′). Now, suppose
that {fα : Aα → Bα|α ∈ I} is a family of regular monomorphisms. We show
that

∐
fα is a regular monomorphism. By Theorem 2.4, it is enough to show

that
∐
fα is an order-embedding. To prove this, let (

∐
fα)(a, α) 6 (

∐
fα)(a′, α′)
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where a ∈ Aα, a′ ∈ Aα′ , α, α′ ∈ I. Therefore, (fα(a), α) 6 (fα(a′), α′). But this is
impossible except α = α′ and then fα(a) 6 fα(a′). Since fα is order-embedding,
we have a 6 a′. Consequently, (a, α) 6 (a′, α) = (a′, α′).

Recall that a class of morphisms of a category is called pullback stable if pull-
backs transfer those morphisms. In the �nal theorem, we see that the class of
order-embeddings satisfying this property.

Theorem 3.10. The class of order-embeddings in Dcpo-S (Cpo-S, Sep-Cpo-S,
CpoAct-S) is pullback stable.

Proof. By Proposition 11.18 of [3], the class of regular monomorphisms is pullback
stable. Therefore by Theorem 2.4, we get the result.
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