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On injective and subdirectly irreducible

S-posets over left zero posemigroups

Gholam Reza Moghaddasi and Mahdieh Haddadi

Abstract. The notion of a Cauchy sequence in an S-poset is a useful tool to study algebraic
concepts, specially the concept of injectivity. This paper is concerned with the relations between
injectivity and Cauchy sequences in the category of S-posets in which S is a left zero posemi-
group. We characterize subdirectly irreducible S-posets over this posemigroup and by Birkhof’s
Representation Theorem we get a description of such S-posets.

1. Introduction and preliminaries

The category of S-posets, as the ordered version of the category of S-acts, recently
have captured the interest of some mathematicians [4, 5]. And it is always inter-
esting to verify the counterpart results of S-acts in the category of S-posets (see
[1, 4, 8]). Cauchy sequences in an S-act first introduced by E. Giuli in [3] for a
particular class of acts, then generalized to S-acts, in [2]. Recently we generalized
this concept to S-posets, [4, 5].

Left zero semigroups, all of whose elements are left zero, are an important
class of semigroups, since every non-empty set S can be turned into a left zero
semigroup by defining st = s for all s,t € S also this semigroup is applied in
automata theory, theory of computations, Boolean algebras.

Here we are going to use the notion of Cauchy sequences to study the de-regular
injectivity of S-posets over a left zero posemigroup, as we did in [7] for injectivity
of S-acts. But the order here plays an important role and to get the counterpart
results here we need to modify (some times strongly) the S-act version of the
proofs. The aim of this paper is to determine the structure of dc-injective in the
category of S-posets and characterize the subdiretly irreducible S-posets over a
left zero semigroup. Therefore, throughout this article, we assume S to be a left
zero posemigroup. Now let us briefly recall some necessary concepts.

A partially ordered semigroup (or simply, a posemigoup) is a semigroup which
is also a poset whose partial order is compatible with its binary operation (that is
s < s implies st < st for every s,s',t € 5).

For a posemigoup S, a (right) S-poset is a poset A equipped with a function
a: AxS — A, called the action of S on A, such that for a,b € A, s,t € S (denoting
ala,s) by as): (1) a(st) = (as)t, (2) a <b=as <bs, (3) s <t= as < at.
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By an S-poset morphism f : A — B, we mean a monotone map between
S-posets which preserves the action (that is f(as) = f(a)s).

An element a of an S-poset A is called a fized or zero element if as = a for all
s € S. We denote the set of all fixed elements of an S-poset A by FixA, which is
in fact a sub-S-poset of A that is as € FixA for all a € FizA and s € S.

We define an S-poset A to be separated if it is separated as an S-act, that is
any two points a # b in A can be separated by at least one s € S, by sa # sb.

We say that an S-poset A is subseparated if a < b in A whenever as < bs for
all s € S. It is clear that every subseparated S-poset is a separated one.

A regular monomorphism or an embedding is an S-poset morphism (that is, a
monoton and action preserving map) f : A — B such that a < b if and only if
f(a) < f(b), for each a,b € A.

2. Cauchy sequences

Our central object of study in this paper is the notion of Cauchy sequences in
S-posets [2, 3, 4].

First of all it is easy to check that:

o If S is a left zero semigroup, then for every S-poset A, AS C FizA.

Definition 2.1. A Cauchy sequence in an S-poset A is an S-poset morphism
f 8 — A. More explicitly, f : S — A is a Cauchy sequence when it is order
preserving and f(st) = f(s)t.

We denote a Cauchy sequence by (as)scs, which expresses the fact that the
element s € S is mapped to the element as in A. Since S is a left zero posemigroup,
with this notation we have ast = as; = as and for s,t € S if s <t then as; < ay.

It is worth noting that in an S-poset A (over the left zero posemigroup S) the
terms of a Cauchy sequence are fixed elements of A. So if we denote the set of
Cauchy sequences of A by C(A) then C(A) = (FizA)® in which (FizA)® is the
set of monotone mappings from S to FizA.

Definition 2.2. Let (as)ses be a Cauchy sequence in an S-poset A. An element b
in an extension B of A is called a limit of (as)scs whenever bs = a, for each s € S.

Lemma 2.3. Given an S-poset A over a left zero posemigroup S, the set C(A) of
all Cauchy sequences in A, is a subseparated S-poset.

Proof. First we note that C(A) is an S-poset, by the action C(A4) x S — C(A)
mapping each ((as)ses,t) € C(A) x S to (as)ses -t = (ars)ses which is obviously
in C(A), for every t € S. We should note that C(A) is a poset with point-wise
order and ((as)ses - t) - r = (as)ses - (tr). Indeed, (as)ses - (tr) = (as)ses - t =
(ats)ses = (at)ses, namely (as)ses - (tr) is the constant sequence (a;)ses, also we
have ((as)ses - t) -7 = (ais)ses -7 = (at)ses - T = (at)ses; the last equality is true
because (at)ses is a constant sequence. Now if r < ¢ in S, then rs = r < t = ts,
for every s € S and since (as)ses is a Cauchy sequence, a,s = a, < a; = a;s. That
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is (as)ses - < (as)ses - t. Finally if (as)ses < (bs)ses, then as < bg, for every
s € S. Hence a5 < by for every s,t € S. That is (as)ses -t < (bs)ses - t, for every
t € S. To prove subseparatedness, let (as)ses -t < (bs)ses - ¢, for every t € S.
Then a;s < by, for every t,s € S. Now, since S is a left zero posemigroup, a; < by,
for every ¢ € S. That is (as)ses < (bs)ses- O

Lemma 2.4. Let A be an S-poset over a left zero posemigroup S and (as)scs be
a sequence (indezed family of elements of A by s € S). Then (as)scs has a limit
in some extension B of A if and only if it is a Cauchy sequence.

Proof. One way is clear. In fact the limit of the sequence (as)scs makes it to
have the Cauchy property in Definition 2.1. For the converse, let (as)scs be a
Cauchy sequence in A. Then take the extension B of A to be AU{(as)scs} with
the action (as)ses -t = a; for t € S and no order between (as)scs and the elements
of A. The constructed B is an S-poset. This is because, for all ¢, € S, we have
((as)ses t)-r=a¢ -1 =ay = (as)ses - (tr), and if ¢ < r then a; < a, follows from
this fact that (as)scs is a Cauchy sequence, and hence (as)scs -t < (as)ses - 7
Now, by the defined action, we have that (as)scs is a limit of (as)ses- O

Definition 2.5. An S-poset A is said to be complete if every Cauchy sequence
over A has a limit in A.

For a given left zero posemigroup S and an S-poset A Lemma 2.3 shows that
C(A) is an S-poset. In fact, C(A) is a complete S-poset.

Theorem 2.6. Let A be an S-poset over a left zero posemigroup S. The S-poset
C(A) is complete.

Proof. Let (fs)ses be a Cauchy sequence in C(A), in which fs = (a?),cs for each
s € S. Hence for each s,t € S we have fg; = fst. Since S is a left zero semigroup,
fs = fst = fst, ie, for each s € S, fs is a fixed element in C(A). Now, by the
defined action of S over C(A) in Lemma 2.3, we have f, = fit = (a].)res =
(af)res. So (af)res = (af)res for each r € S. Namely, for each s € S, f; is a
constant sequence. Now we define the Cauchy sequence (as)scs to be as = aj, for
every s € S and claim that (as)scs is a limit of (fs)ses. This is because (as)ses T
= (af)ses -7 = (a7)ses = (a7)ses = (af)res = fs. Indeed, the third equation
follows from this fact that S is a left zero posemigroup. Also since f; is a constant
sequence and (af),cs = (af)rcs, we have the fourth and fifth equations. O

3. dc-injective of S-posets

A sub-S-poset A of an S-poset B is called down-closed in B if b < a for a € A,
b € B then b € A. By a down-closed embedding or dc-reqular monomorphism, we
mean an embedding f : A — B such that f(A) is a down-closed sub-S-poset of B.
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An S-poset A is said to be down-closed injective or simply dc-injective if for
every down-closed embedding f : B — C' and each S-poset morphism ¢ : B — A
there exists an S-poset morphism ¢* : C'— A making the diagram

f

B——C
®
J/ g
A

commutative.

Theorem 3.1. For a left zero posemigroup S every dc-injective S-poset is com-
plete.

Proof. Let (as)ses be a Cauchy sequence in a dc-injective S-poset A. Consider
the extension B = AU{(as)ses} of A with the action (as)ses -t = a; and no
order relation between (as)ses and the elements of A as introduced in the proof
of Lemma 2.4. It is clear that A is embedded in B, so the dc-injective property of
A completes the diagram

AC——

e
/,‘

A

by an S-poset morphism ¢. Now we claim that ¢((as)scs) € A is a limit of the
Cauchy sequence (as)scs. This is because ¢((as)ses) t = p((as)ses-t) = p(a) =
ag, for every t € S. O

The converse of Theorem 3.1 is true if the S-poset has a “good’ property. See
the next theorem as the counterpart of Theorem 2.3 of [7] with the compeletly
different method of proof.

Theorem 3.2. If S is a left zero posemigroup S, then every complete subseparated
S-poset A with a top fized element is dc-injective.

Proof. To prove, we show that A is a retract of each of its down-closed extensions
(that is, to say A is an absolute down-closed retract) (see [8]). To do so, let B be
a down-closed extension of A. Define g : B — A with g|4 = id4 and for b€ B\ A
take g(b) = a, where ay is a limit of the Cauchy sequence (as)ses with as = bs for
bs € A, and a5 = ap for bs ¢ A, where ag € FizA is the top fixed element in A
mentioned in the hypotheses.

First we show that (as)scs is a Cauchy sequence. To do so, we note that
ast = ag. This is because, if a; = bs, then ast = (bs)t = b(st) = bs also
ast = as = bs, and if as = ag, then ast = agt = ag also ags = as = ag. Also if
s < t, then bs < bt. This is because if bt € A, then bs € A, since A is down-closed
in B, therefore as; < a¢, and if bt ¢ A, then a; = ap but ag is a top fixed element
and hence bs < ag, that is a5 < a;. Thus (as)secs is a Cauchy sequence.



On injective and subdirectly irreducible S-posets 113

Now we show that g is order preserving. To do so, let b < &’. Then bs < V's
for all s € S. Therefore, by definition of ay, ayr, we have aps < ap's. But, since A
is subseparated, ap < ap. That is g(b) < g(b'). Finally g is equivariant on B\ A.
Because g(b)s = aps = as = bs = g(bs), if bs € A, for every b € B\ A and s € S.
And if bs ¢ A, then, since (bs)t = bs for all t € S, we get g(bs) = aps = ag = apgs =
aps = g(b)s. O

As a corollary of Theorems 3.1 and 3.2 we get the following Theorem.

Theorem 3.3. Let S be a left zero posemigroup S. Then a subseparated S-poset
A with a top fized element is dc-injective if and only if it is complete.

Theorem 3.4. For each S-poset A over a left zero posemigroup S with a top fized
element, C(A) is dc-injective.

Proof. Let ag be a top fixed element in A. One can easily see that the constant
sequence (as = ag)ses is a Cauchy sequence and is a top fixed element in C(A).
Now Theorems 3.3 and 2.6 give the result. O

Before the next definition it is worth noting that by a right down-closed ideal
I of a posemigroup S we mean a non-empty subset I of S such that (i) IS C I
and (ii) @ < b € I implies a € I, for all a,b € S.

Definition 3.5. An S-poset A is said to be
o [-injective, for a right down-closed ideal I of S, if each S-poset morphism
f:I— Aisof the form A, for some a € A, that is f(s) = as for s € I.
e S-injective, if each S-poset morphism f :.S — A is of the form )\, for some
a € A, that is f(s) = as for s € S.

In the next theorem we compare the concept of completeness with the different
types of injectivity for some special S-poset over a left zero posemigroup .S, and
we see that they are surprisingly equivalent to each other.

Theorem 3.6. For a subseparated S-poset A with a top fixed element ag, the
following are equivalent:

(1) A is de-injective;

(2) A is dc-absolutely retract;

(3) A is complete;

(4) A is I-injective, for each right down-closed ideal I of S;

(5) A is S-injective.

Proof. (1)<(2). It is given in [8].

(1)<(3). See Theorem 3.3.

(3)=>(4). Let A be complete and I be a right down-closed ideal of S and
f: I — Abean S-poset morphism. Consider the sequence (as)scs to be as = f(s)
for s € I, and a5 = ag for s € S — I. The sequence (as)ses is a Cauchy sequence.
This is because, if s < t then four cases may occur:
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oIf s,t € I then f(s) < f(t), since f is S-poset morphism, that is as < as.

olfs,t € S—1,then a; = a; = ag, that is as; < ay.

olt may s € S—1I,t e I. But since s <t and I is down-closed ideal, we must
have s € I which is a contradiction. Hence this case is not possible.

o And finally if s € I and t € S — I, then f(s) = as, f(t) = ag. But ag is the
top fixed element, hence f(s) = as < ag = f(¢).

Also let s,t € S. Then if s € I, we have ast = f(s)t = f(st) = f(s) = as and
if se€ S —1, then f(s)t = apt = ap = f(s).

Now since (as)ses is a Cauchy sequence, it has a limit a in A. So a5 = as, for
all s € S, which means f(s) = as = Aa(s). That is f = A,.

(4)= (5). It is trivial.

(5)= (3). Let A be S-injective and (as)ses be a Cauchy sequence over A. So
f:S— Awith f(s) = a, is an S-poset morphism. Now (5) gives a € A such that
f =g, hence a; = as for all s € S, i.e., ais a limit of the given sequence. O

4. Subdirectly irreducible

By Birkhoff’s Representation Theorem (see [6]) every algebra is isomorphic to a
subdirect product of subdirectly irreducible algebras. This theorem, by analo-
gous proof is established in the category of S-posets. In [7], characterization of
subdirectly irreducible acts, respectively over the monoid (N U {oc}, min, c0), and
left zero semigroups can be seen. In this section we give a characterization of
subdirectly irreducible S-posets over a left zero posemigroup.

Definition 4.1. (see [6]) An equivalence relation p on an S-act A is called a
congruence on A, if apa’ implies (as)p(a’s), for all s € S. We denote the set of all
congruences on A by Con(A) .

A congruence on an S-poset A is a congruence ¢ on the S-act A with the
property that the S-act A/6 can be made into an S-poset in such a way that the
natural map A — A/6 is an S-poset map (see [1]).

For any relation 6 on A, define the relation <g on A by

a<ga if and only if a < a10a] < agfaly < ... < apbal, <a,

where a;,a; € A (such a sequence of elements is called a 6-chain). Then an S-
act congruence 6 on an S-poset A is an S-poset congruence if and only if afa’
whenever a <y a’ <p a.

For a,b € A, pap denotes the smallest S- act congruence on A containing (a, b).
It is in fact, the equivalence relation generated by {(as,bs) : s € SU{1}}. Its
elements are as follows:

ZTPa,bly = 3517527---7871 S SuU {1} sP1yP2y -y Pns 41,42, ---;qn S Aa

T = Pp1s1 q282 = P3S3 cee qnSn =Y
qi151 = p252 G353 = P4S4

where (p;, ¢;) = (as,bs) or (p;,q;) = (bs, as) for some s € SU{1}.
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Lemma 4.2. Let A be an S-act over a posemigroup S. Then ps,, for every
distinct x,y € FizA, is an S-poset congruence.

Proof. To prove we show the equivalence condition of an S-poset congruence.
Namely, we show that if a <,, , a’ <,, , a then ap,  a’. But first we note that
pzy = AU (7,y), (y,2)} since z,y € FizA. Now if a <,, , a’ <,, , a then two:

1) a < 2pzyY < Ypoyt < ¢’ < 2pp Y < Ypzy« < a. Therefore a < z < d’ <
z < a and hence a = o thus ap, 4a'; or

2) a < 2pp Y < Ypayr < ' < Ypuyt < TPy yy < a. Therefore a <z < d’ <
y < a and hence x = y which is a contradiction. Hence this case is not possible.
Thus we have a = o/, that is ap, 4a'. O

Definition 4.3. (see [6/)An S-poset A is called subdirectly irreducible if (), p; #
A for all congruences p; on A with p; % A. If A is not subdirectly irreducible,
then it is called subdirectly reducible.

It is worth noting that for each posemigroup S and an S-poset A with |A| = 2
there exist only two congruences A and 17 on A and therefore these S-posets are
subdirectly irreducible.

Lemma 4.4. Every S-poset A over a left zero posemigroup S with |FizA| =1 or
|FizA| > 3 is subdirectly reducible.

Proof. 1t is clear that for a left zero semigroup S, every S-poset with only one
fixed element is subirectly reducible. Also, let A be an S-poset with at least
three distinct fixed elements a,b,c. Then we consider the S-poset congruences
Pab and pp. , by Lemma 4.2. Since a,b,c¢ € FixA we obviously have pqp =
AlJ{(a,b), (b,a)} and pp . = AJ{(b,c), (c,b)}. Therefore p, N pq.c = A, and we
are done. O

We give the following theorm as the counterpart of Theorem 3.2 of [7] in the
category of S-posets over a left zero posemigroup.

Theorem 4.5. An S-poset A over a left zero posemigroup S is subdirectly irre-
ducible if and only if it is separated and |FizA| = 2.

Proof. Let A be subdirectly irreducible. Then Lemma 4.4 ensures that |FizA| = 2
such as {ag,bo}. To show that A is separated, we suppose that there exists = #
y € A such that zs = ys, for all s € S, and find a contradiction. To do so, consider
the S-act congruence p, ,. Since zs = ys, for all s € S, p,, = AY{(z,v), (y,z)}.
By the analogous method of the proof of Lemma 4.2 one can see that p., is an
S-poset congruence on A. Also since ag, by € FixA, by Lemma 4.2, we have the
S-posset congruence pq, b, on A. But pgy .6, N pz,y = A which is a contradiction,
therefore A is separated.

For the converse, let A be separated, FizA = {ag,bp}, and 6(# A) be an
S-poset congruence on A. Then there exists « # y € A such that (z,y) € 6. Thus
(zs,ys) € 0 for every s € S. But since xs,ys € FixA = {ap, bg} and A is separated,
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there exists s € S such that xs # ys. This means (ag, bo), (bo, ap) € 0. Therefore
(Mpza 0 contains AU {(ao, bo), (bo, ao)}, hence A is subdirectly irreducible. O

Finally, by the above theorem, and Birkhoff’s Representation Theorem we have:

Theorem 4.6. Fvery S-poset over a left zero posemigroup S is isomorphic to a
subdirect product of separated S-posets each of which has exactly two fized elements.

It is worth noting that every S-poset A over a left zero posemigroup S with
one or two elements and |FizA| = 1 is dc-injective.

We close the paper by characterizing simple S-poset. Recall that an S-poset A
is called simple if ConA = {A,V}. It is easy to check that every S-poset A with
|A| < 2 is simple but no S-poset A with trivial action and |A| > 2 is simple.

Theorem 4.7. For a left zero posemigroup S, there exists no simple S-poset A
with |A| > 2.

Proof. Let a # b be elements of A. Then in the case where a,b € FixA we have
Pab 7 V, (where p,p is an S-poset congruence that discussed in Lemma 4.2) since
|A| > 2, hence there exists (a,b #)z € A and (a,z) ¢ pap- Therefore, p,p is a
nontrivial congruence on A. Also in the case that one of a,b is not fixed, taking
a ¢ FizA, then p,;, # V. Because otherwise, if p,;, = V then for each z # y € A,
we have (x,y) € p,p. Consequently there exist s,t € S such that as =z, bt = y.
Hence z,y € FizA. Thus (a,z) ¢ py, and so p, , is a nontrivial congruence. O
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