
Quasigroups and Related Systems 24 (2016), 123− 128

On the generalization of Bre²er theorems

Muhammad Nadeem, Muhammad Aslam and Malik Anjum Javed

Abstract. If S is a prime semiring with char S 6= 2 and f : S → S is an additive mapping which

is skew-commuting on an ideal I of S, then f(I) = 0. We also prove that zero is the only additive

mapping which is skew-commuting on a 2-torsion free semiprime semiring. These statements are

the generalization of Bre²ar's theorems.

1. Introduction

The notion of semiring was �rst introduced by H. S. Vandiver in 1934 [10]. An
algebraic system (S,+, ·) is called a semiring if (S, ·) is a semigroup; (S,+) is a
commutative semigroup with 0 and distributive laws of multiplication over addition
hold; furthermore, 0s = s0 = 0 for all s ∈ S. A subsemiring I of S is called a right
ideal of S if s ∈ S, x ∈ I implies xs ∈ I. Left ideals are de�ned in a similar way. A
subset which is both left and right ideal is called an ideal. An ideal I of a semiring
S is called a k-ideal if x + y ∈ I, x ∈ I implies y ∈ I. A proper ideal P of a
semiring S is said to be prime if AB ⊂ P implies A ⊂ P or B ⊂ P for any ideals A
and B of S. A proper ideal P of a semiring S is called a semiprime ideal if A2 ⊂ P
implies A ⊂ P for every ideal A of S. A k-ideal I of a semiring S is semiprime
ideal if and only if I is the intersection of all prime k-ideals of S containing it
[9, Theorem 3.12]. A semiring S is prime if 0 is a prime ideal. A semiring S is
semiprime if 0 is a semiprime ideal. For further details of semirings, we refer [2,
3, 4, 5, 6, 7]. An additive mapping f : S → S is said to be skew-commuting on a
set T ⊆ S if f(s)s+ sf(s) = 0 for all s ∈ T .

In [1], M. Bre²ar proved that if S is a prime ring of characteristic not 2, and
f : S → S is an additive mapping which is skew-commuting on an ideal I of S,
then f(I) = 0. He also proved that zero is the only additive mapping which is
skew-commuting on a 2-torsion free semiprime rings. In this paper, we observe
that these results still hold in the wider spectrum of semirings.

2. Preliminaries

One can easily prove the statement of following lemma.
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Lemma 2.1. Let S be a semiring. If S has a nonzero nilpotent right ideal R, then
it has a nonzero nilpotent ideal I containing R.

Now, we extend Lemma 1.1 [7] and Lemma 1 [1] in the framework of semirings.

Lemma 2.2. Let S be a semiring and I 6= (0) a right ideal of S. If there exists a
positive integer n such that xn = 0 for all x ∈ I, then S has a nonzero nilpotent
ideal.

Proof. The proof is given by induction on n. For n = 2, we have x2 = 0 for all
x ∈ I. As x+ xs ∈ I for all s ∈ S, so we get (x+ xs)2 = 0. This implies xsx = 0.
Multiply from right by t ∈ S to get xsxt = 0, so we obtain (xS)2 = 0. Now if
xS 6= 0, then S has a nonzero nilpotent right ideal xS and hence, by Lemma 2.1,
S has a nonzero nilpotent ideal. When xS = 0, then I2 ⊆ IS = 0. So S has a
nonzero nilpotent right ideal I and hence has a nonzero nilpotent ideal.

Now suppose that Lemma is true for all positive integers less than n. Since
xn = 0 for all x ∈ I for a �xed integer n and n is least such integer, therefore
xn−1 6= 0 and (xn−1)2 = 0. Take b = xn−1, then b2 = 0. Let B = bI, then
two cases arise. In the �rst case, let B 6= (0). As b + bs ∈ I for all s ∈ S,
so we have (b + bs)n = 0. On expansion, we arrive (bs)n−1b = 0. This results
in (bs)n−1B = (0). Let T = {x ∈ B |xB = 0}. It is easy to see that T is a
k-ideal of B. Moreover, y ∈ B implies that yn−1 ∈ T . Now let y + T ∈B/T ,
then (y + T )n−1 = yn−1 + T = T . Hence by induction hypothesis B/T has a
nilpotent ideal U/T 6= T . This yields U 6⊂ T and (U/T )k = Uk/T = T for
some positive integer k. Since T is a k-ideal of B, therefore Uk ⊂ T and hence
Uk+1 ⊂ TU ⊆ TB = (0). As U 6⊂ T and U is an ideal of B, so we have (0) 6=
UB ⊂ U and (UB)k+1 ⊂ Uk+1 = (0). This implies that UB is a nonzero nilpotent
right ideal of S and hence, by Lemma 2.1, S has a nonzero nilpotent ideal. In
the second case, when B = xn−1I = (0). Let W = {x ∈ I |xI = (0)}, then W
is a k-ideal of I. If W = I, then I2 = (0) and so I is a nonzero nilpotent right
ideal and hence, by Lemma 2.1, S has a nonzero nilpotent ideal. If W 6= I, then
for each element x ∈ I, xn−1 ∈ W . Hence in I/W , each element x +W satis�es
(x +W )n−1 = xn−1 +W = W . So our induction hypothesis gives us a nilpotent
ideal V/W 6= W , this means V 6⊂ W and (V/W )m = V m/W = W for some
positive integer m. Hence we have V m ⊂W and V m+1 ⊂WV ⊆WI = (0). Since
(0) 6= V I ⊂ V , where V is ideal of I, so we have (V I)m+1 ⊂ V m+1 = (0). This
means that S has a nonzero nilpotent right ideal V I and hence again, in view of
Lemma 2.1, S has a nonzero nilpotent ideal.

Lemma 2.3. Let I be a nonzero ideal of a prime semiring S. If In = {xn |x ∈ I},
then Ina = 0 (or aIn = 0) implies a = 0.

Proof. Let Ina = 0 and suppose on contrary a 6= 0. If at = 0 for all t ∈ I, then
replacing t by st, where s ∈ S, we get ast = 0. As S is prime semiring, so we get
t = 0 for all t ∈ I. This implies I = 0, which is not possible, hence av 6= 0 for some
v ∈ I. As avx ∈ I for all x ∈ I, so (avx)na = 0, this implies that (avx)n+1 = 0.
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So we get right ideal (av)S in which each element r satis�es rn+1 = 0. Hence,
by Lemma 2.2, S has a nonzero nilpotent ideal but this is not possible in prime
semiring, so we conclude a = 0. Similarly, we can prove the case when aIn = 0.

One can also observe the following statements.

Lemma 2.4. Let S be a semiring. If a+ b = 0 and a+ c = 0 for a, b, c ∈ S, then
b = c.

Lemma 2.5. Let P be a prime ideal of semiring S and ax ∈ P (or xa ∈ P ) for
all x ∈ S, then a ∈ P .

3. Main results

Theorem 3.1. Let S be a prime semiring of characteristic not 2. If an additive
mapping f : S → S is skew-commuting on some ideal I of S, then f(x) = 0 for
all x ∈ I.

Proof. As f is skew-commuting on I, so we have

f(x)x+ xf(x) = 0 ∀x ∈ I. (1)

Multiplying (1) from the right and left separately by x and applying Lemma 2.4,
we get

f(x)x2 = x2f(x). (2)

Linearization of (1) yields

f(x)y + yf(x) + f(y)x+ xf(y) = 0 ∀x, y ∈ I. (3)

Replacing y by x2 in (3) and using (2), we get

2x2f(x) + f(x2)x+ xf(x2) = 0. (4)

After multiplying the last relation from right by x2 and using (2), one can get the
relation 2x4f(x) + f(x2)x3 + xf(x2)x2 = 0. Now by adding x2f(x2)x + x3f(x2)
on both sides of this relation and using (1), we obtain

2x4f(x) = x2f(x2)x+ x3f(x2). (5)

Multiplying (4) by x2 from left, the last relation reduces to 4x4f(x) = 0. As S is
of characteristic not 2, so we have

x4f(x) = 0. (6)

Using (2), we obtain
f(x)x4 = 0. (7)
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Now multiplying (1) from right by 2x and applying the Lemma 2.4 to (4), we
have 2xf(x)x = f(x2)x + xf(x2). By multiplying this from left and right by x
simultaneously and using (2) and (6), we reach xf(x2)x2 + x2f(x2)x = 0. This,
along with (5) and (6), becomes

x3f(x2) = xf(x2)x2. (8)

Now (1) can be written as f(x2)x2 + x2f(x2) = 0. Multiplying it from left by x
and using (8), we get 2x3f(x2) = 0. This becomes

x3f(x2) = 0. (9)

Similarly, we can prove
f(x2)x3 = 0. (10)

Replace x by x2 in (3) to get f(x2)y+yf(x2)+f(y)x2+x2f(y) = 0 for all x, y ∈ I.
By multiplying this from right and left by x3 simultaneously and using (9) and
(10), we obtain

x3f(y)x5 + x5f(y)x3 = 0 ∀x, y ∈ I. (11)

Replace x by x2 in last relation to get

x6f(y)x10 + x10f(y)x6 = 0. (12)

First multiplying (11) from left by x3 and right by x5, then the last relation, in
view of Lemma 2.4, becomes x10f(y)x6 = x8f(y)x8. Similarly, we get x6f(y)x10 =
x8f(y)x8. So (12) becomes x8f(y)x8 = 0 for all x, y ∈ I. This can be written as

zf(y)z = 0 ∀y ∈ I, ∀z ∈ I8. (13)

Replace y by z in (3) to get

f(x)z + zf(x) + f(z)x+ xf(z) = 0 ∀x ∈ I, ∀z ∈ I8. (14)

Multiplying last relation from right by z and using (13), we obtain

f(x)z2 + f(z)xz + xf(z)z = 0. (15)

Suppose x ∈ I8, then (13) can be written as xf(x)x = 0. Left multiplying (1)
by x and using this relation, we get x2f(x) = 0 for all x ∈ I8. Now multiplying
(15) from left by x2, using this relation and (13), we arrive x3f(z)z = 0 for all
x, z ∈ I8. By Lemma 2.3, this reduces to f(z)z = 0, hence we have zf(z) = 0. In
view of this, (15) reduces to

f(x)z2 + f(z)xz = 0 ∀x ∈ I, ∀z ∈ I8. (16)

Now replacing x by xz in last relation, we obtain f(xz)z2 + f(z)xz2 = 0, then
multiplying (16) from right by z and using Lemma 2.4, we arrive

f(x)z3 = f(xz)z2 ∀x ∈ I, z ∈ I8. (17)
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Left multiplying (14) by z, where z ∈ I8, using zf(z) = 0 and (13), we get
z2f(x) + zxf(z) = 0. Replace x by xz in this relation and use zf(z) = 0 to have

z2f(xz) = 0 ∀x ∈ I, z ∈ I8. (18)

As a special case of (3), we have

f(x)yz + yzf(x) + f(yz)x+ xf(yz) = 0 ∀x, y ∈ I, z ∈ I8.

Multiplying the last relation from left and right by z2 simultaneously and using
(13), (17) and (18), we get z2f(x)yz3 + z2xf(y)z3 = 0. Multiplying this relation
from left by z, one can see tf(x)yt + txf(y)t = 0 for all x, y ∈ I and all t ∈ I24.
Now replacing y by ytf(s), where s ∈ I and t ∈ I24, in this relation and using
(13), one can arrive txf(ytf(s))t = 0 for all x, y, s ∈ I and t ∈ I24. As S is a prime
semiring, we get

f(ytf(s))t = 0 (19)

Replacing y by ytf(s) in (3), where s ∈ I, we obtain

f(x)ytf(s) + ytf(s)f(x) + f(ytf(s))x+ xf(ytf(s)) = 0.

Multiplying the last equation from left by t, using (13) and (19), we have

ytf(s)f(x)t+ f(ytf(s))xt = 0 ∀x, y, s ∈ I,∀t ∈ I24 (20)

Putting ry for y in last relation, where r ∈ S, leads to

rytf(s)f(x)t+ f(rytf(s))xt = 0.

Multiplying (20) from left by r and using Lemma 2.4, we obtain f(ryf(s))xt =
rf(ytf(s))xt. Again multiplying this from left by z, we obtain zf(ryf(s))xt =
zrf(ytf(s))xt for all x, y, s ∈ I, z ∈ I8, t ∈ I24, r ∈ S. Replace x by zx in this
relation and use (13) to get zrf(ytf(s))zxt = 0. Due to primeness of S, this
becomes f(ytf(s))zxt = 0. Again by primeness of S, we get f(ytf(s))z = 0. In
view of Lemma 2.3, we have

f(ytf(s)) = 0. (21)

Now suppose f(s) 6= 0 for some s ∈ I, otherwise theorem is proved. By Lemma
2.3, tf(s) 6= 0 for some t ∈ I24. As I 6= 0, therefore for some x ∈ I, a = xtf(s) 6= 0.
Thus L = Sa is a nonzero left ideal of S contained in I. Hence using (21), we get
f(L) = 0. Now, using (3), we have f(x)t + tf(x) = 0 for all t ∈ L and x ∈ I.
Substituting st for t, where s ∈ S, gives f(x)st+ stf(x) = 0. Now by replacing s
by x4s and using (7), we have x4stf(x) = 0. As S is a prime semiring, so we get
tf(x) = 0. This implies that f(x)t = 0 and hence f(x) = 0 for all x ∈ I. This
completes the proof.

Theorem 3.2. Let S be a 2-torsion free semiprime semiring. If an additive
mapping f : S → S is skew-commuting on S, then f = 0.
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Proof. As S is a semiprime semiring, there exits a collection of prime k-ideals τ
such that ∩τ = 0. Let τ1 = {P ∈ τ |charS/P 6= 2} and τ2 = {P ∈ τ |charS/P = 2}.
Let x ∈ ∩τ1, then 2x ∈ (∩τ1) ∩ (∩τ2) = ∩τ = 0, since S is 2-torsion free, so
x = 0. Hence ∩τ1 = 0. The theorem will be complete if we prove f(x) ∈ ∩τ1
for all x ∈ S. Take a prime k-ideal P ∈ τ1. Linearize f(x)x + xf(x) = 0 to get
f(x)y+yf(x)+f(y)x+xf(y) = 0 for all x, y ∈ S. This implies f(p)x+xf(p) ∈ P
for all p ∈ P, x ∈ S, so we get xf(p)x+x2f(p) ∈ P and f(p)x2+xf(p)x ∈ P . This
gives 2xf(p)x+x2f(p)+ f(p)x2 ∈ P . As P is k-ideal and x2f(p)+ f(p)x2 ∈ P , so
we have 2xf(p)x ∈ P . As char S/P 6= 2, so by Lemma 2.5, we obtain xf(p)x ∈ P
for all p ∈ P, x ∈ S. Since the k-ideal P is prime, therefore, in view of Lemma
2.6, f(p) ∈ P for every p ∈ P . Now de�ne a mapping F on S/P by F (x + P ) =
f(x)+P . It can be seen that F is additive and skew-commuting on prime semiring
S/P . Hence F = 0 by Theorem 3.1. This gives f(x) ∈ P for all x ∈ S. Hence
f(x) ∈ ∩τ1 = 0. This completes the proof.
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