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m-polar fuzzy Lie ideals of Lie algebras

Muhammad Akram and Adeel Farooq

Abstract. We introduce the notion of an m-polar fuzzy Lie ideal of a Lie algebra and inves-
tigate some properties of nilpotency of m-polar fuzzy Lie ideals. We introduce the concept of
m-polar fuzzy adjoint representation of Lie algebras and discuss the relationship between this
representation and nilpotent m-polar fuzzy Lie ideals. We also define Killing form in the m-polar

fuzzy case and study some of its properties.

1. Introduction

The concept of Lie groups was first introduced by Sophus Lie in nineteenth century
through his studies in geometry and integration methods for differential equations.
The importance of Lie algebras in mathematics and physics have become increas-
ingly evident in recent years. In applied mathematics, Lie theory remains a pow-
erful tool for studying differential equations, special functions and perturbation
theory. It is noted that Lie theory has applications not only in mathematics and
physics but also in diverse fields such as continuum mechanics, cosmology and life
sciences. A Lie algebra has nowadays even been applied by electrical engineers in
solving problems in mobile robot control [8].

In 1965, Zadeh [15] introduced the concept of fuzzy subset of a set. A fuzzy
set on a given set X is a mapping A : X — [0,1]. In 1994, Zhang [16] extended
the idea of a fuzzy set and defined the notion of bipolar fuzzy set on a given
set X as a mapping A : X — [—1,1], where the membership degree 0 of an
element x means that the element x is irrelevant to the corresponding property,
the membership degree in (0, 1] of an element z indicates that the element satisfies
the property, and the membership degree in [—1,0) of an element x indicates that
the element somewhat satisfies the implicit counter-property. In 2014, Chen et al.
[7] introduced the notion of m-polar fuzzy sets as a generalization of bipolar fuzzy
set and showed that bipolar fuzzy sets and 2-polar fuzzy sets are cryptomorphic
mathematical notions and that we can obtain concisely one from the corresponding
one in [7]. The idea behind this is that “multipolar information" (not just bipolar
information which correspond to two-valued logic) exists because data for a real
world problems are sometimes from n agents (n > 2). For example, the exact
degree of telecommunication safety of mankind is a point in [0,1]"(n ~ 7 x 109)
because different person has been monitored different times. There are many
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examples such as truth degrees of a logic formula which are based on n logic
implication operators (n > 2), similarity degrees of two logic formula which are
based on n logic implication operators (n > 2), ordering results of a magazine,
ordering results of a university and inclusion degrees (accuracy measures, rough
measures, approximation qualities, fuzziness measures, and decision preformation
evaluations) of a rough set.

The notions of fuzzy ideals and fuzzy subalgebras of Lie algebras over a field
were considered first in [13] by Yehia. Since then, the concepts and results of
Lie algebras have been broadened to the fuzzy setting frames [1-6, 10, 13]. In
this paper, we introduce the notion of an m-polar fuzzy Lie ideal of a Lie algebra
and investigate some properties of nilpotency of m-polar fuzzy Lie ideals. We
introduce the concept of m-polar fuzzy adjoint representation of Lie algebras and
discuss the relationship between this representation and nilpotent m-polar fuzzy
Lie ideals. We also define Killing form in the m-polar fuzzy case and study some
of its properties. The definitions and terminologies that we used in this paper
are standard. For other notations, terminologies and applications, the readers are
refereed to [8-12, 17].

2. Preliminaries

In this section, we first review some elementary aspects that are necessary for this
paper. A Lie algebra is a vector space . over a field F (equal to R or C) on which
¥ x ¥ — £ denoted by (z,y) — [z,y] is defined satisfying the following axioms:

(L1) [z,y] is bilinear,
(L2) [z,z]=0foralze.Z,
(L3) [[z,yl, 2] + [, 2], z] + [[z, z],y] = 0 for all z,y,z € £ (Jacobi identity).

Throughout this paper, .Z is a Lie algebra and F is a field. We note that the
multiplication in a Lie algebra is not associative, i.e., it is not true in general that
[[z,y], 2] = [z, [y, 2]]- But it is anticommutative, i.e., [z,y] = —[y,z]. A subspace
H of £ closed under [, -] will be called a Lie subalgebra.

A fuzzy set u: £ — [0,1] is called a fuzzy Lie ideal [1] of £ if

(a) p(z+y) > min{u(x), u(y)},
(b) plazx) = p(x),
(c) u(lz,y]) = p(x)

hold for all z,y € . and a € F. The addition and the commutator [ , ] of .Z
are extended by Zadeh’s extension principle [15], to two operations on I in the
following way:

(n @ A)(2) = sup{min{u(y), \(2)} |y, 2 € £, y + 2z = x},
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L p, A > (1‘) = Sup{min{#(?/): A(Z)} | Y,z € 2, [yv Z] = :C}v

where i, \ are fuzzy sets on I< and z € . The scalar multiplication oz for
a € Fand z € . is extended to an action of the field F on I¥ denoted by ® as
follows for all p € I*, « € F and z € .Z:

wla=tz) if a#0,
(a0up)(z)=< 1 ifa=0, =0,
0 ifa=0, x#0.

The two operations of the field F can be extended to two operations on IF in the
same way. The operations are denoted by @ and o as well [15]. The zeros of ¥
and F are denoted by the same symbol 0. Obviously 0 ® p = 1, for every pu € I%
and every p € I¥, where 1, is the fuzzy subset taking 1 at « and 0 elsewhere.

Definition 2.1. [7] An m-polar fuzzy set ( or a [0,1]™-set) on X is a mapping
A: % —[0,1]™. The set of all m-polar fuzzy sets on . is denoted by m(%).

Note that [0, 1] (m-power of |0, 1]) is considered a poset with the point-wise
order <, where m is an arbitrary ordinal number (we make an appointment that
m = {n|n < m} when m > 0), < is defined by = < y < p;(x) < pi(y) for each
i€m (x,y € [0,1]™), and p; : [0,1]™ — [0,1] is the i-th projection mapping
(i € m). 0=(0,0,...,0) is the smallest element in [0,1]™ and 1 = (1,1,...,1) is
the largest element in [0, 1]™.

Definition 2.2. Let C be an m-polar fuzzy set on a set .£. An m-polar fuzzy
relation on C is an m-polar fuzzy set D of £ x .Z such that for all x,y € X and
i=1,2,3,...,m we have p; o D(zy) < inf(p; o C(z),p; o C(y)).

3. m~polar fuzzy Lie ideals

Definition 3.1. An m-polar fuzzy set C on .Z is called an m-polar fuzzy Lie ideal
if the following conditions are satisfied:

(1) Cz+y) 2 nf(C(x),C(y)),

(2) Clax) 2 C(x),

(3) C([z,y]) = C(x) for all 2,y € £ and a € F.
That is,

(1) pioC(z +y) > inf(p; o C(z),p; 0 C(y)),

(2) pioClax) = p; o C(x),

(3) pioC([z,y]) = pio C(x)
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forall z,y € Zand v € F,i=1,2,3,...,m.

Example 3.2. Let R3 = {(z,y,2)|x,y,2 € R} be the set of all 3-dimensional
real vectors. Then R? with the bracket [-,-] defined as the usual cross product,

ie., [z,y] =z x y, forms a real Lie algebra. We also define an m-polar fuzzy set
C:R3—[0,1]™ by

(0.8,0.8,...,0.8) ifz=y=2=0,

C(x7y’z):{ (0.1,0.1,...,0.1) otherwise.

By routine computations, we can verify that the above m-polar fuzzy set C' is an
m-polar fuzzy Lie ideal of the Lie algebra R3.

Example 3.3. A subalgbera sl3(C) of all 2 x 2 matrices with trace 0 is an ideal
. 0 1 0 0 1 0
of gl2(C). The basis of slz(C) are: h = (O 0>, f= <1 0> and e = (0 _1).
The commutators are [e, f] = h, [h, f] = —2f and [h,e] = 2e.
We define an m-polar fuzzy set C : gla(C) — [0,1]™ by

Clg) = {(1,1,...,1), g € sl,(C)

(0,0,...,0), otherwise.

By routine computations, we see that C' is an m-polar fuzzy ideal.
We sate the following theorem without its proof.

Theorem 3.4. Let C be an m-polar fuzzy Lie ideal in a Lie algebra .. Then C
is an m-polar fuzzy Lie ideal of . if and only if the non-empty upper s-level cut
Cl) = {z € Z|C(x) > s} is Lie ideal of £, for all s = (51,5 —2,...,5,) € [0,1]™.

Example 3.5. Consider the group algebra C[S3], where S3 is the Symmetric
group. Then C[S3] assumes the structure of a Lie algebra via the bracket (com-
mutator) operation.

Clearly, the linear span of the elements § = g— g~ for g € Ss is the subalgebra
of C[S3], which is also known as Plesken Lie algebra and denoted by £(S5)c. It
is easy to see that .Z(S3)c = Spanc{(1,2,3)} and (1,2,3) = (1,2,3) — (1,3,2).

We define an m-polar fuzzy set C : £ (Ss5)c — [0,1]™ by

C( ) _ (tlat2a"'7tm)? g:V(172a3)_7(173a2)7 Where’YECaQGC[Sﬂ
g (s1,82,---,8m), otherwise, where s; < t;

By routine calculations, we have {g € C[S3] : C(g) > (s1,82,---,5m)} = Z(S3)c.
Then we see that £(S3)c can be realized Cly) as an upper s;-level cut and C is
an m-polar fuzzy Lie ideal of £(S5)c.
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Definition 3.6. Let C' € I, an m-polar fuzzy subspace of . generated by C
will be denoted by [C]. It is the intersection of all m-polar fuzzy subspaces of £
containing C. For all x € .Z, we define:

[C](z) = sup{inf C(z;) |z = ZOMC“ o;F x; € £}

Definition 3.7. Let f: % — % be a homomorphism of Lie algebras which has
an extension f : I%* — 2 defined by:

F(O)(y) =sup{C(x),z € f ()}
for all C € I21, y € %. Then f(C) is called the homomorphic image of C.

Proposition 3.8. Let f : £ — % be a homomorphism of Lie algebras and let
C be an m-polar fuzzy Lie ideal of £. Then

(i) f(C) is an m-polar fuzzy Lie ideal of %,

(i) f([C]) 2 [F(C)].

Proposition 3.9. If C' and D are m-polar fuzzy Lie ideals in £, then [C, D] is
an m-polar fuzzy Lie ideal of £ .

Theorem 3.10. Let C1, Cy, D1, Dy be m-polar fuzzy Lie ideals in £ such that
Cl Q CQ and D1 Q DQ, then [Cl,Dl] Q [CQ,DQ].

Proof. Indeed,
< C1,D1 > (x) = sup{inf(C1(a), D1(b)) | a,b € A ,[a,b] = x}

> sup{inf(Cy(a), D2(b)) | a,b € A ,[a,b] = z}
=< Oy, Dy > ().

Hence [C1, D;] C [Cy, Ds). O

Let C be an m-polar fuzzy Lie ideal in .Z. Putting
c'=0, Ct=[C,Cy), C* =[C,C], ..., C" =[C,C™]
we obtain a descending series of an m-polar fuzzy Lie ideals
c’>2C'oC?*2...2C" 2.,
and a series of m-polar fuzzy sets D™ = sup{C"(x) |0 # = € ZL}.

Definition 3.11. An m-polar fuzzy Lie ideal C is called nilpotent if there exists
a positive integer n such that D™ = 0.

Theorem 3.12. A homomorphic image of a nilpotent m-polar fuzzy Lie ideal is
a nilpotent m-polar fuzzy Lie ideal.
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Proof. Let f : 4 — % be a homomorphism of Lie algebras and let C be a
nilpotent m-polar fuzzy Lie ideal in %;. Assume that f(C) = D. We prove by
induction that f(C™) D D™ for every natural n. First we claim that f([C,C]) D
[f(C), f(C)] = [D, D]. Let y € %, then

[(€C,C>)(y) =sup{< C,C>)(x) | f(z) =y}
C(a),C(d)) | a,b € LA, la,b] ==, f(z) =y}}

= sup{sup{inf(
= sup{inf(C(a),C(b)) | a,b € £, [a,b] =z, f(2) = y}
= sup{inf(C(a),C(b)) | a,b € A, [f(a), f ( )] =y}
= sup{inf(C(a),C(b)) | a,b € £, f(a) = u, f(b)] = v, [u,v] = y}
> sup{inf( sup C(a), sup C(b)) [u v] =y}
a€f=1(u) bef=t(v)

sup{inf(f(C)(u), F(C)(v)) | [u,v] =y} =< f(C), F(C) > (y),

Thus
f([C,C)) 2 f(< C,C>) 2K f(O), f(C) >= [f(C), f(C)].

For n > 1, we get
femy = f(e.cvl) 2 [f(0), f(e" ) 2 [D, D" = D™
Let m be a positive integer such that C" = 0. Then for 0 # y € Lo we have
D™ (y) < f(uén)(y) = f(0)(y) = sup{0(a) | f(a) = y} = 0.
This completes the proof. O
Let C be an m-polar fuzzy Lie ideal in .. Putting
cO=c, ¢V =1c® cO), c®=1cW cW],. . . c"=[crb ch1)

we obtain series
cCOceWce®c...comc...

of m-polar fuzzy Lie ideals and a series of m-polar fuzzy sets D™ such that
D" =sup{C"(x) |0 # x € L}.

Definition 3.13. An m-polar fuzzy Lie ideal C is called solvable if there exists a
positive integer n such that D™ = 0.

Theorem 3.14. A nilpotent m-polar fuzzy Lie ideal is solvable.

Proof. Tt is enough to prove that C"™) C C™ for all positive integers n. We prove
it by induction on n and by the use of Theorem 3.10:

cW=[c,cl=c', Cc®=[cW cWcc,cV]=c2
cm = (¢ oD c [c,c" Y] C [c,cY] = ¢,
This completes the proof. O
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Definition 3.15. Let C' and D be two m-polar fuzzy Lie ideals of a Lie algebra
Z. The sum C @ D is called a direct sum if C N D = 0.

Theorem 3.16. The direct sum of two nilpotent m-polar fuzzy Lie ideals is also
a nilpotent m-polar fuzzy Lie ideal.

Proof. Suppose that C' and D are two m-polar fuzzy Lie ideals such that CND = 0.
We claim that [C, D] = 0. Let z(# 0) € %, then

< C,D > (z) = sup{inf(C(a), D(b)) | [a,b] = 2} < inf(C(z), D(z)) = 0.

This proves our claim. Thus we obtain [C™, D"] = 0 for all positive integers m,
n. Now we again claim that (C'@® D)™ C C™ @ D" for positive integer n. We prove
this claim by induction on n. For n =1,

(CeD)}!=[CeD,CeD]C[C,Cl®[C,D®[D,Cle[D,D]=C"® D
Now for n > 1,

(CeD)"=[CeD,(CeD)"'|C[CeD,C" oD
clc,cr e [C,DY o [D,C" @ [D,D" Y =C" @ D".

Since there are two positive integers p and g such that C? = D? = 0, we have
(C @ D)PT4 C CPTa @ DPTY = 0. O

In a similar way we can prove the following theorem.

Theorem 3.17. The direct sum of two solvable m-polar fuzzy Lie ideals is a
solvable m-polar fuzzy Lie ideal.

Definition 3.18. For any x € % we define the function adzx : £ — £ putting
adz(y) = [x,y]. Tt is clear that this function is a linear homomorphism with respect
to y. The set H(Z) of all linear homomorphisms from .Z into itself is made into
a Lie algebra by defining a commutator on it by [f, g] = fog— go f. The function
ad : £ — H(YZ) defined by ad(z) = adz is a Lie homomorphism which is called
the adjoint representation of £ .

The adjoint representation adz : £ — £ is extended to adz : [Z — IZ by
putting B
adz(y)(y) = sup{7(a) : [v,a] = y}
for all v € I and y € .Z.

Theorem 3.19. Let C' be an m-polar fuzzy Lie ideal in a Lie algebra £. Then
C™ C [Cy] for any n > 0, where an m-polar fuzzy subset [Cy,] is defined by

[Cpl(x) = sup{C(a) | [z1, [x2, [ - -, [Zn,a] ... ]]| = 2, 21,...,25 € L}.
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Proof. It is enough to prove that < C,C"~! > C [C,]. We prove it by induction
on n. For n=1 and x € £, we have
< C,C > (z) = sup{inf(C(a),C(D)) | [a,b] = x}
> sup{C(b) |[a,b] = x,a € L} = [C1](z).
For n > 1,
< €00 3 (2) = sup{inf(C(a), C™ V(b)) | [, ] = 2}
(Cla), [C(b),C"2)(B)]) | [a, b] = «}
> sup{inf(C(a),sup{< C,C"=2) > (b;) | b= a;b;}) | [a,b] = =}
> Sup{lnf(c(a),sup{[ ~1(be) [ b =" aibi}) | [a, b] = x}
> (C(a), [Crn-a](0:) | X2 cila, bi] = x}
= sup{inf(C(a), sup{Crn_1(c:) [ b; = >_ Bici}) | 0 cufa, bi] = x}
> Sup{lnf(C(a), n—1(ci)) | 2o vila, ci] = x}
> (Cla),sup{C(di)) | [z1, [z2, [ .. [wn-1,di] ... ]]| = e} | Do vila, ei] = =}
> (Cla), C(di) | Xovila, [xr, [wa, [ [wn—1,di] ... ]]]] = =}
= sup{Cn(di) | 2o vila, [z1, [22, [, [wn-1,di] ... ]]]| = 2} > [Cn](2).

This complete the proof. O

sup{inf(C(a

Theorem 3.20. If for an m-polar fuzzy Lie ideal C there exists a positive integer
n such that B B B
(adzy o adzgo...o0adx,)(C)=0.

forall x1,...,x, € £, then C is nilpotent.
Proof. For x1,...,2, € £ and z(# 0) € £, we have

(adzy o -+ 0adw,)(C)(z) = sup{C(a) | [z1, [z2,]. .., [Tn,a]...]]] = 2} = 0.

Thus [C),] = 0. From Theorem 3.19, it follows that C™ = 0. Hence C is a
nilpotent m-polar fuzzy Lie ideal. O

The mapping K : ¥ x £ — F defined by K(z,y) = Tr(adx o ady), where
Tr is the trace of a linear homomorphism, is a symmetric bilinear form which
is called the Killing form. It is not difficult to see that this form satisfies the
identity K([z,y],z) = K(z,y,z]). The form K can be naturally extended to
K : IZ*% — IF defined by putting

K(C)(8) = sup{C(z,y) | Tr((adx o ady)) = B}.
The Cartesian product of two m-polar fuzzy sets C and D is defined as
(C x D)(z,y) = inf(C(x), D(y)).
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Similarly we define
K(C x D)(8) = sup{inf(C(x), D(y)) | Tr((adz o ady)) = B}.

Theorem 3.21. Let C' be an m-polar fuzzy Lie ideal of Lie algebra . Then
K(C x 1(ag) =a® K(C x 1;) forallx € Z, ofF.

Proof. If a = 0, then for § = 0 we have
K(C x 10)(0) = sup{inf(C(z), 1o(y)) | Tr(adx o ady) = 0}
> inf(C(0),10(0)) = 0.
For f #0 Tr((adx o ady) = B means that z # 0 and y # 0. So,
K(C x 10)(8) = sup{inf(C (), 1o(y)) | Tr((adz o ady) = #} = 0.
If o # 0, then for arbitrary S we obtain
K(C % 102) (8) = sup{inf(C(y), 1as(2)) | Tr((ady o adz) = 5}

= sup{inf(C(y),a ® 1,(2)) | Tr((ady o adz) = B}
= sup{inf(C(y), 1.(a"12)) | aTr((ady o ad(a~1z2)) = B}
= sup{inf(C(y), 1.(a"12)) | Tr((ady o ad(a~12)) = a~ 15}

=K(C x 1) (a"18)=a0 K(C x 1,)(B).
This completes the proof. O

Theorem 3.22. Let C be an m-polar fuzzy Lie ideal of a Lie algebra . Then
K(CX l(m_’_y)) = K(CX LJ@K(CX 1y) and K(CXO(QH_y)) = K(CXOw)@K(CXOy)
forall x,y € Z.

Proof. Indeed,
K(C % 1(344))(8) = sup{inf(C(2), 1p4y(u)) | Tr((adz o adu) = B}
= sup{C(z) | Tr(adz o ad(x + y)) = 5}
= sup{C(z) | Tr(adz o adzx) + Tr(adz o ady) = S}
= sup{inf(C(2), inf(1,(v), 1y(w))) | Tr(adz o adv) + Tr(adz o adw) = 8}
= sup{inf(sup{inf(C(2), 1, (v)) | Tr(adz o adv) = p1},
sup{int(C(2), 1,(w)) | Tr(adz o adw) = B2} | fr + bz = B)}
= sup{inf (K (C x 1;)(B1), K(C x 1,)(B2)) |1 + B> = B}
=K(Cx 1)@ K(C x1,)(B).
This completes the proof. O

~— —

We conclude that:

Corollary 3.23. For each m-polar fuzzy Lie ideal C and all x,y € £, o, € F
we have o o o
K(C X L(azqpy) =a© K(C x1;) @ B0 K(C x 1,).
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