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Structure of the �nite groups

with 4p elements of maximal order

Bahareh Asadian and Neda Ahanjideh

Abstract. Let G be a �nite group and p > 3 be a prime number. We determine the structure

of the �nite group G with 4p elements of maximal order. In particular, we show that if G is

a �nite group with 20 elements of maximal order, then G is a non-abelian 2-group of order 32

with exp(G) = 4, G ∼= C6 × S3 or G ∼= S5, where Sn denotes the symmetric group of degree n,

G ∼= C44 o (Cu × Cl), where u|10 and l|2, G ∼= C25 o Cl or G ∼= C50 o Cl, where l|4.

1. Introduction

Throughout this paper, we use the following notations: For a �nite group G, we
denote by π(G) the set of prime divisors of |G| and by πe(G) the set of element
orders of G. By mi(G), we denote the number of elements of order i, where
i ∈ πe(G). Set nse(G) := {mi(G) : i ∈ πe(G)}.

One of the interesting topics in the group theory is to determine the solvability
of a group with the given particular properties. For example, one of the problems
which is proposed by Thompson is:

Thompson's Problem. Let T (G) = {(n,mn) : n ∈ πe(G) and mn ∈ nse(G)},
where mn is the number of elements of order n in G. Suppose that T (G) = T (S).
If S is a solvable group, is it true that G is also necessarily solvable?

Up to now, nobody can solve this problem and it remains as an open problem.
In order to approach to this problem, some authors have examined the solvability
of a group with a given number of elements of maximal order. For instance, in
[2, 9, 10], the authors have examined the structure of the groups which have a given
number of the elements of maximal order. Also, in [4], some groups with exactly
4p elements of maximal order have been studied. The purpose of this paper is to
study the structure of a group containing exactly 4p elements of maximal order.
Then as an example, we �nd the structure of �nite groups with exactly 20 elements
of maximal order.

From now on, we use Sylp(G) for the set of the p-Sylow subgroups of G, where
p ∈ π(G). Also, Gp denotes a p-Sylow subgroup of G and np(G) = |Sylp(G)|. We
denote by φ the Euler's totient function. For every x ∈ G, o(x) denotes the order
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of x and 〈x〉 denotes the generated subgroup by x in G. CG(〈x〉) and NG(〈x〉)
are used as centralizer and normalizer of 〈x〉 in G, respectively. Let A and N be
�nite groups. The action of A on N is Frobenius if and only if CN (a) = 1, for all
nonidentity elements a ∈ A. We use a|n when a is a divisor of n and use |n|a = ae,
when ae||n, i.e., ae|n but ae+1 - n. By Cn, we denote a cyclic group of order n.
Throughout this paper, k denotes the maximal order of elements in G, M(G) is
the number of elements of order k and n, l ∈ N. Also, Z(G) denotes the center of
group G. We apply symbol (∗) instead of assumption M(G) = 4p, where p is a
prime number. All unexplained notations are standard and can be found in [7].
In this paper, we will prove that:

Main Theorem. Suppose that G is a �nite group with M(G) = 4p, where p > 3
is a prime number. Then G is one of the following groups:

(1) If k = 4, then G is a non-abelian 2-group with |G| < 16p and exp(G) = 4;

(2) if k = 5, exp(G) = 5 and p = (5u− 1)/4, then either G is a 5-group of order

5u or G ∼= G5oC2t , where t ∈{1, 2} and G5 denotes 5-Sylow subgroup of G;

(3) if k = 6, then either G ∼= S5, where S5 denotes the symmetric group of degree

5 or G is a {2, 3}-group;

(4) if k = 10, then G is a {2, 5}-group;

(5) if k = 12, then G is a {2, 3}-group;

(6) if 4p+1 is a prime number and k = 4p+1, then G ∼= C4p+1oCl, where l|4p;

(7) if 2p+1 is a prime number and k = 4(2p+1), then G ∼= C4(2p+1)o(Cu×Cl),
where u|2p and l|2;

(8) if 4p + 1 is a prime number and k = 2(4p + 1), then G ∼= C2(4p+1) o Cu,
where u|4p;

(9) if k = 25, then G ∼= C25 o Cl, where l|4;

(10) if k = 50, then then G ∼= C50 o Cl, where l|4.

As a consequent of the main theorem, we will prove that:

Corollary. Suppose that G is a �nite group with M(G) = 20. Then G is one of

the following groups:

(1) If k = 4, then G is a non-abelian 2-group of order 32;

(2) if k = 6, then either G ∼= S5 or G ∼= C6 × S3;

(3) if k = 25, then G ∼= C25 o Cl, where l|4;

(4) if k = 44, then G ∼= C44 o (Cu × Cl), where u|10 and l|2;

(5) if k = 50, then G ∼= C50 o Cl, where l|4.
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2. Preliminary results

Throughout this paper, we assume that p > 3 is a prime number. In the following
lemmas, we bring some facts which will be used during the proof of the main
theorem:

Lemma 2.1. [3, Lemma 2.2] Suppose that G has exactly n cyclic subgroups of

order l, then ml(G) = n · φ(l). In particular, if n denotes the number of cyclic

subgroups of G of order k, then M(G) = n · φ(k).

The following lemma is concluded from Lemma 2.1:

Lemma 2.2. If M(G) = 4p, then the possible values of k and φ(k) are given in

the following table:

φ(k) k Condition

1
2
4
p
2p
4p
4p
4p

2
3, 4, 6
5, 10, 12
null
2p+ 1, 2(2p+ 1)
25, 50
4(2p+ 1)
4p+ 1, 2(4p+ 1)

�
�
�
�
2p+ 1 is prime
p = 5
2p+ 1 is prime
4p+ 1 is prime

Lemma 2.3. [2, Lemma 6] If k is a prime number, then k|M(G) + 1.

Corollary 2.4. Let M(G) = 4p. Then k 6= 2 and k 6= 5 except when p = 5t+ 1,
where t ∈ N. Also, if 2p+ 1 is prime, then k 6= 2p+ 1.

Proof. It follows from Lemma 2.3.

Lemma 2.5. [2, Lemma 7] If there exists a prime divisor p of k with p(p− 1) >
M(G), then G contains a unique normal p-Sylow subgroup Gp and |Gp| = p.

Lemma 2.6. Let G be a �nite group such that [CG(x) : 〈x〉] is a prime power

number. Then CG(x) is direct product of its sylow subgroups.

Proof. The proof is straightforward.

Lemma 2.7. [2, Lemma 8] There exists a positive integer α such that |G| divides
M(G)kα.

Lemma 2.8. For every element x ∈ G of order k, [G : NG(〈x〉)]·φ(o(x)) 6M(G).

Proof. The proof is straightforward.

Lemma 2.9. For every element x ∈ G of order k, if πe(CG(x)) = πe(〈x〉), then
[CG(x) : 〈x〉] · φ(o(x)) 6M(G).
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Proof. Fix 1 6 i 6 t and 1 6 j 6 o(x), where t = [CG(x) : 〈x〉]. Suppose that
A = {yi〈x〉 : yi ∈ CG(x)} is the distinct left coset of 〈x〉 in CG(x). It is easily seen
that if yi〈x〉 6= 〈x〉 and o(xj) = k, then o(yix

j) = o(xj). Also, for every element
yi〈x〉 ∈ A, there exist exactly φ(x) elements yix

j of order k. So, we have:

[CG(x) : 〈x〉] · φ(o(x)) = |{yixj : o(xj) = k}|.

It is evident that |{yixj : o(xj) = k}| 6 |{g ∈ G : o(g) = k}| =M(G). Hence, the
lemma follows.

Lemma 2.10. [9, Lemma 2.5] Let P be a p-group of order pt, where t is a positive

integer. Suppose that b ∈ Z(P ), where for u ∈ N, o(b) = pu = k. Then P has at

least (p− 1)pt−1 elements of order k.

Lemma 2.11. [10, Lemma 4] Let G be a non-abelian �nite group with exp(G) = 4.

If x ∈ G \ Z(G) is an element of order 2, then G has at least
|G|−|CG(x)|

2 =
|CG(x)|.([G:CG(x)]−1)

2 elements of order 4.

Lemma 2.12. [5] Let p ∈ π(G) be odd. Let Gp ∈ Sylp(G) and n = psm with

gcd(p,m) = 1. If Gp is not cyclic and s > 1, then the number of elements of order

n is always a multiple of ps.

Lemma 2.13. [13, Theorem 3] Let G be a �nite group. Then the number of

elements whose orders are multiples of n is either zero, or a multiple of the greatest

divisor of |G| that is prime to n.

Lemma 2.14. [1] Let L = Un(q), where n > 3, q = pα, and let d = (n, q + 1).

Then πe(L) consists of all divisors of m, where m = pγ q
n1−(−1)n1

d , where γ, n1 > 0
satisfying pγ−1 + 1 + n1 = n.

Lemma 2.15. [5] Let t be a positive integer dividing |G|. If Mt(G) = {g ∈ G|gt =
1}, then t||Mt(G)|.

Corollary 2.16. For a �nite group G:

(i) if d ∈ πe(G), then d|
∑
s|dms;

(ii) if P ∈ Sylp(G) is a cyclic group of prime order p and r ∈ π(G)− {p}, then
mrp = np(G)(p − 1)(r − 1)t, where t is the number of cyclic subgroups of

order r in CG(P ).

Proof. (i) follows from Lemma 2.15. For proving (ii), let P ∈ Sylp(G). Since
mp(P ) = p − 1 and every element of order rp is in CG(P

g), for some g ∈ G, we
deduce that mrp(G) = mp(G) · np(G) ·mr(CG(P )) = (p− 1) · np(G) · (φ(r) · t) =
np(G) · (p− 1) · (r − 1) · t, where t is the number of the cyclic subgroups of order
r in CG(P ).

Lemma 2.17. If p is a prime number, then 4p+ 1 6= 3t.
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Proof. Suppose on the contrary that 4p+ 1 = 3t. Then 4|3t − 1 and hence, t is a
even number. Thus 32 − 1|3t − 1 = 4p, which is a contradiction.

Lemma 2.18. [12] Let G be a non-solvable group. Then G has a normal series

1EH EK EG such that K
H is a direct product of isomorphic non-abelian simple

groups and |GK |||Out(KH )|.

Lemma 2.19. Let H E G and let r ∈ π(H). If p ∈ π(GH ), p 6∈ π(H) and pr 6∈
πe(G), then p||H|r − 1.

Proof. By Frattini's argument, G = HNG(R), where R ∈ Sylr(H). Thus we can
see that Gp

g 6 NG(R) for some g ∈ G. But pr 6∈ πe(G) and hence, the action of
Gp

g on R is Frobenius. Therefore, |G|p||H|r − 1 and the result follows.

A �nite group G is called a simple Kn-group, if G is a simple group with
|π(G)| = n. So, a simple K3-group is a simple group with |π(G)| = 3. In the
following lemma, the simple K3-groups and their orders are recognized:

Lemma 2.20. [8] Let G be a simple K3-group. Then G is isomorphic to one of

following simple groups: A5(2
2 ·3 ·5), A6(2

3 ·32 ·5), L2(7)(2
3 ·3 ·7), L2(8)(2

3 ·32 ·7),
L2(17)(2

4 · 32 · 17), L3(3)(2
4 · 33 · 13), U3(3)(2

5 · 33 · 7), U4(2)(2
6 · 34 · 5).

Theorem 2.21. If G is a non-solvable group with M(G) = 4p, where p is a prime

number, then p = 5 and G ∼= S5.

Proof. Since G is a non-solvable group, Lemma 2.18 shows that there exists a chief
series 1 EH EK E G such that K

H is a direct product of isomorphic non-abelian

simple groups and |GK |||Out(KH )|. Lemmas 2.2 and 2.7 show that |π(G)| 6 3 and
every �nite group such that its order is divisible by exactly two prime numbers
is solvable. Thus |π(KH )| = 3 and p||KH |. Therefore, KH is a simple K3-group and

p ∈ π(KH ). Also, by virtu of Lemma 2.20, we can see that for every simple K3-
group S, 3 ∈ π(S). Since our assumption forces p > 3, k 6= 3. Therefore, Lemmas
2.2 and 2.7 imply that the non-solvability of G can be occurred when k ∈ {6, 12}.

We continue the proof in the following cases:
1. If k = 6, then Lemma 2.7 and the above statements show that |K/H| = 2α3βp,
where α, β > 0. Then K

H is a simple K3-group and hence, Lemma 2.20 shows that
one of the following subcases holds:

(i). If K
H
∼= A5 or A6, then p = 5. Let z be an element of G with o(z) =

6. By Lemma 2.9, we have [CG(z) : 〈z〉] 6 10. Since k = 6, 5 - |CG(z)|. If
[CG(z) : 〈z〉] ∈ {8, 9}, then Lemma 2.6 implies that CG(z) is direct product of
its sylow subgroups. Hence, it is easy to see that m6(CG(z)) > 20. So, we get a
contradiction with M(G) = 20. Therefore, [CG(z) : 〈z〉] ∈ {1, 2, 3, 4, 6}. We have,

|G| = 6 · [CG(z) : 〈z〉] · [NG(〈z〉) : CG(z)] · [G : NG(〈z〉)].

By virtue of Lemma 2.8, we can see that [G : NG(〈z〉)] 6 2p = 10.



162 B. Asadian and N. Ahanjideh

Since [NG(〈z〉) : CG(〈z〉)]||Aut(〈z〉)| = 2, we deduce that 5|[G : NG(〈z〉)].
Hence, |G||25 · 32 · 5 and 22 · 3 · 5||KH |. Therefore, |H||2

3 · 3. But 2 · 5, 3 · 5 6∈ πe(G).
So, Lemma 2.19 shows that 5|3t − 1 or 5|2u − 1, where t < 2 and u 6 3. Thus,
t = u = 0 and hence, |H| = 1. Thus K ∼= A5 or A6. Since |GK |||Out(K)|, we
deduce that G ∼= S5 or S6. But M(S5) = 20 and M(S6) = 240. Thus G ∼= S5.

(ii). If KH
∼= L2(7), L2(8), L2(17), L3(3), U3(3), then there exists p ∈ π(G) such

that p > 6, which is a contradiction.
(iii). If KH

∼= U4(2), then Lemma 2.14 implies that 12 ∈ πe(KH ) and hence, we
arrive at a contradiction.
2. Let k = 12. Then applying Lemma 2.7 shows that π(G) = {2, 3, p}. Since
every �nite group such that its order is divisible by exactly two prime numbers
is solvable and |π(G)| = 3, we deduce that |π(KH )| = 3 and p||KH |. Since k = 12,
we deduce that p 6 11 and for every x ∈ G with o(x) = 12, CG(〈x〉) is a {2, 3}-
group. Since K

H is a simple K3-group, Lemma 2.20 shows that one of the following
subcases holds:

(i). If K
H
∼= A5 or A6, then p = 5. In the following, we show that this case

is impossible with our assumption. It is easy to see that |CG(〈x〉)| = 2u · 3v
such that 2 6 u 6 4 and 1 6 v 6 2. Applying Lemma 2.8 to this case shows
that [G : NG(〈x〉)] ∈ {1, 2, 3, 4, 5}. Note that for every x ∈ G with o(x) = 12,
[NG(〈x〉) : CG(〈x〉)]||Aut(〈x〉)| = 4. But 5||G| and

|G| = [G : NG(〈x〉)] · [NG(〈x〉) : CG(〈x〉)] · |CG(〈x〉)|. (1)

Thus [G : NG(〈x〉)] = 5 and |G||26 · 32 · 5. Since |Aut(〈x〉)| = 4, we conclude that
G3 6 CG(〈x〉). Set C = CG(〈x〉). We examine two possibilities for v:

(a). Let v = 2. Applying Lemma 2.9 shows that |CG(〈x〉)| = 22 · 32. Since
〈x〉 6 Z(C), 12||Z(C)|. Thus C is abelian and hence,

C = C4 × (C3 × C3). (2)

Therefore, m12(C) = 16. If there exists y ∈ G of order 12 such that 9 - |CG(y)|,
then obviously y 6∈ C and (1) leads us to see that 3|[G : NG(〈y〉)] = 5, which is a
contradiction. This shows that for every y ∈ G of order 12, |CG(y)|3 = 9, so for
some g ∈ G,

Gg3 6 CG(y). (3)

Also, (2) shows that C 6 CG(G3). So, CG(G3) contains at least 16 elements of
order 12. Thus for every g ∈ G with CG(G3) 6= CG(G

g
3), CG(G3)∩CG(Gg3) contains

at least 12 elements of order 12. Let y be an element of order 12 in CG(G3) ∩
CG(G

g
3), then G3, G

g
3 E CG(y). Thus G3 = Gg3 and hence G3 EG. Therefore, (3)

shows that for every y ∈ G of order 12, y ∈ CG(G3) = G3 ×G2(CG(G3)). Hence
20 = m12(G) = m12(CG(G3)) = m3(G3) ·m4(G2(CG(G3))) = 8 ·m4(G2(CG(G3))),
which is a contradiction.

(b). Let v=1. Then K/H∼=A5 and |CG(〈x〉)|=2u·3. Since [NG(〈x〉) : CG(〈x〉)]
divides 4 and [G : NG(〈x〉)] = 5, |G|3 = 3. Also, Lemma 2.9 forces u 6 4. Thus
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|G||26 · 3 · 5 and hence, n3(G) = 2α · 5β , where β ∈ {0, 1}. On the other hand,
n3(K/H) = 10|n3(G). But Corollary 2.16(ii) shows thatm12(G) = n3(G)·φ(3)·t =
20, where t = m4(CG(G3)) > 2, which is impossible.

(ii). If K
H
∼= L3(3) or L2(17), then there exists p ∈ π(KH ) such that p > 11,

which is contradiction.
(iii). If K

H
∼= U4(2) or U3(3), then p = 5 or 7, respectively. Applying Lemma

2.14 and GAP program [6] imply that 12 ∈ πe(KH ). Since m12(U3(3)) = 1008 and
m12(U4(2)) = 4320, we arrive at a contradiction;

(iv). If KH
∼= L2(7) or L2(8), then p = 7 and |G| = 7 · 2u · 3v, where 1 6 u 6 7

and 1 6 v 6 2. If v = 2, then we can see at once that either K/H ∼= L2(8) or
|H|3 = 3. If |H|3 = 3, then since 21 6∈ πe(G), Lemma 2.19 shows that 7|3 − 1,
which is a contradiction. Thus let K/H ∼= L2(8). Then since for every y ∈
G of order 12, y is central in CG(y), we deduce that y ∈ CG(G3). Thus we
can see at once that CG(G3) contains at least 16 elements of order 12. So, for
every g ∈ G with CG(G3) 6= CG(G

g
3), CG(G3) ∩ CG(Gg3) contains at least 12

elements of order 12. Let y be an element of order 12 in CG(G3) ∩ CG(Gg3).
Then G3,G

g
3 6 CG(y). On the other hand, applying the argument in Subcase

(i) shows that |CG(y)| ≤ 32 · 23. Thus G3 × 〈y3〉, Gg3 × 〈y3〉 E CG(y) and hence,
G3,G

g
3 ECG(y). Thus G3 = Gg3 which is a contradiction. Therefore, CG(G3)EG

and hence, G3 E G. Thus the same argument as that of used in (2) shows that
for every y ∈ G of order 12, y ∈ CG(G3) = G3 × G2(CG(G3)) and hence, 28 =
m12(G) = m3(G3) ·m4(G2(CG(G3))) = 8 ·m4(G2(CG(G3))), which is impossible.
Thus v = 1 and hence, K/H ∼= L2(7) and m12(G) = 2 · n3(G) · t = 28, where
t = m4(CG(G3)) > 2. But n3(L2(7)) = 28|n3(G), which is impossible.

3. Proof of the main theorem

In this section, we prove the main theorem by considering the eight values for k
obtained in Lemma 2.2:

1) k = 3. By virtue of Lemma 2.7, we have |G||4 · 3α · p, where α > 0. But
k = 3 and according to our assumption p > 3. Thus |G||22 · 3α. Since k = 3, two
possibilities can be occurred for |G|:

(i). If |G| = 3u, where u ∈ N, then since k = 3, exp(G) = 3 and hence,
|G| − 1 =M(G). Thus 3u − 1 = 4p, which is a contradiction with Lemma 2.17.

(ii). If 2 ∈ π(G), then |G| = 2α1 · 3α2 such that 0 6 α1 6 2 and α2 > 0. Thus
G is solvable. Let N be a normal minimal subgroup of G. Then N is t-elementary
abelian, where t ∈ {2, 3}. Since 6 6∈ πe(G), we deduce that for u ∈ {2, 3}−{t}, the
action of Gu on N is Frobenius. Thus if t = 2, then G3 is cyclic and since k = 3,
we deduce that by Corollary 2.16(ii), 2 ·n3(G) = 4p. This forces n3(G) = 2p||G|2,
which is a contradiction. Now let t = 3. Then G2 is a cyclic group or a quaternion
group. But 4 6∈ πe(G) and hence, |G2| = 2. This guarantees that G3 E G. Thus
m3(G) = m3(G3) and hence, applying the previous argument leads us to get a
contradiction.
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2) k = 4. Applying Lemma 2.7 shows that either p = 3 and π(G) = {2, 3} or
G is a 2-group. According to our assumption, p > 3 and hence, G is a 2-group.
Let |G| = 2α, where α ∈ N. Then by (∗), we can see |G| > 4p + 1. If G is
an abelian group such that |G| = 2α, then {x ∈ G : o(x)|2} 6 G and hence,
1+m2(G) = 2u and 1+m2(G)+m4(G) = |G| gives that 2u+4p = 2α. This forces
2u(2α−u − 1) = 4p and hence, u = 2. Thus m2(G) = 3 and hence, G ∼= C4 × C4

or C2 × C4. So, m4(G) 6 12, which is a contradiction. If G is a non-abelian
2-group, then we claim that there exists an element y in G such that y 6∈ Z(G)
and o(y) = 2. If not, then Z(G) contains all elements of order 2 in G. If 2α−3 6 p,
then since our assumption shows that |Z(G)| ≥ |G| − 4p, we have |G/Z(G)| 6 2.
Thus G is abelian, which is a contradiction. If 2α−3 > p, then Lemma 2.10 shows
that there is no element of order 4 in Z(G), so |G| = |Z(G)| +M(G) and hence,
2α = 2m+M(G), where |Z(G)| = 2m. Thus m = 2 and p = 2α−2− 1 > 2α−3 > p,
which is a contradiction. So, there exists y ∈ G \ Z(G) with o(y) = 2. Therefore,

Lemma 2.11 and (∗) show that |G|4 ≤
|G|−|CG(x)|

2 6 4p and hence, we can conclude
that |G| < 16p.

3) k = 5 and p = 5t+1. Then by virtue of Lemma 2.7, |G||22 ·p ·5α, where α > 0.
Since p = 5t + 1 is a prime number which is greater than 5, p 6∈ π(G). If G is a
5-group, then exp(G) = 5, so 4p = |G| − 1 = 5u − 1 and hence, p = (5u − 1)/4. If
G is a {2, 5}-group, then G is solvable. Let N be a normal minimal subgroup of
G. In the following, we examine two possibilities for order of N :

(i). If |N |=2t, where t∈N, then the action ofG5onN is Frobenius. HenceG5 is
cyclic. Since 25 6∈ πe(G), |G5| = 5. Corollary 2.16(ii) shows thatm5(G) = n5(G)·4
= 4p which follows that p = n5(G)||G|. Hence, we arrive at a contradiction.

(ii). If |N | = 5u, then |G2| ∈ {2, 4}. Thus G5 E G and hence, G ∼= G5 o C2t ,
where t ∈ {1, 2}. Therefore, 5u−1 = |G5|−1 = 4p and hence, p = (5u−1)/4, as
claimed.

4) k = 6. By virtue of Lemma 2.7, we deduce that |G||2α1 · 3α2 · p, where for
i ∈ {1, 2}, αi > 0. If π(G) = {2, 3, p}, then since k = 6, p 6 5. But p 6= 3
and hence, p = 5, thus by Lemma 2.8, there is no element such as z in G with
o(z) = 6 such that [G : NG(〈z〉)] ∈ {15, 20}. We claim that there exists z′ in G
such that o(z′) = 6 and 5|[G : NG(〈z′〉)]. If not, then since |Aut(〈z′〉)| = 2, it
is concluded that 5||CG(〈z′〉)|. So, G contains an element of order 30, which is
contradiction with k = 6. Thus 5|[G : NG(〈z′〉)] and hence, Lemma 2.8 shows that
[G : NG(〈z′〉)] ∈ {5, 10}. Since [G : NG(〈z′〉)]|10 and [NG(〈z′〉) : CG(〈z′〉)]|2, we
deduce that G3 6 CG(〈z′〉). By our assumption, we can conclude exp(G3) = 3 and
hence, |CG(〈z′〉)|3 6 20. So, we have |G3| ∈ {3, 9}. First let G be a solvable group
and let H be a {3, 5}-Hall subgroup of G. Therefore, n3(H) = 3s+1|5 and hence,
s = 0. So, 5||NH(G3)| and hence, 5||NG(G3)|. But, [NG(G3) : CG(G3)]||Aut(G3)|
and Aut(G3) ∼= C2 or GL2(3). Therefore, 5||CG(G3)| and hence, G contains an
element of order 15, which is a contradiction with k = 6. Hence, G is a {2, 3}-
group. Also, if G is a non-solvable group, then Theorem 2.21 shows that G ∼= S5.
5) k = 10. In this case, Lemma 2.7 shows that 10||G| and |G||2α1 · 5α2 · pα3 ,
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where for i ∈ {1, 2}, αi > 0 and α3 ∈ {0, 1}. If p 6= 5 and π(G) = {2, 5, p},
then since k = 10, p < 10. Since 3 < p, p = 7. Hence, Lemma 2.8 forces
[G : NG(〈z〉)] 6 7, where z is an element in G with o(z) = 10. We claim that
7 divides [G : NG(〈z〉)]. If not, then since [NG(〈z〉) : CG(〈z〉)]|4, (1) shows that
7||CG(〈z〉)|, which is a contradiction with k = 10. Hence, [G : NG(〈z〉)] = 7, so (1)
implies that G5 6 CG(〈z〉). Thus exp(G5) = 5 and hence, |CG(〈z〉)|5 6 28. Thus
|G5| ∈ {5, 25}. By virtue of Theorem 2.21, G is solvable. Let H be a {5, 7}-Hall
subgroup of G. Therefore, n5(H) = 5v + 1|7 and hence, v = 0. So, 7||NH(G5)|
and hence, 7||NG(G5)|. But [NG(G5) : CG(G5)]||Aut(G5)|. Since Aut(G5) ∼= C4

or GL2(5), 7||CG(G5)|, by (1). Hence, G contains an element of order 35, which
is a contradiction with k = 10. Therefore, G is a {2, 5}-group.
6) k = 12. Then applying Lemma 2.7 shows that |G||2α1 · 3α2 · .pα3 , where for
i ∈ {1, 2}, αi > 0 and α3 ∈ {0, 1}. By our assumption, we have p 6= 3. If
π(G) = {2, 3, p}, then since k = 12, we deduce that p 6 11. If p = 5, then
repeating the argument given in the proof of Case (2-i) of Theorem 2.21 shows
that |G|3 = 3 and n3(G) ∈ {1, 5, 10, 40, 160}. But Corollary 2.16(ii) shows that
m12(G) = n3(G) · φ(3) · t = 20, where t = m4(CG(G3)) ≥ 2 and also, n3(G) =
3s+1 6= 5. Thus n3(G) 6∈ {5, 10, 40, 160} and hence, n3(G) = 1. Also, 15 6∈ πe(G).
So, the action of G5 on G3 is Frobenius and hence, |G5| = 5|3 − 1, which is a
contradiction. If p = 7, then repeating the argument given in the proof of Case
(2-iv) of Theorem 2.21 shows that |G|3 = 3 and |G|7 = 7. Let N be a normal
minimal subgroup of G. If |N | = 7, then since 14 6∈ πe(G), the action of G2 on
N is Frobenius and hence, |G2||7 − 1. Thus |G2| = 2, which is a contradiction.
Also, since 21 6∈ πe(G) and 7 - 3 − 1, we can see that 3 - |N |. Thus n3(G) 6=
1. But 28 = m12(G) = 2 · n3(G) · m4(CG(G3)). Therefore, n3(G) = 7 and
m4(CG(G3)) = 2. Also, this allows us to assume that G2 6 NG(G3). If |N | =
2t, then since 14 6∈ πe(G), the action of G7 on N is Frobenius and hence, G2

is abelian and 7|2t − 1. Also, applying Lemmas 2.10 and 2.11 guarantee that
4 6 |G2(CG(G3))| 6 8. On the other hand, |NG(G3)|/|CG(G3)|||Aut(C3)| = 2
and G2 6 NG(G3). So, 8 6 |G2| 6 16. Therefore, t = 3 and hence, we can see at
once that N is a 2-elementary abelian group of order 8 and CG(N) = N . Thus
|G2| = 16, because, 4 ∈ πe(G). On the other hand, 12 ∈ πe(G) and hence, we
can see that C6 . NG(N)/CG(N) ∼= GL3(2), which is a contradiction, because
6 6∈ πe(GL3(2)). If p = 11, then Lemma 2.8 forces [G : NG(〈z〉)] 6 11, where z
is an element in G with o(z) = 12. We claim that 11|[G : NG(〈z〉)]. If not, then
since [NG(〈z〉) : CG(〈z〉)]|4, (1) shows that 11||CG(〈z〉)|, which is a contradiction
with k = 12. Hence, [G : NG(〈z〉)] = 11 and so, (1) implies that G3 6 CG(〈z〉).
Thus exp(G3) = 3 and hence, |CG(〈z〉)|3 × 2 6 44. Therefore, |G3| ∈ {3, 9}. By
virtue of Theorem 2.21, G is solvable. Let H be a {3, 11}-Hall subgroup of G.
Therefore, n3(H) = 3v + 1|11 and hence, v = 0. So, 11||NH(G3)| and hence,
11||NG(G3)|. But [NG(G3) : CG(G3)]||Aut(G3)| and Aut(G3) ∼= C2 or GL2(3),
thus 11||CG(G3)|, by (1). Hence, G contains an element of order 33, which is a
contradiction with k = 12. Therefore, G is a {2, 3}-group.
7) Let 2p + 1 be a prime number and k ∈ {2(2p + 1), 4(2p + 1)} or let 4p + 1 be



166 B. Asadian and N. Ahanjideh

a prime number and k ∈ {4p + 1, 2(4p + 1)}. In the following, we examine the
structure of G for every value of k:

(i). If k = 4p+1, then since (4p+1)4p > 4p, Lemma 2.5 implies that n4p+1 = 1
and |G4p+1| = 4p+1 and hence, G4p+1 is a cyclic normal subgroup of G. Since by
Lemma 2.9, |CG(G4p+1)| = 4p + 1, we have G/CG(G4p+1) ↪→ Aut(G4p+1) ∼= C4p

and hence, G ∼= C4p+1 o Cl, where l|4p.
(ii). If k = 2(2p + 1), then by virtue of Lemma 2.7, we deduce that |G||2α1 ·

p · (2p + 1)α2 , where for i ∈ {1, 2}, αi > 0. Since (2p + 1)2p > 4p, Lemma 2.5
implies that G2p+1 EG and |G2p+1| = 2p+ 1. Hence, G2p+1 is a cyclic subgroup
of G. Thus Corollary 2.16(ii) shows that m2(2p+1)(G) = n2p+1(G) · 2p · t, where
t = m2(CG(G2p+1)) and hence, m2(2p+1)(G) = 2p · t = 4p which shows that t = 2.
It is a contradiction with Corollary 2.16(i).

(iii). If k = 4(2p + 1) and x is an element G of order k, then by Lemmas 2.8
and 2.9, we can see that CG(x) = 〈x〉 and [G : NG(〈x〉)] = 1. Thus 〈x〉 E G and
G/〈x〉 ↪→ Aut(〈x〉) ∼= C2p × C2. Therefore, G ∼= C4(2p+1) o (Cu × Cl), where u|2p
and l|2.

(iv). If k = 2(4p + 1) and x is an element G of order k, then by Lemmas 2.8
and 2.9, we can see that CG(x) = 〈x〉 and [G : NG(〈x〉)] = 1. Thus 〈x〉 E G and
G/〈x〉 ↪→ Aut(〈x〉) ∼= C4p. Therefore, G ∼= C2(4p+1) o Cl, where l|4p.
8) Let k = 25 and let x be an element of order 25 in G. According to Lemma
2.2, in this case p = 5. Hence, Lemma 2.7 shows that |G||22 · 5α, where α > 0.
It follows by Lemmas 2.8 and 2.9 that CG(x) = 〈x〉 and 〈x〉 is a normal subgroup
of G. Therefore, G/〈x〉 . Aut(C25) ∼= C20. If 53||G|, then since 25 ∈ πe(G) and
G5 EG, we deduce that m25(G) = m25(G5). Since there is not any group of order
125 with the unique cyclic subgroup of order 25, we deduce that |G5| = 25. Thus
G

CG(x) . C4 and hence, G ∼= C25 o Cl, where l|4.
9) k = 50. Let x ∈ G such that o(x) = 50. By virtue of Lemma 2.2, p = 5. Similar
to the previous argument, we have 〈x〉 = CG(x). Since k = 50, 52||G| and hence,
we conclude that 52 6 |G|5. We claim that |G|5 = 52. If not, then |G5| = 5s,
where s > 3. Then it is evident that G5 can not be a cyclic group and hence,
Lemma 2.12 shows that 52|M(G) = 20, which is impossible. So, we deduce that
|G5| = 52 and hence, G

CG(x) . C4. Thus G ∼= C50 o Cl, where l|4.

In the following, as a consequent of the main theorem, we examine the structure
of �nite group G with M(G) = 20:

Corollary 3.1. Let G be a �nite group with M(G) = 20. Then G is one of the

following groups:

(1) If k = 4, then G is a non-abelian 2-group of order 32;

(2) if k = 6, then either G ∼= S5 or G ∼= C6 × S3;
(3) if k = 25, then G ∼= C25 o Cl, where l|4;
(4) if k = 44, then G ∼= C44 o (Cu × Cl), where u|10 and l|2;
(5) if k = 50, then G ∼= C50 o Cl, where l|4.
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Proof. In Lemma 2.1 and Lemma 2.2, the possible values for k, are recognized.
On the other hand, according to Lemma 2.3, k 6= 2, 5, 11. Also, Theorem 2.21
implies that k 6= 3.

In the following, the other values of k are examined:
(1). Let k = 4. According to case (2) of the proof of the main theorem, G is

a non-abelian 2-group with |G| < 16 · 5 = 80. According to the classi�cation of
non-abelian groups of order 64, there is no group of order 64 with exp(G) = 4 and
M(G) = 20. So, G is a non-abelian 2-group of order 32.

(2). If k = 6 and G is a non-solvable group, then G ∼= S5, by Theorem
2.21. In the following, we examine the structure of G, when G is a solvable
group and k = 6. According to our main theorem, G is a {2, 3}-group. We have
|CG(x)| = 2u ·3v, where u, v 6 2 and x ∈ G such that o(x) = 6. SinceM(G) = 20,
then Lemma 2.8 shows that [G : NG(〈x〉)] ∈ {1, 2, 3, 4, 6, 8, 9}. If there exists
an element y of order 6 in G such that [G : NG(〈y〉)] ∈ {3, 6, 8, 9}, then our
assumption, M(G) = 20, guarantees the existence of another element z of order 6
in G such that [G : NG(〈z〉)] ∈ {1, 2, 4}. In fact, without loss of generality, we can
assume that G always has an element x such that [G : NG(〈x〉)] ∈ {1, 2, 4}. Also,
[NG(〈x〉) : CG(〈x〉)]||Aut(〈x〉)| = 2. So, (1) forces |G||25 · 32.

Since [G : NG(〈x〉)]|4 and [NG(〈x〉) : CG(〈x〉)]|2, we deduce that G3 6 CG(〈x〉).
Applying the third Sylow,s theorem implies that n3(G) ∈ {1, 4, 16}. In the follow-
ing, we examine two possibilities for v:

(i). If v = 1, then |G|3 = 3. Therefore, Corollary 2.16(ii) forces m6(G) =
n3(G) · 2t, where t = m2(CG(G3)). Thus m6(G) ∈ {2t, 8t, 32t}. If m6(G) = 2t,
then t = 10, which is a contradiction with Corollary 2.16(i). If m6(G) ∈ {8t, 32t},
then we get a contradiction with M(G) = 20.

(ii). If v = 2, then |G3| = 9. So, G3 is a 3-elementary abelian group. Set C :=
CG(〈x〉). If C is abelian, then we can see that C = C3 ×C3 ×C2 ×C2 and hence,
m6(C) = 8 · 3 = 24, which is a contradiction with (∗). Thus C is not abelian and
hence, C ∼= C6×S3, where S3 denotes the symmetric group of degree 3. Therefore,
m6(C) = m6(C6) · |S3|+m3(C6) ·m2(S3) +m2(C6) ·m3(S3) = 20 and hence, C is
normal in G. This forces 〈x〉 = Z(C) to be normal in G. Thus [G : NG(〈x〉)] = 1
and hence, (1) guarantees |G||72. If |G| = 72, then πe(G) ⊆ {1, 2, 3, 4, 6}. Thus
by Lemma 2.13, 9|m2 + m4 + m6 = m2 + m4 + 20 and 8|m3 + m6 = m3 + 20.
So, there exist the natural numbers s, t such that s, t > 3, m2 + m4 + 20 = 9t
and m3 + 20 = 8s. Therefore, 1 +m2 +m3 +m4 +m6 = 72 forces 8s+ 9t = 91.
Thus considering the di�erent values of s and t shows that s = 8 and t = 3. So,
m3 = 64 − 20 = 44. But n3(G) = 3u + 1|8 and hence n3(G) ≤ 4. This shows
that 44 = m3(G) 6 n3(G).(|G3| − 1) 6 4 · 8 = 32, which is a contradiction. Thus
|G| = 36 and hence, G = C ∼= C6 × S3.

(3). If k = 10, then Lemma 2.7 shows that |G||2α1 · 5α2 , where for i ∈ {1, 2},
αi > 0. Let x ∈ G such that o(x) = 10. Then |CG(〈x〉)| = 2u ·5v. According to (∗),
we can see that u 6 2 and v = 1. Since [G : NG(〈x〉)]||G|, Lemma 2.8 shows that
[G : NG(〈x〉)] ∈ {1, 2, 4, 5}. Note that if [G : NG(〈x〉)] ∈ {4, 5}, then there exists
y ∈ G such that [G : NG(〈y〉)] ∈ {1, 2}. So, without loss of generality, we can
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assume that [G : NG(〈x〉)]|2 and hence, (1) shows that |G||25 ·52. Since [NG(〈x〉) :
CG(〈x〉)]|2, we deduce that G5 6 CG(〈x〉). If G5 5 G, then |G : NG(G5)| > 6.
Thus Corollary 2.16(ii) shows that m10(G) = n5(G) · φ(10) · t > 6 · 4 · t = 24t,
where t = m2(CG(G5)). Obviously, this is a contradiction with (∗). If G5 E G,
then Corollary 2.16(ii) shows that m10(G) = 4t = 20, where t = m2(CG(G5)) = 5.
Since CG(G5) = G5 × G2(CG(G5)), we deduce that |G2(CG(G5))| − 1 = t = 5,
which is impossible.

(4). If k = 12, then by applying the argument in Case (2), Subcase (i) of the
proof of Theorem 2.21, we get a contradiction.

(5). If k = 22, then the main theorem leads us to get a contradiction and if
k=44, then the main theorem shows that G∼=C44o(Cu×Cl), where u|10 and l|2.

(6). If k ∈ {25, 50}, then the main theorem completes the proof.
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