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On quasi n-absorbing elements

of multiplicative lattices

Ece Yetkin Celikel

Abstract. A proper element q of a lattice L is said to be a quasi n-absorbing element if

whenever anb 6 q implies that either an 6 q or an−1b 6 q. We investigate properties of this new

type of elements and obtain some relations among prime, 2-absorbing, n-absorbing elements in

multiplicative lattices.

1. Introduction

In this paper we de�ne and study quasi n-absorbing elements in multiplicative
lattices. A multiplicative lattice is a complete lattice L with the least element 0
and compact greatest element 1, on which there is de�ned a commutative, associa-
tive, completely join distributive product for which 1 is a multiplicative identity.
Notice that L(R) the set of all ideals of a commutative ring R is a special example
for multiplicative lattices which is principally generated, compactly generated and
modular. However, there are several examples of non-modular multiplicative lat-
tices (see [1]). Weakly prime ideals [3] were generalized to multiplicative lattices
by introducing weakly prime elements [7]. While 2-absorbing, weakly 2-absorbing
and n-absorbing ideals in commutative rings were introduced in [5], [6], and [4], 2-
absorbing and weakly 2-absorbing elements in multiplicative lattices were studied
in [10].

We begin by recalling some background material which will be needed. An
element a of L is said to be compact if whenever a 6

∨
α∈I aα implies a 6

∨
α∈I0 aα

for some �nite subset I0 of I. By a C-lattice we mean a (not necessarily modular)
multiplicative lattice which is generated under joins by a multiplicatively closed
subset C of compact elements of L. We note that in a C-lattice, a �nite product
of compact elements is again compact. Throughout this paper L and L∗ denotes a
multiplicative lattice and the set of compact elements of the lattice L, respectively.
An element a of L is said to be proper if a < 1. A proper element p of L is said to
be prime (resp. weakly prime) if ab 6 p (resp. 0 6= ab 6 p) implies either a 6 p or
b 6 p. If 0 is prime, then L is said to be a domain. A proper element m of L is said
to be maximal if m < x 6 1 implies x = 1. The Jacobson radical of a lattice L is
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de�ned as J(L) =
∧
{m |m is a maximal element of L}. L is said to be quasi-local

if it contains a unique maximal element. If L = {0, 1}, then L is called a �eld.
For a ∈ L, we de�ne a radical of a as

√
a =

∧
{p ∈ L | p is prime and a 6 p}. Note

that in a C-lattice L,
√
a =

∧
{p ∈ L | p is prime and a 6 p} =

∨
{x ∈ L∗ | xn 6 a for some n ∈ Z+}

by (Theorem 3.6 of [12]). Elements of the setNil(L) =
√
0 are called nilpotent. For

any prime element p ∈ L by Lp we denote the localization F = {x ∈ C | x 
 p}.
For details on C-lattices and their localizations see [9] and [11]. An element e ∈ L
is said to be principal [8], if it satis�es the identities (i) a ∧ be = ((a : e) ∧ b)e and
(ii) (ae ∨ b) : e = (b : e) ∨ a. Elements satisfying the identity (i) are called meet

principal, elements satisfying (ii) are called join principal. Note that any �nite
product of meet (join) principal elements of L is again meet (join) principal [8,
Lemma 3.3 and Lemma 3.4]. If every element of L is principal, then L is called a
principal element lattice [2].

Recall from [10] that a proper element q of L is called 2-absorbing (resp. weakly
2-absorbing) if whenever a, b, c ∈ L with abc 6 q (resp. 0 6= abc 6 q), then either
ab 6 q or ac 6 q or bc 6 q. We say that (a, b, c) is a triple zero element of q if abc =
0, ab 66 q, ac 66 q and bc 66 q. Observe that if q is a weakly 2-absorbing element
which is not a 2-absorbing, then there exist a triple zero of q. A proper element
q ∈ L is n-absorbing (resp. weakly n-absorbing) if a1a2 · · · an+1 6 q (resp. 0 6=
a1a2 · · · an+1 6 q) for some a1a2 · · · an+1 ∈ L∗ then a1a2 · · · ak−1ak+1 · · · an+1 6 q
for some k = 1, . . . , n+ 1.

2. Quasi n-absorbing elements

Let L be a multiplicative lattice and n be a positive integer.

De�nition 2.1. A proper element q of L is called:
• quasi n-absorbing if anb 6 q for some a, b ∈ L∗ implies an 6 q or an−1b 6 q,
• weakly quasi n-absorbing if 0 6= anb 6 q for some a, b ∈ L∗ implies an 6 q or
an−1b 6 q.

Theorem 2.2. Let q be a proper element of L and n > 1. Then:

(1) q is a prime element if and only if it is quasi 1-absorbing,
(2) q is a weakly prime element if and only if it is weakly quasi 1-absorbing,
(3) if q is n-absorbing, then it is quasi n-absorbing,
(4) if q is quasi n-absorbing, then it is weakly quasi n-absorbing,
(5) if q is quasi n-absorbing, then it is quasi m-absorbing for all m > n,
(6) if q is weakly quasi n-absorbing, then it is weakly quasi m-absorbing for all

m > n.

Proof. (1), (2), (3) and (4) are obvious. To prove (5) suppose that q is a quasi
n-absorbing element of L, and a, b ∈ L∗ with amb 6 q for some m > n. Hence
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an(am−nb) 6 q. Since q is a quasi n-absorbing element, we have either an 6 q or
an−1(am−nb) 6 q. So, either am 6 q or am−1b 6 q. This shows that q is a quasi
m-absorbing element of L.

(6) can be proved analogously.

Corollary 2.3. Let q be a proper element of L.

(1) If q is prime, then it is quasi n-absorbing for all n > 1.

(2) If q is weakly prime, then it is weakly quasi n-absorbing all n > 1.

(3) If q is 2-absorbing, then it is a quasi n-absorbing for all n > 2.

(4) If q is weakly 2-absorbing, then it is weakly quasi n-absorbing for all n > 2.

The converses of these relations are not true in general.

Example 2.4. Consider the lattice of ideals of the ring of integers L = L(Z). Note
that the element 30Z of L is a quasi 2-absorbing element, and so quasi n-absorbing
element for all n > 2 by Corollary 2.3, but it is not a 2-absorbing element of L by
Theorem 2.6 in [7].

Proposition 2.5. For a proper element q of L the following statements are equiv-

alent.

(1) q is a quasi n-absorbing element of L.

(2) (q : an) = (q : an−1) where a ∈ L∗, a
n 
 q.

In paticular, 0 is a quasi n-absorbing element of L if and only if for each a ∈ L∗
we have an = 0 or ann(an) = ann(an−1).

Proof. It follows directly from De�nition 2.1.

Notice that if q is a weakly quasi n-absorbing element which is not quasi n-
absorbing, then there are some elements a, b ∈ L∗ such that anb = 0, an 
 q and
an−1b 
 q. We call the pair of elements (a, b) with this property � a quasi n-zero
element of q. Notice that a zero divisor element of L is a quasi 1-zero element of
0L, and (a, a, b) is a triple zero element of q if and only if (a, b) is a quasi 2-zero
element of q.

Theorem 2.6. Let q be a weakly quasi n-absorbing element of L. If (a, b) is a

quasi n-zero element of q for some a, b ∈ L∗, then an ∈ ann(q) and bn ∈ ann(q).

Proof. Suppose that an /∈ ann(q). Hence anq1 6= 0 for some q1 ∈ L∗ where q1 6 q.
It follows 0 6= an(b ∨ q1) 6 q. Since an 
 q, and q is weakly quasi n-absorbing, we
conclude that an−1(b∨ q1) 6 q. So an−1b 6 q, a contradiction. Thus anq = 0, and
so an ∈ ann(q). Similarly we conclude that bn ∈ ann(q).

Theorem 2.7. If {pλ}λ∈Λ is a family of (weakly) prime elements of L, then
∧
λ∈Λ

pλ

is a (weakly) quasi m-absorbing element for all m > 2.
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Proof. Let {pλ}λ∈Λ be a family of prime elements of L. By Corollary 2.3 (3) it is

su�cient to prove that
∧
λ∈Λ

pλ is a quasi 2-absorbing element of L.

Let a, b ∈ L∗ with a2b 6
∧
λ∈Λ

pλ. Since a2b 6 pi for all prime elements pi, we

have a 6 pi or b 6 pi. Thus ab 6 pi for all i = 1, . . . , n and so ab 6
∧
λ∈Λ

pλ, which

completes the proof for prime elements.
For weakly prime elements the proof is similar.

Corollary 2.8. Let q be a proper element of L. Then
√
q, Nil(L) and J(L) are

quasi n-absorbing elements of L for all n > 2.

Proof. It is clear from Theorem 2.7.

Theorem 2.9. If {qλ}λ∈Λ is a family of (weakly) quasi m-absorbing elements of a

totally ordered lattice L, then for each positive integer m
∧
λ∈Λ

qλ is a (weakly) quasi

m-absorbing element of L.

Proof. Assume that {qλ}λ∈Λ is an ascending chain of quasi m-absorbing elements

and am 

∧
λ∈Λ

qλ and am−1b 

∧
λ∈Λ

qλ. We show that amb 

∧
λ∈Λ

qλ. Hence a
m 
 qj

and am−1b 
 qk for some j, k = 1, . . . , n.
Put t = min{j, k}. Then am � qt and am−1b � qt. Since qt is a quasi m-

absorbing element, it follows amb � qt. Thus a
mb 


∧
λ∈Λ

qλ, we are done.

For weakly prime elements the proof is similar.

Theorem 2.10. Let for all i = 1, 2, . . . , n, elements q1, . . . , qn ∈ L are (weakly)

quasi mi-absorbing, respectively. Then
n∧
i=1

qi is a (weakly) quasi m-absorbing ele-

ment of L for m = max{m1, . . . ,mn}+ 1.

Proof. Suppose that q1, . . . , qn are quasi mi-absorbing, respectively. Let a, b ∈ L∗

be such that amb 6
n∧
i=1

qi. Hence ami 6 qi or a
mi−1b 6 qi for all i = 1, .., n. Now

assume that am 66
n∧
i=1

qi. Without loss generality we can suppose that ami 6 qi for

all 1 6 i 6 j, and ami 66 qi for all j + 1 6 i 6 n. Hence we have ami−1b 6 qi for
all j + 1 6 i 6 n. Then we get clearly am−1b 6 qi for m = max{m1, . . . ,mn}+ 1

and for all 1 6 i 6 n. Thus am−1b 6
n∧
i=1

qi, so we are done.

For weakly prime elements the proof is similar.

If x ∈ L, the interval [x, 1] is denoted be L/x. The elemets of a and L/x is
again a multiplicative lattice with a ◦ b = ab ∨ x for all a, b ∈ L/x.
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Theorem 2.11. Let x and q be proper elements of L with x 6 q. If q is a (weakly)
quasi n-absorbing element of L, then q is a (weakly) quasi n-absorbing element of

L/x.

Proof. Suppose that a = a ∨ x, b = b ∨ x ∈ L with anb 6 q, where q is a quasi
n-absorbing element of L. Then anb ∨ x 6 q, and so anb 6 q. Since q is quasi
2-absorbing, we get either an 6 q or an−1b 6 q. Thus an = (a ∨ x)n 6 q or

an−1b = (a ∨ x)
n−1

(b ∨ x) 6 q, as needed.
For weakly prime elements the proof is similar.

Recall that any C-lattice can be localized at a multiplicatively closed set. Let
L be a C-lattice and S a multiplicatively closed subset of L∗. Then for a ∈ L,
aS =

∨
{x ∈ L∗ |xs 6 a for some s ∈ S} and LS = {aS | a ∈ L}. LS is again a

multiplicative lattice under the same order as L with the product aS ◦bs = (aSbS)S
where the right hand side is evaluated in L.

If p ∈ L is prime and S = {x ∈ L∗ |x 
 p}, then LS is denoted by Lp. [9]

Theorem 2.12. Let m be a maximal element of L and q be a proper element of

L. If q is a (weakly) quasi n-absorbing element of L, then qm is a (weakly) quasi

n-absorbing element of Lm.

Proof. Let a, b ∈ L∗ such that anmbm 6 qm. Hence uanb 6 q for some u 
 m.
It implies that an 6 q or an−1(ub) 6 q. Since um = 1m, we get anm 6 qm or
an−1
m bm 6 qm, we are done.

Theorem 2.13. Let L be a principal element lattice. Then the following state-

ments are equivalent.

(1) Every proper element of L is a quasi n-absorbing element of L.
(2) For every a, b ∈ L∗, a

n = canb or an−1b = danb for some c, d ∈ L.
(3) For all a1, a2, . . . , an+1 ∈ L∗, (a1 ∧ a2 ∧ . . . ∧ an)

n 6 ca1a2 · · · an+1 or

(a1 ∧ a2 ∧ . . . ∧ an)
n−1an+1 6 da1a2 · · · an+1 for some c, d ∈ L.

Proof. (1) ⇔ (2). Suppose that every proper element of L is a quasi n-absorbing
element of L. Hence anb 6 (anb) implies that an 6 (anb) or an−1b 6 (anb). Since
L is a principal element lattice, there is some element c ∈ L with an = canb or
there is some element d ∈ L with an−1b = danb. The converse is clear.

(2) ⇒ (3). Put a = a1 ∧ a2 ∧ . . . ∧ an and b = an+1. Hence the result follows
from (2).

(3) ⇒ (2). For all a, b ∈ L∗, we can write an = (a ∧ a ∧ . . . ∧ a︸ ︷︷ ︸)
n times

6 canb or

an−1b = (a ∧ a ∧ . . . ∧ a︸ ︷︷ ︸)b
n−1 times

6 danb.

Theorem 2.14. Let L = L1 × L2 where L1 and L2 are C-lattices. Then:

(1) q1 is a quasi n-absorbing element of L1 if and only if (q1, 1L2
) is a quasi

n-absorbing element of L,
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(2) q2 is a quasi n-absorbing element of L2 if and only if (1L1 , q2) is a quasi

n-absorbing element of L.

Proof. (1). Suppose that q1 is a quasi n-absorbing element of L1.
Let (a1, a2)

n(b1, b2) 6 (q1, 1L2
) for some a1, b1 ∈ L1∗ and a2, b2 ∈ L2∗ . Then

an1 b1 6 q1 implies that either an1 6 q1 or an−1
1 b1 6 q1. It follows either (a1, a2)

n 6
(q1, 1L2) or (a1, a2)

n−1(b1, b2) 6 (q1, 1L2). Thus (q1, 1L2) is a quasi n-absorbing
element of L. Conversely suppose that (q1, 1L2) is a quasi n-absorbing element of L
and anb 6 q1 for some a, b ∈ L1∗ . Hence (a, 1L2

)n(b, 1L2
) 6 (q1, 1L2

) which implies
that either (a, 1L2

)n 6 (q1, 1L2
) or (a, 1L2

)n−1(b, 1L2
) 6 (q1, 1L2

). So an1 6 q1 or
an−1

1 b1 6 q1, as needed.
(2). It can be veri�ed similar to (1).

Theorem 2.15. Let L = L1 × · · · × Lk where all Li are C-lattices. If qi is a

quasi ni-absorbing element of Li for all i = 1, . . . , k, then (q1, . . . , qk) is a quasi

m-absorbing element of L where m = max{n1, . . . , nk}+ 1.

Proof. Suppose that (a1, . . . , ak)
m(b1, . . . , bk) 6 (q1, . . . , qk) for some (a1, . . . , ak),

(b1, . . . , bk) ∈ L∗ and m = max{n1, . . . , nk}+ 1. Hence ami bi = ani
i (am−ni

i bi) 6 qi
for all i = 1, . . . , k. Since each qi is a quasi ni-absorbing element, we have either
ani
i 6 qi or am−1

i bi = ani−1
i (am−ni

i bi) 6 qi for all i = 1, .., k. If ani
i 6 qi for all

i = 1, . . . , k, then (a1, . . . , ak)
m 6 (q1, . . . , qk). Without loss generality, suppose

that ani
i 6 qi for all 1 6 i 6 j and am−1

i bi 6 qi for all j + 1 6 i 6 k, for some
j = 1, . . . , k. Thus (a1, . . . , ak)

m−1(b1, . . . , bk) 6 (q1, . . . , qk), so we are done.

De�nition 2.16. A proper element q of L is said to be a strongly quasi n-absorbing
element of L if whenever a, b ∈ L (not necessarily compact) with anb 6 q implies
that either an 6 q or an−1b 6 q.

It is clearly seen that every strongly quasi n-absorbing element of L is quasi
n-absorbing.

Theorem 2.17. Let L be a principal element lattice. The following statements

are equivalent.

(1) Every proper element of L is a strongly quasi n-absorbing element of L.
(2) For all a, b ∈ L, an = anb or an−1b = anb.
(3) (a1 ∧ a2 ∧ . . . ∧ an)

n 6 a1a2 · · · an+1 or (a1 ∧ a2 ∧ . . . ∧ an)
n−1an+1 6

a1a2 · · · an+1 for all a1, a2, . . . , an+1 ∈ L.

Proof. This can be easily shown using the similar argument in Theorem 2.13.

Theorem 2.18. Let q be a proper element of L. Then:

(1) If anb 6 q 6 a∧ b, where a, b ∈ L, implies that an 6 q or an−1b 6 q, then q
is a strongly quasi n-absorbing element of L.

(2) If a1a2 · · · an+1 6 q 6 a1∧a2∧ . . .∧an+1, where a1, a2, . . . , an+1 ∈ L, imp-

lies that a1 · · · ai−1ai+1 · · · an+1 6 q, for some 1 6 i 6 n+ 1, then q is a

strongly quasi n-absorbing element of L.
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Proof. (1). Let x, y ∈ L with xny 6 q. We show that xn 6 q or xn−1y 6 q. Now
put a = x ∨ q and b = y ∨ q. Hence we conclude anb 6 q 6 a ∧ b, and so an 6 q or
an−1b 6 q by (1). It follows xn 6 q or xn−1y 6 q.

(2). It can be easily veri�ed similar to (1).
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