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On the �ne structure of quadratical quasigroups

Wieslaw A. Dudek and Robert A. R. Monzo

Abstract. We prove that quadratical quasigroups form a variety Q of right and left simple

groupoids and that the spectrum of Q is contained in the set of integers equal to 1 plus a

multiple of 4. Properties of quadratical quasigroups are described and their inter-relationships

are explored. Every element of a quadratical quasigroup is proved to belong to a 4-cycle. These

results are applied to �nd conditions under which the group of additive integers, modulo n,

induces quadratical quasigroups.

1. Introduction

This paper builds on the work of Polonijo [3], Volenec [5] and Dudek [1] on quadra-
tical quasigroups. Polonijo [3] and Volenec [5] proved that a quadratical groupoid
is a quasigroup. Volenec [5, 6] gave a motivation for studying quadratical quasi-
groups, in terms of a geometrical representation of the complex numbers C as
points of the Euclidean plane. He de�ned a product ∗ on C that de�nes a quadra-
tical quasigroup and in which the product of distinct elements x and y is the third
vertex of a positively oriented, isosceles right triangle, at which the right angle
occurs. Other geometrical motivations for the study of quadratical quasigroups
one can �nd in [7, 8].

Volenec proved in [5] a number of properties of quadratical quasigroups, which
are listed in Theorem 2.2 below. These properties tell us a great deal and, indeed,
we apply them to prove that quadratical quasigroups form a variety Q (Theorem
2.30). Inter-relationships amongst the properties of quadratical quasigroups are
explored in Section 2.

We begin to amplify our understanding of the �ne structure of quadratical
quasigroups in Section 3. In so doing, we give further meaning to the quad in the
word quadratical, in terms of 4-cycles. We apply this to prove that the order of
a �nite quadratical quasigroup is m = 4t + 1 for some t ∈ {0, 1, 2, . . .} (Proposi-
tions 3.1 � 3.4), �ne tuning Dudek's result that the order of a �nite quadratical
quasigroup is odd [1, Corollary 1].

In Section 4 we prove results about conditions under which the group of additive
integers, modulo n, induces quadratical quasigroups. Results in this section rely
heavily on Dudek's Theorem (cf. Theorem 4.1) that proves that every quadratical
quasigroup is induced by a commutative group.
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This paper is the �rst of two by the authors on quadratical quasigroups. The
second paper will examine the �ne structure of quadratical quasigroups in detail
and introduce the concept of a translatable quadratical quasigroup. Quadratical
quasigroups of many new orders will also be given, along with ideas about possible
directions of future research in this area.

2. Properties of quadratical groupoids

De�nition 2.1. A groupoid (Q, ·) has property A if it satis�es the identity

xy · x = zx · yz. (A)

It is called right solvable (left solvable) if for any {a, b} ⊆ Q there exists a unique
x ∈ G such that ax = b (xa = b). It is left (right) cancellative if xy = xz implies
y = z (yx = zx implies y = z). It is a quasigroup if it is left and right solvable.

Note that a right solvable groupoid is left cancellative and a left solvable
groupoid is right cancellative.

Volenec [5] de�ned a quadratical groupoid as a right solvable groupoid satisfying
property A. He proved that a quadratical groupoid is left solvable and satis�es
the following identities:

Theorem 2.2. A quadratical groupoid satis�es the following identities:

x = x2 (idempotency), (1)

x · yx = xy · x (elasticity), (2)

x · yx = xy · x = yx · y (strong elasticity), (3)

yx · xy = x (bookend), (4)

x · yz = xy · xz (left distributivity), (5)

xy · z = xz · yz (right distributivity), (6)

xy · zw = xz · yw (mediality), (7)

x(y · yx) = (xy · x)y, (8)

(xy · y)x = y(x · yx), (9)

xy = zw ←→ yz = wx (alterability). (10)

Corollary 2.3. [2 and 3, Theorem 5] A quadratical groupoid is a quasigroup.

Note that throughout the remainder of this paper we will use the fact that
quadratical groupoids are quasigroups and satisfy properties (1) through (10),
often without mention. Note also that property (3) allows us to write the term
xyx without ambivalence in any quadratical quasigroup.

De�nition 2.4. We de�ne Q to be the collection of quadratical quasigroups.
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Theorem 2.5. A groupoid Q is a quadratical quasigroup if and only if it satis�es

(A), (3), (4) and (7).

Proof. (⇒) This follows from Theorem 2.2 and the de�nition of a quadratical
quasigroup.
(⇐) First we prove that Q is left cancellative. Suppose that ax = ay. Then,

x
(4)
= ax · xa ax=ay= ay · xa (A)

= yx · y (3)
= xy · x (A)

= ax · ya ax=ay= ay · ya (4)
= y.

So x = y and Q is left cancellative.
Property A implies x2 · x = x2x2 and so left cancellativity implies x = x2.

Hence, Q is idempotent. Since Q is medial and idempotent it is therefore (left and
right) distributive.

Using left and right distributivity, mediality, idempotency and strong elasticity
we have

a(b · ba) = ab · (a · ba) = ab · (ba · b) = (a · ba)b = (ab · a)b.

Hence,

a(b · ba) = (ab · a)b. (11)

We now prove that ax = b has a unique solution x = (b ·ba) · (b ·ba)(ba ·a). Indeed,

ax
(5)
= a(b · ba) · (a(b · ba) · a(ba · a)) (11),(5),(3)

= (aba · b) · (aba · b)(aba · a)
(5)
= (aba)(b · ba) (7),(1)

= ab · ba (4)
= b.

The solution x is unique because Q is left cancellative. We have proved that Q is
right solvable and so by de�nition, Q is a quadratical quasigroup.

Corollary 2.6. Q is a quadratical quasigroup if and only if it a medial, idempotent

groupoid that satis�es property A.

Proof. (⇒) This follows from the de�nition of a quadratical quasigroup and from
Theorem 2.2.
(⇐) Let Q be a medial, idempotent groupoid that satis�es property A. By Theo-
rem 2.5 we need only show that Q satis�es (3) and (4).

Since Q is idempotent and satis�es property A, for all {x, y} ⊆ Q,

x = x2
(7)
= x2x

(A)
= yx · xy,

so Q satis�es (4). Also, idempotency and mediality imply (5) and so

xy · x (1)
= xy · x2 (7)

= x2 · yx (1)
= x · yx (A)

= yx · yy (1)
= yx · y,

which proves (3).
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Theorem 2.7. A groupoid satisfying (4) and either (5) or (6) is idempotent

Proof. From (4) we obtain x2x2 = x for any x ∈ G. If Q also satis�es (5), then

x2x = x2(x2x2)
(5)
= (x2x2)(x2x2) = x2.

Also,

x = x2x2 = (x2x)(x2x)
(5)
= ((x2x)x2)((x2x)x) = (x2x2)(x2x) = xx2.

Then

x2 = x2x = (x2x)(xx2)
(4)
= x.

Similarly, in a groupoid satisfying (4) and (6), x = x2x, x2 = xx2 and x2 = xx2 =
(x2x)(xx2) = x, by (4).

Example 2.8. A groupoid Q of order greater than or equal to 2 and satisfying
the identity xy = zw is distributive but not idempotent.

Example 2.9. The following groupoid Q satis�es (4) but not (1), (2), (7), (5),
(10). Moreover, it is not left solvable or right solvable.

· x y z w
x y z w y
y w x w x
z y x w y
w z z x z

Theorem 2.10. A groupoid Q satisfying (4), (5), (6) and (7) is cancellative.

Proof. Suppose that ax = ay for any {a, x, y} ⊆ Q. By Theorem 2.7, ax = (ax)2.

Then, ax = ax · ax = ax · ay = ay · ax = a · yx = a · xy. Consequently, yx
(4)
=

(a·yx)(yx·a) = ax·(yx·a) (5)
= (ax·yx)(ax·a) (6)

= (ay·x)(ay·a) (5)
= ay·xa = ax·xa (4)

= x.
Similarly, xy = y. So y = xy · yx = yx = x.

Analogously, xa = ya implies x = y, so Q is cancellative.

Theorem 2.11. A groupoid satisfying (4), (5), (6) and (7) also satis�es (3).

Proof. Theorems 2.7 and 2.10 imply that Q is idempotent and cancellative. So

xy ·x = xy ·xx = x ·yx. Hence, (xy ·x)y = (x ·yx)y (6)
= xy ·(yx ·y) (5)

= (xy ·yx)(xy ·y)
(4)
= y(xy · y) (5)

= (y · xy)y2 = (y · xy)y and, by cancellation, xy · x = y · xy (5)
= yx · y.

Therefore, Q is strongly elastic, i.e., it satis�es (3).

Corollary 2.12. An idempotent medial groupoid satisfying (4) is cancellative and

strongly elastic.

Proof. Medial idempotent groupoids are distributive. The corollary follows from
Theorems 2.10 and 2.11.
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Theorem 2.13. A left (or right) cancellative, medial, idempotent groupoid satis-

fying (3) satis�es (4).

Proof. Mediality and idempotency imply distributivity. Then, (ca · ac)2 = ca·ac =
(ca · a)(ca · c). Thus, by (3) we obtain

(ca · ac)2 = ca · ac = (ca · a)(c · ac) = (ca · a)(ca · c) = (ca · a)(ac · a) = (ca · ac)a

and so left cancellativity implies ca · ac = a. Also, using right cancellativity,

(ca · ac)2 = ca · ac = ca · (ac)2 = (c · ac)(a · ac) = (a · ca)(a · ac) = a(ca · ac)

implies a = ca · ac.

Theorem 2.14. A groupoid Q is a quadratical quasigroup if and only if it is

idempotent, medial and satis�es (4).

Proof. (⇒) This follows from Theorem 2.2.
(⇐) By Corollary 2.6, we need only show that xy ·x = zx ·yz. But, since mediality
and idempotency imply left distributivity, zx·yz = (zx·y)(zx·z) and, by Corollary
2.12, zx · yz = (zx · y)(xz · x) = (zx · xz)(yx) = x · yx = xy · x.

De�nition 2.15. The dual of a groupoid (Q, ·) is the groupoid Q∗ = (Q, ∗), where
x ∗ y = y · x.

Corollary 2.16. The dual of a quadratical quasigroup is a quadratical quasigroup.

Corollary 2.17. Any subgroupoid of a quadratical quasigroup is a quadratical

quasigroup.

Note that an idempotent semigroup satis�es (4) if and only if it satis�es the
identity x = xyx; that is, if and only if it is a rectangular band. A semigroup with
property A is cancellative if and only if it is trivial.

Theorem 2.18. An idempotent groupoid satisfying (4) and (10) is elastic.

Proof. Indeed, x = x2 = yx · xy implies x · yx = xy · x.

Theorem 2.19. An elastic groupoid satisfying (4) is idempotent.

Proof. x2 = xx2 · x2x = x2x · xx2 = x.

Theorem 2.20. A groupoid Q is a quadratical quasigroup if and only if it satis�es

(2), (4) and (7).

Proof. (⇒) This follows from Theorem 2.2.
(⇐) Assume that Q satis�es (2), (4) and (7). By Theorem 2.19, Q is idempotent.
By Theorem 2.14 then, Q is quadratical.

Theorem 2.21. An idempotent groupoid satisfying (2) and (10) satis�es (4).
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Proof. x · yx = xy · x implies yx · xy = x2 = x.

Corollary 2.22. An idempotent groupoid satisfying (10) satis�es (2) if and only

if it satis�es (4).

Proof. This follows from Theorems 2.18 and 2.21.

Theorem 2.23. A medial groupoid satisfying (4) satis�es (10).

Proof. Suppose that xy = zw. Then zw ·yx = xy ·yx = y and wz ·xy = wz ·zw = z.
Therefore, yz = (zw · yx)(wz · xy) = (zw · wz)(yx · xy) = wx.

Theorem 2.24. A groupoid Q is a quadratical quasigroup if and only if it satis�es

(1), (2), (7) and (10).

Proof. (⇒) This follows from Theorem 2.2.
(⇐) Suppose that Q satis�es (1), (2), (7) and (10). By Theorem 2.21, it satis�es
(4). By Theorem 2.20 it is a quadratical quasigroup.

Theorem 2.25. A left (or right) distributive groupoid satisfying (3) and (10) has
the property A.

Proof. Since in a left distributive groupoid y ·zx = yz ·yx, zx ·yz = yx ·y = xy ·x.
Similarly, in a right distributive groupoid.

Theorem 2.26. In a quadratical quasigroup x · yz = xy · z if and only if x = z.

Proof. (⇒) Using Theorem 2.2, x · yz = xy · z implies xy · xz = xz · yz implies
yz · xy = (xz)2 = xz = zx · z implies xz = zx · z implies x = zx implies x = z.
(⇐) By Theorem 2.2, a quadratical quasigroup is elastic and so x ·yx = xy ·x.

De�nition 2.27. A groupoid is nowhere commutative if xy = yx implies x = y.

Theorem 2.28. Quadratical quasigroups are nowhere commutative.

Proof. Since by Theorem 2.2, quadratical quasigroups are alterable and idempo-
tent, xy = yx implies y2 = x2 implies y = x.

Theorem 2.29. A groupoid Q is a quadratical quasigroup if and only if it satis�es

(4), (5) and (10).

Proof. (⇒) This follows from Theorem 2.2.
(⇐) By Theorem 2.7, Q is idempotent. Therefore, by Theorem 2.14 we need only
show that Q is medial. Observe that by Theorems 2.11 and 2.25, this groupoid has
the property A. Hence, wx·w = zw ·xz = yw ·xy and, using (10), xz ·yw = xy ·zw.
So it is medial.

As a consequence of the above results we obtain
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Theorem 2.30. The class of all quadratical quasigroups form a variety uniquely

de�ned by

• (A), (3), (4), (7), or
• (1), (4), (7), or
• (2), (4), (7), or
• (4), (5), (10).

De�nition 2.31. A subset I of a groupoid Q is a right (left) ideal of Q if ig ∈ I
(gi ∈ I) for all i ∈ I and all g ∈ Q. The subset I is called an ideal if it is a right
ideal and a left ideal. A groupoid Q is simple (right simple; left simple) if for every
ideal (right ideal; left ideal) I of Q, I = Q.

Theorem 2.32. Groupoids satisfying (4) are right simple and left simple groupoids.

Proof. Suppose that I is a right or left ideal of a groupoid Q satisfying (4). Let
i ∈ I and g ∈ Q. Then, g = ig · gi ∈ I and so I = Q.

Corollary 2.33. Quadratical quasigroups are right and left simple.

3. Cycles in quadratical quasigroups

Let Q be a quadratical quasigroup with a, b ∈ Q and a 6= b. Suppose that C =
{x1, x2, . . . , xn} ⊆ Q consists of n distinct elements, such that aba = x1x2 =
x2x3 = x3x4 = . . . = xn−1xn = xnx1. Then C will be called an (ordered) n-cycle
based on aba. Note that x1 6= aba, or else x1 = x2 = . . . = xn = aba. Note
also that if C = {x1, x2, x3, . . . , xn} ⊆ Q is an n-cycle based on aba, then so is
Ci = {xi, x(i+1)modn, x(i+2)modn, . . . , x(i+n−1)modn}.

Proposition 3.1. If n-cycles exist in a quadratical quasigroup then n = 4.

Proof. Since aba = xnx1 = x1x2 = x2x3, by (10) x1 = x2xn and x2 = x3x1. Now
x3 · x2x4 = x3x2 · x3x4 = x3x2 · aba = (x3 · aba)(x2 · aba). But by (10), aba · x2 =
x3 · aba and so x3 · x2x4 = (x3 · aba)(x2 · aba) = (aba · x2)(x2 · aba) = x2 = x3x1.
Hence, by cancellation, x1 = x2x4 = x2xn and so x4 = xn.

Proposition 3.2. Let Q be a quadratical quasigroup with a, b ∈ Q and a 6= b.
Then every element x1 6= aba of Q is a member of a 4-cycle based on aba.

Proof. Let a, b ∈ Q and a 6= b. Suppose that x1 6= aba for some x1 ∈ Q. Using
right solvability, we can solve the equations aba = x1x, aba = xy, aba = yz and
aba = zw. If we de�ne x2 = x, x3 = y, x4 = z and x5 = w, then aba = x1x2 =
x2x3 = x3x4 = x4x5. Using (10), x4 = x5x3 and x5x1 = x2x4 = x2 · x5x3 = x2x5 ·
x2x3 = x2x5 ·aba. Therefore, by (10), aba·x5 = x1 ·x2x5 = x1x2 ·x1x5 = aba·x1x5.
Hence x5 = x1x5 and x1 = x5. So we have proved that {x1, x2, x3, x4} is a 4-cycle
based on aba.
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Proposition 3.3. Let C and D be two 4-cycles based on aba (a 6= b) in a quadra-

tical quasigroup. Then either C = D or C ∩D = ∅.
Proof. Suppose that C = {x1, x2, x3, x4} and D = {y1, y2, y3, y4}. If x1 = y1, then
aba = x1x2 = y1y2 = x1y2 and so x2 = y2. Then, aba = x2x3 = y2x3 = y2y3
and so x3 = y3. Finally, aba = x3x4 = y3x4 = y3y4 and x4 = y4. Hence, C = D.
Similarly, if x1 = y2, then we can prove that x2 = y3, x3 = y4 and x4 = y1 and
C = D. Similarly, if x1 ∈ {y3, y4} it is straightforward to prove that C = D.

The proofs that C = D if x2 ∈ D or x3 ∈ D or x4 ∈ D are similar.

Proposition 3.4. Any �nite quadratical quasigroup has order m = 4t + 1 for

some t ∈ {0, 1, 2, . . .}.
Proof. A �nite quadratical quasigroup consists of the element aba and the union
of its disjoint 4-cycles based on aba. By de�nition, no cycle contains the element
aba. The proposition is therefore valid.

So, later we will assume that m = 4t+ 1 for some natural t.

4. Existence of quadratical quasigroups

We start with the following theorem proved in [1].

Theorem 4.1. A groupoid (G, ·) is a quadratical quasigroup if and only if there

exists a commutative group (G,+) in which for every a ∈ G the equation z+z = a
has a unique solution z = 1

2a ∈ G, and two its automorphisms ϕ, ψ such that for

all x, y ∈ G we have
x · y = ϕ(x) + ψ(y), (12)

ϕ(x) + ψ(x) = x, (13)

2ψϕ(x) = x. (14)

From the proof of this theorem it follows that ϕψ = ψϕ. So, if ϕ 6= ψ, then
(G,+) induces two quadratical quasigroups: G = (G, ·) and its dual G∗ = (G, ◦),
where x◦y = y ·x. Clearly, in any case G 6= G∗ since x◦y = x ·y means that (G, ·)
is commutative which together with the basic identity (A) gives xy · x = zx · yz =
xz · yz = xy · z. This implies x = z, a contradiction. Since, G and G∗, by (12), are
isotopic to the same group, they are isotopic too. Moreover, from Theorem 3.3 in
[2] it follows that all parastrophes of a quadratical quasigroup are isotopic.

Corollary 4.2. There are no quadratical quasigroups with left (right) neutral el-

ement.

Proof. If e is a left neutral element then x = e · x = ϕ(e) + ψ(x). Since ψ(x) =
x − ϕ(e) is an automorphism of a group (Q,+), we have (x + y) − ϕ(e) = ψ(x +
y) = ψ(x) + ψ(y) = (x + y) − 2ϕ(e), which implies ϕ(e) = 0. Thus ψ(x) = x,
consequently, by (13), ϕ(x) = 0 for every x ∈ Q, a contradiction.

Analogously for quasigroups with a right neutral element.
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Corollary 4.3. There are no quadratical quasigroups that are loops or groups.

Corollary 4.4. If a quadratical quasigroup Q is induced by groups (Q,+) and

(Q, ◦), then these groups are isomorphic.

Proof. Indeed, x ·y = ϕ(x)+ψ(y) = α(x)◦β(y). Thus, ϕα−1(x)+ψβ−1(y) = x◦y.
So, groups (Q,+) and (Q, ◦) are isotopic. Thus, by Albert's theorem, they are
isomorphic.

Corollary 4.5. Quadratical quasigroups are isotopic if and only if they are induced

by isomorphic groups.

Proof. Let quadratical quasigroups Q1 and Q2 be induced by groups (Q1, ∗1) and
(Q2, ∗2), respectivety. If quasigroups Q1 and Q2 are isotopic, then groups (Q1, ∗1)
and (Q2, ∗2) also are isotopic, and consequently, they are isomorphic.

Corollary 4.6. Quadratical quasigroups induced by the same group are isotopic.

Corollary 4.7. Quadratical quasigroups of the same prime order are isotopic.

Theorem 4.8. A quadratical groupoid induced by the additive group Zm has the

form

x · y = ax+ (1− a)y , (15)

where a ∈ Zm and

2a2 − 2a+ 1 = 0. (16)

Proof. First observe that in the additive group Zm, where m = 4t + 1, for every
b ∈ Zm there exists z ∈ Zm such that z + z = b. Indeed, if b is even, then
obviously z = 1

2b ∈ Zm. If b is odd, then 1 + b is even and z + z = b + 4t + 1 for

z = 2t+ 1+b
2 ∈ Zm.

In Zm the equation (16) has the form 2a(a−1)+1 = 0 = km. Let d be a positive
common divisor of a and m. Since m is odd, d also is odd and d|(2a(a− 1) + 1).
Consequently, d|1. Hence (a,m) = 1. Analogously we can see that (a− 1,m) = 1.
So, for any a satisfying (16) we have (a,m) = (1 − a,m) = 1. Thus the maps
ϕ(x) = ax and ψ(x) = (1− a)x, where a ∈ Zm satis�es (16), are automorphisms
of the additive group Zm and satisfy (13), which in this case is equivalent to (15).
Since (14) is equivalent to (16), a quasigroup de�ned by (15) is quadratical.

Corollary 4.9. A groupoid induced by Zm by (15) is quadratical if and only if its

dual groupoid with the operation

x · y = (1− a)x+ ay (17)

is quadratical.
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Proof. Indeed, as it is not di�cult to see a satis�es (16) if and only if (16) is
satis�ed by 1−a. So, a and 1−a are roots of the polynomial w(x) = 2x2−2x+1.
If a = 1−a, then w(x) = 2(x−a)2 = 2x2− 4ax+2a2. Hence 2a = 1 and 2a2 = 1.
Thus, 1 = 4a2 = 2. Obtained contradiction shows that a 6= 1− a. Thus, (15) and
(17) de�ne two di�erent quadratical quasigroups.

Theorem 4.10. If m = 4t+1 is prime, then the additive group Zm induces exactly

two quadratical groupoids. They have form

x ◦1 y = a1x+ a2y and x ◦2 y = a2x+ a1y,

where a1 = 2t+ 1 + s, a2 = 2t+ 1− s and s2 ≡ t(modm).

Proof. By the Lagrange theorem (cf. [4]), the equation 2a2 − 2a+ 1 ≡ 0(modm)
has no more than two solutions in Zm. (Zm,+, ·) is a �eld, so these solutions have
the form a1 = 1

2 +
√
t and a1 = 1

2 −
√
t. Since in this �eld 1

2 is equal to 2t + 1

and
√
t ∈ Zm for each t ∈ Zm, we have a1 = 2t + 1 + s and a2 = 2t + 1 − s,

where s2 ≡ t(modm). Obviously a1 6= a2 and (a1,m) = (a2,m) = 1. Theorem 4.8
completes the proof.

Theorem 4.11. There are no quadratical quasigroups of order m = p1p2 · · · pk,
where pi are di�erent odd primes such that at least one pj ≡ 3(mod 4).

Proof. Indeed, all groups of such order are isomorphic to the additive group Zm.
Since any automorphism of the group Zm has the form ϕ(x) = ax, by Theorem
4.8, a quadratical quasigroup induced by this group has the form (15), where a
satis�es (16).

The equation (16) is equivalent to the equation 4a2 − 4a + 2 = 0(modm),
i.e., to the equation (2a − 1)2 + 1 = 0(modm). In the ring Zm the last equation
can be written in the form x2 ≡ (−1)(modm), where x = 2a − 1. The equation
x2 ≡ (−1)(modm) has a solution only in the case when each prime divisor p of m
has the property p ≡ 1(mod 4) (cf. [4]). So, if some prime pj |m and pj ≡ 3(mod 4),
then this group cannot induce quadratical quasigroups.

Corollary 4.12. There are no quadratical quasigroups of order 21, 33, 57, 69, 77,
93, 105, 129, . . .

Theorem 4.13. A commutative group of order m = p1p2 · · · pn, where p1, . . . , pn
are di�erent primes such that pi ≡ 1(mod 4), induces 2n di�erent quadratical

quasigroups.

Proof. Such groups are isomorphic to the additive group Zm. Quadratical quasi-
groups de�ned on this group have the form (15), where a satis�es (16). The
number of solutions of the equation f(x) ≡ 0(mod m) is equal to T1T2 · · ·Tn,
where Ti denotes of the number of solutions of the equation f(x) ≡ 0(mod pi)
(cf. [4]). But for f(x) = 2x2 − 2x+ 1 the last equation has exactly two solutions
(Theorem 4.10). Thus, f(x) ≡ 0(mod m) has exactly 2n solutions. Consequently,
it de�nes 2n quadratical quasigroups.
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Each �nite commutative group is isomorphic to a direct product of cyclic
groups. For simplicity consider the case when a commutative group G of or-
der m = 4t + 1 is a direct product of two groups Zm1

and Zm2
. If m1 6= m2,

then each automorphism ϕ of G has the form ϕ(x, y) = (ϕ1(x), ϕ(x2)), where ϕi
is an automorphism of the group Zmi because any automorphism saves the order
of each element, so ϕ(Zm1

× {0}) = Zm1
× {0}. Thus, in this case, quadratical

quasigroups induced by G are direct products of quadratical quasigroups induced
by groups Zmi .

Theorem 4.14. The group Zm induces a quadratical quasigroup if and only if

m = pα1
1 pα2

2 · · · pαnn , where pi are di�erent primes such that pi ≡ 1(mod 4) for all

i = 1, 2, . . . , n.

Proof. Let m = pα1
1 pα2

2 · · · pαnn , where pi are di�erent primes. Then obviously
Zm = Zpα1 × Zpα2

1
× . . . × Zpαnn . Any automorphism of this group has the form

ϕ(x1, x2, . . . , xn) = a(x1, x2, . . . , xn) = (ax1, ax2, . . . , axn). So, the equation (16),
i.e., 2a2 − 2a + 1 ≡ 0(modm) has a solution if and only if each of equations
2a2 − 2a+ 1 ≡ 0(mod pαii ) has a solution. The last equation is solved only in the
case when 2a2−2a+1 ≡ 0(mod pi) is solved (cf. [4]), but it is possible if and only
if pi ≡ 1(mod 4).

Corollary 4.15. If there exists a prime p|m such that p ≡ 3(mod 4), then there

are no quadratical quasigroups induced by the group Zm.

Below are listed all quadratical quasigroups of the form x ·y = ax+by(mod m),
where a < b, de�ned on the group Zm for m < 400. Dual quasigroups x ◦ y =
bx+ ay(mod m) are omitted.

m a b
5 2 4
13 3 11
17 7 11
25 4 22
29 9 21
37 16 22
41 5 37
53 12 42
61 6 56
65 24 42

29 37
73 14 60
85 7 79

24 62
89 28 62
97 38 60

m a b
101 46 56
109 17 93
113 8 106
125 29 97
137 19 119
145 9 137

67 79
149 53 97
157 65 93
169 50 120
173 47 127
181 10 172
185 22 164

59 127
193 41 153
197 92 106

m a b
205 37 169

87 119
221 11 211

24 198
229 54 176
233 45 189
241 89 153
257 121 137
265 12 254

42 224
269 94 176
277 109 169
281 27 255
289 126 164
293 78 216

m a b
305 67 239

117 189
313 13 301
317 102 216
325 29 297

154 172
337 95 243
349 107 243
353 156 198
365 14 352

87 279
373 135 239
377 50 328

154 224
389 58 332
397 32 366
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The case when �nite commutative group is isomorphic to a direct product of
cyclic groups of the same order is more complicated. Suppose for simplicity that
G = Zn×Zn for some natural n > 1. Then G can be considered as a module or a
vector space Zn×Zn over Zn. So, automorphisms of this group can be calculated
as linear maps of Zn×Zn. From Theorem 4.1 it follows that the matrices of these
maps satisfy the equation 2A(A − I) + I = θ, where I and θ are the identity
and zero matrices. Obviously, if A satis�es this equation then B = A − I also
satis�es this equation and A+B = I. Hence (x, y)∗ (z, u) = A(x, y)+B(z, u) and
(x, y) ◦ (z, u) = B(x, y) +A(z, u) are dual quasigroups.

Case m = 9.
Direct computations shows that for Z3×Z3 we have six such quasigroups (cf. [1]).
These quasigroups are de�ned by maps with the following matrices:

A1 =

[
0 1
1 1

]
, A2 =

[
0 2
2 1

]
, A3 =

[
2 1
2 2

]
and Bi = Ai − I.

Case m = 25.
Using a similar argument we can see that the group G = Z5 × Z5 induces 16
quadratical quasigroups (G, ∗i) with the operation

(x, y) ∗i (z, u) = Ai(x, y) +Bi(z, u) (18)

and 16 quasigroups dual to the above. These quasigroups are determined by
matrices Ai:[

0 a
b 1

]
,

[
2 0
0 2

]
,

[
2 c
d 4

]
,

[
3 1
1 3

]
,

[
3 3
2 3

]
,

where ab = 2(mod 5) and cd = 0(mod 5).

Case m = 45.
Commutative groups of order m = 45 are isomorphic to Z45, Z3 × Z15, Z3 × Z3 ×
Z5 or Z9 × Z5. Groups Z3, Z9 and Z45 do not induce quadratical quasigroups.
Therefore, from the above groups only Z×Z3×Z5 induces such quasigroups. These
quasigroups are a direct product of quadratical quasigroups induced by Z3 × Z3

and Z9. So, they have the form

(x1, y1, z1) ∗i (x2, y2, z2) = (Ai(x1, y1) +Bi(x2, y2), aiz1 + biz2),

where Ai, Bi are as in the above and ai is equal to 2 or to 4. We have 12 such
quasigroups.

Case m = 49.
By Theorem 4.11 the group Z49 do not induce any quadratical quasigroups. The
group Z7 × Z7 induces 21 quadratical quasigroups de�ned by (18) and 21 duals.
These quasigroups are determined by matrices Ai:[

0 a
b 1

]
,

[
2 c
d 6

]
,

[
3 e
f 5

]
,

[
4 1
5 4

]
,

[
4 2
6 4

]
,

[
4 3
4 4

]
,
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where ab = 3(mod 7), cd = 1(mod 7) and ef = 4(mod 7).

Case m = 65.
Quadratical quasigroups induced by Z65 = Z5×Z13 are direct products of quadrat-
ical quasigroups induced by Z5 an Z13. So, they have the form

(x, y) ∗1 (z, u) = (2x+ 4z, 3y + 11u),
(x, y) ∗2 (z, u) = (4x+ 2z, 11y + 3u),
(x, y) ∗3 (z, u) = (2x+ 4z, 11y + 3u),
(x, y) ∗4 (z, u) = (4x+ 2z, 3y + 11u).

Obviously (G, ∗1) and (G, ∗2), also (G, ∗3) and (G, ∗4), are dual and are iso-
morphic to quasigroups mentioned in the above table for Z65.

Case m = 81.
Commutative groups of orderm = 81 are isomorphic to one of groups Z81, Z9×Z9,
Z3 × Z27, Z3 × Z3 × Z9 or Z3 × Z3 × Z3 × Z3. By Corollary 4.15 groups Z3, Z9,
Z27, Z81 do not induce quadratical quasigroups. Thus quadratical quasigroups of
order 81 can be induced by groups Z9×Z9 and Z3×Z3×Z3×Z3 only. The group
Z9 × Z9 induces 27 quadratical quasigroups de�ned by (18) and 27 duals. These
quasigroups are determined by matrices Ai:[

0 a
b 1

]
,

[
2 c
d 8

]
,

[
3 e
f 7

]
,

[
4 g
h 6

]
,

[
5 1
2 5

]
,

[
5 2
1 5

]
,

[
5 4
5 5

]
,

where ab = 4(mod 9), cd = 2(mod 9), ef = 7(mod 9) and gh = 1(mod 9).
Using a computer we can see that the group Z3 × Z3 × Z3 × Z3 induces 2106

quadratical quasigroups de�ned by (18) and 2106 duals. So, this group de�nes
4212 quadratical quasigroups.

Case m = 125.
Commutative groups of order m = 125 are isomorphic to one of the groups Z125,
Z5 × Z25 or Z5 × Z5 × Z5. The �rst group induces only two quadratical quasi-
groups, the second induces 64. Using a computer we can see that the last group
induces 1552 quadratical quasigroups. So in the case m = 125 we have 1618 such
quasigroups.

It is not di�cult to observe that if p is prime and p ≡ 1(mod 4) then the group
(Zp)k induces quadratical quasigroups for every k, but for p ≡ 3(mod 4) it induces
quadratical quasigroups only for even k.

Theorem 4.16. There are no quadratical quasigroups induced by the additive

groups Z, Q and R.

Proof. In Z there are no x such that x+ x = 1, so, by Theorem 4.1 such a group
cannot induce quadratical quasigroups. Automorphisms of the group (Q,+) have
the form ϕ(x) = ax for some 0 6= a ∈ Q. Obviously ψ(x) = (1 − a)x for a 6= 1,
also is an automorphism and ϕ,ψ satisfy (13). Then (14) gives (16), which is
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equivalent to (2a− 1)2 + 1 = 0. So, a = 1
2 (1 + i) or a = 1

2 (1− i). These elements
are not in Q. Since for each automorphism ϕ of (R,+) there is a ∈ R− {0} such
that ϕ(x) = ax for x ∈ Q, each automorphism of (R,+) de�ning a quadratical
quasigroup satis�es (14), i.e., a satis�es (16). But in this case a 6∈ R.

Corollary 4.17. The smallest quadratical quasigroup of in�nite order is de�ned

on the additive group Q[i] = {u+vi |u, v ∈ Q} and has the form xy = ax+(1−a)y,
where a = 1

2 (1 + i) or a = 1
2 (1− i).
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