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On (i,j)-commutativity in Menger algebras

of n-place functions

Wieslaw A. Dudek and Valentin S. Trokhimenko

Abstract. We present an abstract characterization of Menger (2, n)-semigroups of n-place func-

tions containing the operation my;: f(x1,...,24,...,%j,...,xn) = f(@1,. .., 5, .., Tiy...,Tn).

1. Introduction

On the set F(A™, A) of all partial n-place functions f: A™ — A (n > 2) one can
consider the following operations:

e the (n+1)-ary Menger’s superposition O: (f,g1,...,9n) — flg1 ... gn] such that

flgr - gnl(al) = fgr(al), g2(at), - ., gn(ar)),

e the binary Mann’s superpositions ®,®,...,® defined by
1 2 n
(f®g)(al) = flai™t g(at), ),

where ag denotes the sequence a;, aiy1,...,aj—1,a; if ¢ < j, and the empty symbol
if ¢ > 7.

Let ® be a nonempty subset of F(A", A). If ® is closed with respect to the
Menger superposition, then the algebra (®,0) is called a Menger algebra of n-

place functions. Since each Mann’s superposition is an associative operation, the
algebra (®,®,®,...,®) is called a (2,n)-semigroup of n-place functions. Con-
1 2 n

sequently, the algebra (®,0,®,®,...,®) is called a Menger (2,n)-semigroup of
1 2 n

n-place functions.

One can prove (cf. [3] or [8]) that an abstract (n + 1)-ary algebra (G, o) is
isomorphic to some algebra (®,O) of n-place functions if and only if it satisfies
the superassociative law:
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where z[y; . ..y,| denotes o(z,y1,...,yn)- An (n+ 1)-ary algebra (G, o) satisfying
this law is called a Menger algebra of rank n. An algebra (G,®,®,...,®) with
1 2 n

n binary associative operations @, ®,...,® is called a (2,n)-semigroup. A (2,n)-
1 2 n
semigroup closed with respect to an (n+ 1)-ary operation o satisfying (1) is called

a Menger (2,n)-semigroup and is denoted by (G,0,®,®,...,d).
1 2 n

For simplicity, all expressions of the form (--- ((x®y1) ®y2)---) B yr will be
12 1k

i1

i
denoted by xéy{“ In the case when i = iy and i & {i1,...,ix_1} for some
i1
is g
ke {1,...,s}, the expression xki@ xy ., will be written in the form lh(? x$). In
k41 1

any other case ,ul(éB x$) is the empty symbol. For example, u1 (P Pydz) =y P 2,
ir 2 173 3
= = z. Th bol i

,UQ(?(EGPZI/?Z) x?y?za ug(?x?y?z) z e symbo ,u;;(?xeﬁy?z) 18
empty.

It is known (cf. [7] or [8]) that an algebra (G, ®, ..., ®) with n binary operations

1 n
is isomorphic to some algebra (P, ®, ..., d) of n-place functions if and only if for
1 n

all g,x5,y; € G,i=1,...,s, 5 =1,...,k, it satisfies the implication

~.

is Jk is Jk
(m(@aﬁ) =ui(§By’f)) — gbai =gy, (2)
71 J1 21 Ji

1=1

where i1,...,05,J1,.--,Jk €{1,...,n}.

Note that the condition (2) implies the associativity of all binary operations
@, D, ...,d. Indeed, for two expressions @y d z and B(y @ z), where y, z € G, we
12 n i i
have p;(®y®z) = y® 2z = pi(S(y® 2)). For k # i the symbols (P y® z) and
7 7 7 K3 7 K3 K3
1k (B(y @ 2)) are empty. So, the premise of (2) is satisfied. Therefore for all z € G
K3 7

wehave 2Dy D2z =0 B(yD2), ie, (xDY)Dz=2D(yD2).
K3 K3 2 3 3 3 K3 7

An abstract characterization of Menger (2,n)-semigroup of n-place functions

is more difficult. For such characterization we need to use the implication (2)

and several identities. Namely, as it is proved in [6] (cf. also [8]), an algebra
(G, o, ?, ..., ®) of type (n+1,2,...,2) is isomorphic to some algebra (@, O, ?, -~
n n

of n-place functions if and only if it satisfies (1), (2) and
(DY)[z1.. 20 =21 .. zic1 Y21 -+ Z0) Zig1s -5 20 (3)

ey =zl (Dyl) ... pa(Byi)], (5)
11 11 11
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where i =1,2,...,n and {i1,...,is} = {1,...,n}.

2. Menger (2,n)-semigroups

Algebras with one n-ary operation allowing certain permutations of variables were
investigated by various authors (cf. for example [2, 9, 10, 12, 13]). Such n-ary
algebras also are used to study the properties of some affine geometries (cf. [11]).

In this section we describe algebras on n-place functions allowing an exchange
of variables at two fixed places. Namely, on the set F(A", A) we will consider the
unary operation ;; defined in the following way:

- i—1
(mi; f)(a?) = f(ai7" aj,al a0}y ),

where 1 < i < j < n are fixed and the left and right hand sides are defined
or not defined simultaneously. The operation ;; is called the operation of (i, j)-
commutativity. Functions with the property m;; f = f are called (4, j)-commautative;
functions with the property m,f = f — semicommutative. Some n-ary algebras
(G, f) in which the operation f is semicommutative are strongly connected with
medial (entropic) algebras (cf. [4], [9]) and abelian groups (cf. [1] and [5]).

n

. ——
Let (G,0,9,...,®,m;) be an arbitrary algebra of type (n + 1,2,...,2,1),
1 n

where, for simplicity, the unary operation is denoted by ;.
Theorem 1. An algebra (G,0,®,...,®,m;;) of type (n+1,2,...,2,1) is isomor-
1 n
phic to the algebra (D,0,8,...,&,m;;) of partial n-place functions if and only if
1 n
(G,0,®,...,®) is a Menger (2,n)-semigroup satisfying the following identities:
1 n

(mi 2)wr - yn) = 2yl v vl vi vl (6)

T (@Y1 - yn)) = @[Ty - . Tijynl, (7)
(mijx) %(Wijy)a ifkef{l,...,n} —{ij},

TI'U(I’EEy) =< (miz) ?(Wijy)a if k=1, (8)
(mijx) %9(7%‘2%)7 if k=7,

. 9)

Proof. Let (®,0,8,...,®,m;;) be an arbitrary algebra of partial n-place functions
1 n
f: A" — A. Then obviously (®,0,®,...,®) is a Menger (2,n)-semigroup. To
1 n

prove that m;; satisfies the conditions (6) — (9) consider f,gi,...,9,» € ® and
a1,...,0a, € A. Then
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(w3 P)lgr - - gnl(al) = (mi; f)(g1(at), - . gnlal))

= f(gl(al )7 - gimaal), gi(al), giva(al), - - gj—a(al), gi(al), gja(al), - -, gnlay))
= flo1 - 9i-1959i+1 - - - 9i—19iG+1 - - - gl (a}) = flgi 95901 997 1] (a}),

which proves (6).

Similarly, we can see that

mij(flg1 - - - gnl)(al)

f[gl <o gn ](a’zi_17aj7ag-;117 A, a?+1)

- - o
f(gl(al )y Qg af_H ) aiva?-i—l)? ooy gnlal 1,aj,a§+11, ag, a?+1))
=f(mizgi(at), ..., mijgn(al)) = flmijgr ... mijgnl(al).

This proves (7).

To prove (8) we must consider three cases: k € {1,...,n} — {i,j}, k =i and
k = j. In the first case we have three subcases:

k<i<j<n, 1<i<k<ji<n, 1<i<j<k<n
In the first subcase:

Trz](fak?g)(al) f®g( a]7a7,+17a’ta J+1)
= f(a]f 1vg(a§_1v Qj, a’i+1 ) ai7aj+1)7a;:c:—11’ aj, a?;117ai’ CL?Jrl)

=mi; f(ay ™ mig(al), af ) = (i f) %(Wijg)(aﬂ

The remaining two subcases can be verified analogously.

In the case k = 7 we have

i—1

i—1
my(f ©9)(a) = f @ g(ai™" a5, 4l ai )

el ool g1 i1 m
= f(a] ", g(a} vajvai-Hva“aj+1)7ai+1’a“aj+1)

= miif(a] " mijg(at), aty ) = (mi f) & B(mi9)(ah).

In a similar way we can verify the case k = j.

So the condition (8) is valid.

The condition (9) is obvious.

So, the algebra (@,O,?, ...,@®,m;;) satisfies all the conditions mentioned in

the theorem.

Conversely, let (G,0,®,...,®,m;;) be an arbitrary Menger (2,n)-semigroup
1 n

with the unary operation 7;; satisfying the conditions (6) — (9). We will show that
there exists an algebra of n-place functions A\, and the mapping P: g — A, such
that P: G — ® = {)\, : g € G} is an isomorphism.
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Consider the set G* = GU{ey,...,e,}, where eq,. .., e, are different elements
not belonging to G. For every g € G we define on G* an n-place function A4 putting

glxy...xy], if z1,...,2, € G,
g, if (z1,...,2,) = (e1,-..,€n),
Tij9s if (z1,...,20) = (ei‘l,ej»eﬁlf,ei,e?ﬂ),

i . i .
goy, if @ =i (byi), i=1,...,n,
21 1
for some y1,...,ys € G, {i1,...,is} C{1,...,n},
is ) L s s
(mijg) Dy, i 2= pi(yi) @ = pi (i),
1 1 1
is o
xk::u;;(?yklg)? ke{l,...,n}_{l,]},
1
Yy, Ys € G and {i1,...,45s} C{1,...,n},

where by pf (éB x§) we denote the element of G* such that
i1

uGat) = m(j@?ﬁ) if i€ {ir,... 0},

' €; if i {i,..., s}
In other cases Ag(x¥) is not defined.

Note that, according to (2), in the above definition the value of g éB y; does not
depends on y1,...,ys € G. "

We shall prove that algebras (G,o, ?, cee %, m;;) and (2,0, 619, cee ?, i), where
® = {)\,| g € G}, are isomorphic. For this consider the map P: g — A,.

e First we check that such defined P is a homomorphism of (G, o) onto (@, O),
ie., P(glg1-..gn]) = P(9)[P(g1) - .. P(gn)], or equivalently,

Aglgr.gn] (TT) = Ag[Agy -+ Ag, ](27)

for all g,91,...,9n € G and x1,...,2, € G*.
1) Let zq,...,z, € G. Then, in view of (3), we obtain:

Aglgrongn] (@T) = glg1 - gnllz1 . 20] = glar[1 - 0] . gnl2r - 20]]
=Ng(g1[z1 - mnl, o gnlrn o mn]) = Ag(Ag, (2T), - Ag, (2T))

g
= Ag(Ag, (e1), .. g (e1) = Ag[Ag, - - Mg ](€7).
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3) If (z1,...,2,) = (ei_l,ej,eg;f,ei,e?+1), then

. -
Aglor.gn) (€1 s e el it i e y) = mij(glor - - gn]) = glmijgr - - Tijgn]
- - - -
= Xg(Ag, (€1 egnelin e eln), o Ag (el ey el e ey y)
- .
= AQ[)‘Ql B 'Agn](ell 1»€j76§+1,€¢,6?+1).
is is . .
4) Now let (z1,...,2n) = (1 (BY]), ..., wh(®y)). U {ir,..., i} ={1,...,n},
11 71

then, according to (5), this case is reduced to the case when 1,

..., Ty € G. For
{i1,...,is} #{1,...,n}, we have

Nglgrgu] (@) = glo1 - ga] S yi = 9lg1 v - . gn S Y]
11 11 11
/\9 ()‘91 (x?)a OEEE) >\gn (‘T?)) = )‘9 P‘gl c A ](‘rrll)

* i n

, o . is
5) In the case (21,...,2,) = (3511_17#;(2@ yf),xﬁf,uj(?yf),x%ﬂ, where xj, =
1 1

,u;(éByf) and k € {1,...,n} — {i, 7}, we obtain
11

- i 1 is is
Aglgr..gn) (T w3 (D), Tl i (@ yi) aa) = mii(glor - gnl) ©ui
1 1 1
s

) . o iy
= g[mijgr - mijgn] Y5 = gl(mijg1) gByf o (Tijgn) Z@?Jﬂ
1 1

i1

= Ag(Agy (1), -+, Ag,, (7))
= Ag[Agy - Ag @ i (S ), wl i, pi (S u5), 27 ).
71 1

This completes the proof that P is a homomorphism of (G, 0) onto (@, O).
e Now we check that P a homomorphism of a (2,n)-semigroup (G,®,...,®)
1

onto a (2,n)-semigroup (¢, ®,...,d), i.e., P(g1 D g2) = P(g1) ® P(g2), or equiva-
1 n i i
lently,

Agy D92 (z]) = Agy ? Ags (=)

foralli=1,2,...,n, 91,92 € G and 1,
we must verify several cases.

].) If T, .

..., T, € G*. Similarly as in previous case

.., Zn € G, then, applying (3), we obtain
Agr g (27) = (g1 Elng)[xl cZp) = g1lxr w1 g2lXr TR T T

= )‘91 (xliia )‘gz (‘r;,ll)ﬂ x?—&-l) = )‘91 61,9)‘92 (‘%Jl’b)
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2) For (z1,...,2,) = (€1,...,€,) we have Mg, gg,(e]) = g1 ®g2. Conse-
i K2

quently,
Agy ?)‘gz (e7) = Ag, (eg_la)‘gz (e1), z+1) =g (€ ( YUNC i+1) =91 ?927
because i (D g2) = g2 and pi(®ge) =ep fork#i, k=1,...,n
Thits, Ay, 5. (6) = Agy & A (€)

3) In the case (x1,...,2,) = (e’fl,ej,eﬁll,ei,egﬂ), for k=1,...,n, accord-
ing to (8), we have

(7Tij92)> if k ¢ {%.7}3
(Wijgg)7 if k= ’i,

(7%‘91)%
Ag1 @ g2 (e e eliy einely) =m0 %92) =4 (mig1) @

(mijg1) %9(7%'92), if k=j.

<.

For k ¢ {i, j} we have three possibilities:
<k<i<ji<nor 1<i<k<ji<nor 1<i<j<k<n

Inthecase1<k<i<j§nweget

Agy @)‘92( eJ, 1+176“ g+1)
- )‘91 (61 )‘92 (61 €4 eg:-lla €i, Q?Jrl)a 62:-11’ €5, 65;117 €, 6?+1)
= Agy (57 mijg0, €f s egn ey ein el ) = (mijgn) ?(Wz‘jgz)
- )‘91 % )‘gz (ei_la €5, eg;lla €, e;‘l+1),
since ui(%wijgg) = 7;;g2 and /fs‘(%mjgg) =esfors#k s=1,...,n.
In the remaining two cases the proof is analogous.

If k£ =i, then

-1, -1, _n =1, _n
’ejveiJrl’e%?ejJrl)aeiJrlveuejJrl)

1

Agl@ A5!2( 6_], z+17e't’ j+1) )‘91 (61 )‘92(
_ i—1 j—1 _
=g, (€1, Tijg2, €111, €is€)yq) = (mijg1) B(mijg2)

J

_ i—1 j—1 n
_)‘91 G? >‘92 (61 y €55 €541 €y ej+1)7

since pj (@ mijge) = mijg2 and pi (@ miig2) = es for s#j,s=1,....n

J J
In the same manner we can verity the case k = j.

4) Now let (z1,...,z,) = (u’{(é} i), ... ,u;(é y$)). Then, according to the
11 21

definition, Ag, g ¢, (27) = 91 D g2 é@yf On the other side, we have ;) (D g2 éséyf) =
i [3 11 K3 11
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is is is .
G2 Y7 = Ag,(27) and pf (B g2 Dy;) = pp(by;) = ap forall k #4, k =1,...,n.
21 7 11 1
Hence .
. 1s
)‘91 6,9)‘92 (x?) = >‘91 (xll_lv )‘g2 (1’?),1’:—:_1) =91 EDQQ @yf
(3 3 1

Ths Ay, 00 (053 (95,153 90) = doy € As (i (B0, 11 (B )
5) In the case when (z1,...,2,) = (z1 ', ,u;‘“(éa Y3, xgll, ,u;“(é Y1),z 1), where
i i
T = u’,;(éayf) for ke {1,...,n} — {i, 7}, we get
i1
Movgoa(i s @ vl (@) )

(mi591) ?(%‘92) fofa if ke {l,...,n}—{i,j},

= mij(g %gz)GByf =4 (mijo) ©(mijg2) Sy, if k=1,
1 J 1

(mijg1) ©(mijg2) éByf, if k=3
For ke {1,...,n} — {i,j} we get thre(; cases: !
1<k<i<j<n, 1<i<k<j<n, 1<i<j<k<n.
We verify only the last case. Other cases can be verified analogously.

To prove this case let z1,...,2n,41,...,¥ys € G* and 1 < i < j < k < n. Then
S 1 i
/\91% /\gz (le 17 /”'j (?9 yf)’ xz+1 ) Ky (?9 yf)v x?—i—l)
1 1
=\ i—1 *is s j—1 *is s k*l)\ i—1 *is s j—1 *is s n n
=Ag(T] vﬂj(f,? y1)7$i+1aﬂi(§? Y1), Ty 1A ga(T] ,/‘j(?? yl)’$i+17ui(§? Y3)sw 1), )
o is - i o i
= )‘gl(xll 1v F‘; (?9 Z/f)» x?-i—l ) /ﬁ(? yf)a xj+11’ (7‘—2']'92) ?9 yfv xz-i-l)
1 1 1
is
=(mij91) %(7%92) ST,
i1
i is is is
since i (B(mijg2) Dui) = (mijg2) Gyt and pi(D(mijg2) Dyi) = pi(Dyi) for s # k,
1 1 1 1
s=1,...,n. Thus,
. is s o i 1 s
Agﬁ}?m(ﬂ ; N?(Z@yf)? xg-&-l’ /ﬁ(z@y‘f), x?-s-l) = )‘91%)‘92(%21 E M}k(?yf)v xgﬂ, /“;k(?yf)a ‘r?—i-l)'
¢ 1 1 1 1
So in this case P (g1 %gg) = P(q) %P(gg).
In the case k =i, we get
i1 s 1, s
A.(]1 e? )‘92 (xll 17 :uj (EB yf)a $Z+1 s Ko (? yf)v $?+1)
1 1

) . is . is . is
= Agu (2171 Mg (217 5 (S ), w1, (D y3), @), 2l i (S ), 05)
1 1 1
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= Ao, (@71, (2592) é?yfa xi-ﬁl, ﬂf(%? Y1), @) = (mij91) ?(mﬂl‘]?) é? ui,
since u;f(e?(mjgz) %Z/T) = (mij92) ;‘? y§ and MI(?(MJW) %yf) = M:(%‘% y3) for s # 7,
s=1,...,n. Thus, ‘ ) -
Aol M;(:g%yf), 27 M;k(:ejéyf), )= Agl@xgz(x’f% u;*(i@?yf), e u:-‘(z{éyf), T34 )-
So, P(g1 ?gz) = P(g1) ?P(gﬁ-

For k = j the proof is very similar.
In this way we have proved that P a homomorphism of a (2,n)-semigroup

(G,®,...,®) onto a (2,n)-semigroup (®,P,..., D).
1 n 1 n

o This homomorphism also saves the operation m;;, i.e., P(m;;g) = m;;P(g) or,
in other words, A, 4(27) = mijAg(27) for all g € G and x4, ..., 2, € G*.
1) Ifzq,...,2z, € G, then
Ao @) = (migg)as . w] = glai™ wyal et ]
= N (21 Y g, 2l @i @) = migAg (2f).

2) For (x1,...,2,) = (e1,...,e,) we have
>‘7wg(e?) = Tijg = )‘g(e?l’ejaeg4:117eive?+1) = TijAg(€7)-

_ (i—1 Jj—1 :
3) In the case (z1,...,7,) = (€] ", €j,€j,1,€i,€7, ), we obtain
i—1 j—1 no\ _ _ 2.0
/\mjg(el ,€j7€i+1,€i,€j+1) = 7Tij(77ij9) =T;9 =9

= )‘g(e?) = WijAg(ezi_lv €5 ng:llv €4, e?—i—l)-

is is
2) Now, it (z1,..., ) = (5 (B y), ..., (B 7)), then
11 11

Qg T 1s
Amjg(ui(je Yi)s .o ,u:(je yi)) = (mij9) Dy
1 1 1

i— wls E i—1 sle E
= Ag(2} 1,uj(§9yf)’$f+1,ui(Z@yf)w}ql)
1 1
1 s 1, i
= TijAg(x] 1):“1’ (g?yig)’xg+l7uj(§?yf>7x?+l)
is L s
= TijAg (Ui (B yi) - -, (B 31))-
1 1
5) Tn the last case when (21,...,20) = (2174, 15 (S 95), 2l !, w7 (B ), 2740),
11 11

where x;, = u’;(é@ yi)and k€ {1,...,n} — {i,j}, we get
1
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o ia - is is is
p—h l,u;f(?yf),xiﬂ,uf(z@yf)vx?ﬂ) = (M9) Syl = 9 ui
1 1 1 1
is L s 1 s 1 e
= )‘g(lﬁ(l@ Yi)s-- s Hn(lea Y1) = mijAg (] 1,uj(§9yf),$f+1 s My (fof)wT;LJA)
1 1 1 1
This completes the proof that P: g — A, is an epimorphism of (G, &, ..., ®, m;;)
1 n

onto (®,®,...,®,m;). Since P(g1) = P(g2) implies A, (e7) = Ag,(e}), which
1 n

gives g1 = g2, we see that P: g — A4 is an isomorphism. O

From the above theorem we can deduce the following two corollaries.

Corollary 1. An algebra (G, o0,7;;) of type (n+1,1) is isomorphic to an algebra
(®,0,m;;) of partial n-place functions if and only if it satisfies (1), (6), (7) and
(9).

Proof. From the first part of the proof of Theorem 1 it follows that (®,O,m;;) is
a Menger algebra with the operation ;; satisfying the conditions (6), (7) and (9).

To prove the converse statement consider an arbitrary algebra (G, o, ;;) of type
(n+1,1) satisfying all the conditions mentioned in the corollary and define on the
set G* = GU{ey,...,e,}, where ey, ..., e, are different elements not belonging to
G, the function A4 putting:

glxy ... xy], if z1,...,z, €G,
Ag(2h) = g, if (x1,...,25) = (e1,...,€n),
Tij g if (z1,...,2,) = (eﬁ_l,ej,ezlll,ei,ey+1).

In other cases A\y(z7) is not defined.

Then in the same way as in the second part of the proof of Theorem 1, we can
prove that the algebras (G,o,m;;) and (®,0,7;;), where & = {)\;|g € G}, are
isomorphic. This isomorphism has the form P: g — A,. O

Corollary 2. An algebra (G, &, ...,®,m;;) of type (2,...,2,1) is isomorphic to
1 n
the algebra (®,,...,®,m;) of partial n-place functions if and only if it satisfies
1 n
the identities (8), (9), and the implication (2).

Proof. Clearly, the algebra (®, ?, ..., ®,m;;) of partial n-place functions satisfies
(2), (8) and (9).
Conversely, if an algebra (G,Gla,...,@,mj) of type (2,...,2,1) satisfies the

conditions (2), (8) and (9), then for each element g € G we define on the set
G* =GU{ey,...,e,}, where eq, ..., e, are different elements not belonging to G,
the n-place function A\y: (G*)" — G* putting
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9, if ('r17"',$n):(€17"'7€n)7
Tij9, if (xlv' .- 7x7l) = (ei_l,ej,eg;117ei,€?+1)7
is is
goyi, i zi=pi (i), i=1,....n,
71 21
for some y1,...,ys € G,
{il,...,is}C{l,...,n},
is ) L s . s
(mijg) Dyt, i @i =i (Sui), 25 = pi (D),
1 1 1
is . .
kaMZ(?yig)a ]fE{l,...ﬂl}—{Z,]},
1
where y1,...,ys € G, {i1,...,is} C{1,...,n}.

In other cases \4(z7) is not defined.

In the same way as in the second part of the proof of Theorem 1, we can see that
P: g — A4 is an isomorphism between (G,®,...,®, ;) and (2,8, ..., &, m;),
1 n 1 n

where ® = {)\; | g € G}. O

From Theorem 1 we deduce the following characterizations of algebras of (i, j)-
commutative functions.

Corollary 3. An algebra (G, o, ?, ..., ®) of type (n+1,2,...,2) is isomorphic to

the algebra (®,0,®,...,®) of partial (i,j)-commutative n-place functions if and
1 n

only if it satisfies the condition (1), (2), (3), (4), (5) and

oy -yl = 2l yi vl vy, (10)
J

11
rDy, if k=j. (11)

Thy =
k

Corollary 4. An (n+1)-ary algebra (G, o) is isomorphic to the algebra (®,0) of
partial (i, j)-commutative n-place functions if and only if it satisfies the conditions
(1) end (10).

Corollary 5. An algebra (G, ®,...,®) of type (2,...,2) is isomorphic to the

1 n
algebra (D, ®,...,®) of partial (i, j)-commutative n-place functions if and only if
1 n
it satisfies the condition (11) and the implication (2).
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