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Gyrogroups and the Cauchy property

Teerapong Suksumran and Abraham A. Ungar

Abstract. A gyrogroup is a nonassociative group-like structure. In this article, we extend the

Cauchy property from groups to gyrogroups. The (weak) Cauchy property for �nite gyrogroups

states that if p is a prime dividing the order of a gyrogroup G, then G contains an element of

order p. An application of a result in loop theory shows that gyrogroups of odd order as well as

solvable gyrogroups satisfy the Cauchy property. Although gyrogroups of even order need not

satisfy the Cauchy property, we prove that every gyrogroup of even order contains an element

of order two. As an application, we prove that every group of order nq, where n ∈ N and q is a

prime with n < q, contains a unique characteristic subgroup of order q.

1. Introduction

Gyrogroups abound as an integral part of group theory. In fact, (i) every gyro-
group is extendable to a group, called the gyrosemidirect product group [23, Section
2.6]; (ii) every gyrogroup is a twisted subgroup of some group [6, 7, 11]; and (iii) a
certain group with an automorphism of order two gives rise to a gyrogroup [6, 7,
12, 17]. Further, any group may be viewed as a gyrogroup with trivial gyroauto-
morphisms. It turns out that gyrogroups share remarkable analogies with groups.
Several well-known results in group theory can be naturally extended to the case
of gyrogroups such as the Lagrange theorem [18], the fundamental isomorphism
theorems, the Cayley theorem [19], the orbit-stabilizer theorem, the class equation,
and the Burnside lemma [16]. Moreover, some gyrocommutative gyrogroups ad-
mit scalar multiplication, turning themselves into gyrovector spaces, just as some
abelian groups admit scalar multiplication, turning themselves into vector spaces.
Remarkably, gyrovector spaces form the algebraic setting for analytic hyperbolic
geometry, just as vector spaces form the algebraic setting for analytic Euclidean
geometry, as evidenced, for instance, from [20, 21, 22, 23, 24, 25, 26, 27]. Thus,
like the group notion, the notion of gyrogroups plays a universal computational
role.

It is known in the literature that every group satis�es the Cauchy property,
that is, if p is a prime dividing the order of a group Γ, then Γ contains an element
of order p. This is the familiar Cauchy theorem in abstract algebra. Cauchy's
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theorem leads to a better understanding of the structure of a �nite group. For
instance, using Cauchy's theorem, one can prove that every group of order 2p,
where p is a prime, is isomorphic to the cyclic group or the dihedral group of
order 2p [8]. Furthermore, the celebrated Sylow theorems are built on Cauchy's
theorem, see for instance [4, p. 140] and [3, Section 9.2].

In [18] the authors extend the Cauchy property to the case of gyrogroups and
prove that gyrogroups of order pq and nongyrocommutative gyrogroups of order
pqr satisfy the (strong) Cauchy property, where p, q and r are primes. Unfortu-
nately, there is no hope of extending Cauchy's theorem to all �nite gyrogroups as
Nagy proves the existence of a simple right Bol loop of exponent two and of order
96 [13, Corollary 3.7]. See also [2]. This loop gives rise to a gyrocommutative
gyrogroup of order 96 in which every nonidentity element has order two. However,
some classes of �nite gyrogroups do satisfy the Cauchy property. As in the group
case, the Cauchy property leads to a better understanding of the structure of a
�nite gyrogroup. For example, any gyrogroup of order pq, where p and q are
distinct primes, is generated by two elements; one has order p and the other has
order q [18, Theorem 6.10]. We will see shortly that any gyrogroup of order pq,
where p and q are primes with p < q, contains a unique subgyrogroup of order q.

2. Preliminaries

For the basic theory of gyrogroups, the reader is referred to [15, 18, 19, 23]. For
basic knowledge of loop theory, the reader is referred to [10, 14]. Subgyrogroups,
gyrogroup homomorphisms, normal subgyrogroups, and quotient gyrogroups are
studied in detail in [15, 18, 19].

Let G be a gyrogroup and let a be an element of G. For m ∈ Z, de�ne
recursively the following notation

0a = 0, ma = a⊕ ((m− 1)a), m ≥ 1, ma = (−m)(	a), m < 0. (1)

It can be shown that (ma)⊕ (ka) = (m+k)a and (mk)a = m(ka) for all m, k ∈ Z.
Hence, the cyclic subgyrogroup generated by a, written 〈a〉, forms a cyclic group
with generator a under the gyrogroup operation. In fact,

〈a〉 = {ma : m ∈ Z}. (2)

Further, the gyroautomorphism gyr [ma, ka] descends to the identity automor-
phism for all m, k ∈ Z. The order of a, denoted by |a|, is de�ned to be the
cardinality of 〈a〉 if 〈a〉 is �nite. In this case, we will write |a| < ∞. If 〈a〉 is
in�nite, the order of a is de�ned to be in�nity, and we will write |a| = ∞. As in
the theory of groups, if |a| <∞, then |a| is the smallest positive integer such that
|a|a = 0. If |a| = ∞, then |ma| = ∞ for all m ∈ Z \ {0}. Furthermore, if G is a
�nite gyrogroup, then |G| is divisible by |a|, see [18, Proposition 6.1].

As a consequence of the left cancellation law, the left gyrotranslation by a,
de�ned by La : x 7→ a ⊕ x, x ∈ G, is a permutation of G for all a ∈ G. Because
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gyrogroups are left power alternative [18, p. 288], that is, Lm
a = Lma for all a ∈ G,

m ∈ Z, the gyrogroup-theoretic order of a and the group-theoretic order of La

coincide.

3. Main results

Throughout the remainder of the article, all gyrogroups are �nite and G denotes
an arbitrary �nite gyrogroup unless explicitly mentioned otherwise.

De�nition 3.1. A gyrogroup G has the weak Cauchy property if for every prime
p dividing the order of G, G contains an element of order p.

De�nition 3.2. A gyrogroup G has the strong Cauchy property if every sub-
gyrogroup of G has the weak Cauchy property.

It is clear that any gyrogroup that satis�es the strong Cauchy property will
automatically satisfy the weak Cauchy property as well. The Cauchy property is an
invariant property of �nite gyrogroups in the sense that if G and H are isomorphic
gyrogroups, then G has the weak (resp. strong) Cauchy property if and only if H
has the weak (resp. strong) Cauchy property [18, Corollary 6.6]. Therefore, the
Cauchy property becomes important in classi�cation of �nite gyrogroups because
not every gyrogroup has the Cauchy property. Further, the Cauchy property is a
good example to see how information about a gyrogroup G can be obtained from
information on its normal subgyrogroup N and on its quotient gyrogroup G/N ,
as shown in the following theorem.

Theorem 3.3 (Corollary 6.8, [18]). Let N be a normal subgyrogroup of G. If
N and G/N have the weak (resp. strong) Cauchy property, then so has G.

Using Theorem 3.3, one can show that �nite solvable gyrogroups satisfy the
strong Cauchy property. A (�nite or in�nite) gyrogroup G is solvable if there
exists a series {0} = G0 6 G1 6 · · · 6 Gn = G of subgyrogroups of G such that
Gi EGi+1 and the quotient gyrogroup Gi+1/Gi is an abelian group for all i with
0 ≤ i ≤ n− 1 (cf. [1, p. 116]).

Theorem 3.4 (Proposition 46, [15]). Every solvable gyrogroup has the strong
Cauchy property.

Proof. The proof of the theorem can be done by induction on the number of sub-
gyrogroups in a subnormal series using Theorem 3.3.

Recall that a loop (L, ·) is a left Bol loop if it satis�es the left Bol identity:

a · (b · (a · c)) = (a · (b · a)) · c (3)

for all a, b, c ∈ L. A loop (L, ·) has the A`-property if the left inner mapping

`(a, b) := L−1a·b ◦ La ◦ Lb
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generated by a and b de�nes an automorphism of L for all a, b ∈ L. Here, La

denotes the left multiplication map by a de�ned by La : x 7→ a · x, x ∈ L. It
is known in the literature that every gyrogroup forms a left Bol loop with the
A`-property, where the gyroautomorphisms correspond to left inner mappings,
and vice versa. In particular, the left loop property and the left Bol identity are
equivalent, see for instance [10, Theorem 6.4].

By Glauberman's result [9], Foguel et al. prove that Cauchy's theorem holds
for �nite left Bol loops of odd order. More speci�cally, if L is a left Bol loop of odd
order and if p is a prime dividing the order of L, then there exists an element a
of L such that |La| = p [5, Theorem 6.2]. With this result in hand, one can prove
that gyrogroups of odd order satisfy the weak Cauchy property.

Theorem 3.5 (Cauchy's theorem). Let G be a gyrogroup of odd order. If p is
a prime dividing |G|, then G has an element of order p. In other words, G has the
week Cauchy property.

Proof. As noted above, G is a left Bol loop of odd order. Hence, by Theorem 6.2
of [5], there is an element a of G such that |La| = p. Since |a| equals |La|, the
theorem follows.

Corollary 3.6. Every gyrogroup of odd order has the strong Cauchy property.

Proof. Let G be a gyrogroup of odd order and let H be a subgyrogroup of G. By
Lagrange's theorem for gyrogroups [18, Theorem 5.7], |H| divides |G| and so H is
a gyrogroup of odd order. It follows that H has the week Cauchy property, which
completes the proof.

We have seen in Corollary 3.6 that any gyrogroup of odd order has the strong
Cauchy property. Unfortunately, there is an example of a gyrogroup of even order
that fails to satisfy the weak Cauchy property. In fact, by Corollary 3.7 of [13],
there exists a simple right Bol loop of exponent two and of order 96, say (LN , ·).
The dual loop of LN , denoted by L̂N , consists of the underlying set LN with the
dual operation

a ∗ b := b · a
for all a, b ∈ LN . It is straightforward to check that L̂N is a left Bol loop, that LN

and L̂N share the same identity, and that if a ∈ LN , then the inverse of a in LN

and the inverse of a in L̂N are identical. Note that a = a−1 for all a ∈ L̂N since
L̂N is of exponent two. Hence,

(a ∗ b)−1 = a ∗ b = a−1 ∗ b−1

for all a, b ∈ L̂N . This shows that L̂N is a left Bol loop satisfying the automorphic
inverse property. Hence, L̂N is a gyrocommutative gyrogroup by Theorem 6.6 of
[10] and Theorem 3.2 of [23]. Since a ∗ a = 1 for all a ∈ L̂N , every nonidentity
element of L̂N has order two. From this it is clear that L̂N does not satisfy the
weak Cauchy property. Nevertheless, any gyrogroup of even order does contain an
element of order two, as shown in the following theorem.



Gyrogroups and the Cauchy property 281

Theorem 3.7. If G is a gyrogroup of even order, then G contains an element of
order two.

Proof. We �rst show that {{a,	a} : a ∈ G} forms a disjoint partition of G. For

each a ∈ G, set Ca = {a,	a}. Clearly, Ca 6= ∅ for all a ∈ G and
⋃
a∈G

Ca = G. We

claim that Ca ∩ Cb 6= ∅ implies Ca = Cb. In fact, if x ∈ Ca ∩ Cb, then there are
four possibilities:

(1) x = a and x = b;

(2) x = a and x = 	b;

(3) x = 	a and x = b;

(4) x = 	a and x = 	b.

Each of (1)�(4) implies that Ca = Cb since 	(	x) = x. Note that |Ca| = 1 or 2.
Note also that |Ca| = 1 if and only if a = 	a.

Set m = |{a ∈ G : |Ca| = 2}| and n = |{a ∈ G : |Ca| = 1}|. Then |G| = 2m+n.
Since 2 divides |G|, we have 2 | n. Thus, n ≥ 2 and so there must be a nonidentity
element c of G such that c = 	c. Hence, |c| = 2.

As a consequence of Theorem 3.7, every gyrocommutative gyrogroup of even
order contains the nontrivial subgyrogroup of elements of order two together with
the gyrogroup identity.

Lemma 3.8. Let G be a (�nite or in�nite) gyrocommutative gyrogroup. Then

L2
a⊕b = La ◦ L2

b ◦ La

for all a, b ∈ G.

Proof. Note that L−1a = L	a for all a ∈ G. By (2.126) of [23], gyr [a, b] =
gyr [	a,	b]. By (12) of [19] and Theorem 3.2 of [23],

L−1a⊕b ◦ La ◦ Lb = L−1	a	b ◦ L	a ◦ L	b = L	(	a	b) ◦ L−1a ◦ L−1b = La⊕b ◦ L−1a ◦ L−1b ,

which implies L2
a⊕b = La ◦ L2

b ◦ La.

Theorem 3.9. If G is a (�nite or in�nite) gyrocommutative gyrogroup, then

G2 := {a ∈ G : 2a = 0}

forms a subgyrogroup of G.
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Proof. Clearly, 0 ∈ G2. Let a, b ∈ G2. Then a⊕a = 2a = 0, which implies a = 	a.
Hence, 	a ∈ G2. As in the proof of Proposition 3.10 of [18], Lm

a = Lma for all
a ∈ G, m ∈ Z. Hence, by Lemma 3.8,

L2(a⊕b) = L2
a⊕b = La ◦ L2

b ◦ La = La ◦ L2b ◦ La = L2a = idG.

It follows that 2(a⊕ b) = 0 and so a⊕ b ∈ G2. By the subgyrogroup criterion [19,
Proposition 14], G2 6 G.

If G is a �nite gyrocommutative gyrogroup of odd order, then G2 given in
Theorem 3.9 is the trivial subgyrogroup of G. In fact, if a is a nonidentity element
of G, then |a| divides |G| by Proposition 6.1 of [18]. This implies |a| is odd
and hence 2a 6= 0. In contrast, if G is a �nite gyrocommutative gyrogroup of
even order, then G2 is nontrivial since Theorem 3.7 ensures the existence of a
nonidentity element of G of order two.

4. Applications of Cauchy's theorem

Let H be a subgyrogroup of a gyrogroup G. For each a ∈ G, the right coset of H
by a, denoted by H⊕a, is de�ned as H⊕a = {h⊕ a : h ∈ H}. As a consequence of
the right cancellation law in a gyrogroup [23, Eq. (2.64)], the right gyrotranslation
by a, Ra, is a bijection from G to itself. Hence, the restriction of Ra to H is a
bijection from H to H ⊕ a and so H and H ⊕ a have the same size. The following
theorem shows that the right cosets of a cyclic subgyrogroup of G forms a disjoint
partition of G. In contrast, the left cosets of a cyclic subgyrogroup of G need not
partition G.

Theorem 4.1. Let G be a (�nite or in�nite) gyrogroup and let a ∈ G. The
collection of right cosets of the cyclic subgyrogroup 〈a〉 in G is a disjoint partition
of G.

Proof. Note that if x ∈ G, then 〈a〉 ⊕ x 6= ∅. In fact, x = 0 ⊕ x ∈ 〈a〉 ⊕ x. This

implies that G =
⋃
x∈G
〈a〉⊕x. Suppose that x, y ∈ G are such that 〈a〉⊕x∩〈a〉⊕ y

is not empty, namely b ∈ 〈a〉 ⊕ x ∩ 〈a〉 ⊕ y. Then b = ma ⊕ x = na ⊕ y for some
m,n ∈ Z. To complete the proof, we show that 〈a〉⊕ x = 〈a〉⊕ y. Let z ∈ 〈a〉⊕ x.
Then z = ka⊕ x. We compute

z = ka⊕ x
= ((k −m)a⊕ma)⊕ x
= (k −m)a⊕ (ma⊕ gyr [ma, (k −m)a]x)

= (k −m)a⊕ (ma⊕ x)

= (k −m)a⊕ (na⊕ y)

= ((k −m)a⊕ na)⊕ gyr [(k −m)a, na]y

= (k −m+ n)a⊕ y,
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which implies z ∈ 〈a〉 ⊕ y. We have the second equation from Proposition 3.7 of
[18]; the third equation from the right gyroassociative law; the forth equation from
Proposition 3.10 of [18]; the sixth equation from the left gyroassociative law; the
last equation from Propositions 3.7 and 3.10 of [18]. This proves 〈a〉⊕x ⊆ 〈a〉⊕y.
Similarly, z = k′a⊕ y for some k′ ∈ Z implies z = (k′ − n+m)a⊕ x, and we have
the reverse inclusion 〈a〉 ⊕ y ⊆ 〈a〉 ⊕ x.

Lemma 4.2. Let G be a gyrogroup and let a be an element of G of �nite order.
If n ∈ Z and na = 0, then n is divisible by |a|.
Proof. If n = 0, the statement is trivial. We may therefore assume that n 6= 0.
Set |a| = m. Using the division algorithm, we write n = mk + r for some k, r ∈ Z
such that 0 ≤ r < m. From Proposition 3.7 of [18], we have

0 = na = (mk + r)a = k(ma)⊕ ra = 0⊕ ra = ra.

By the minimality of m, r = 0. Hence, n = mk and so m | n.

Lemma 4.3. Let q be a prime and let n be a positive integer such that n < q.
Let G be a gyrogroup of order nq. If a is an element of G of order q, then for all
x ∈ G, |x| = q implies x ∈ 〈a〉.
Proof. Let a ∈ G with |a| = q. Suppose that x ∈ G and |x| = q. We prove that
there must be distinct integers i, j ∈ {0, 1, . . . , q−1} such that 〈a〉⊕ix∩〈a〉⊕jx 6= ∅.
Note that |〈a〉 ⊕ b| = |〈a〉| = q for all b ∈ G by the remark above. Suppose to the
contrary that for all i, j ∈ {0, 1, . . . , q − 1}, if i 6= j, then 〈a〉 ⊕ ix ∩ 〈a〉 ⊕ jx = ∅.

Hence,

∣∣∣∣∣
q−1⋃
i=0

〈a〉 ⊕ ix

∣∣∣∣∣ =

q−1∑
i=0

|〈a〉 ⊕ ix| =

q−1∑
i=0

q = q2, which is impossible, since

q−1⋃
i=0

〈a〉 ⊕ ix ⊆ G and so

∣∣∣∣∣
q−1⋃
i=0

〈a〉 ⊕ ix

∣∣∣∣∣ ≤ |G| = nq < q2. Hence, there are integers

i, j with 0 ≤ i 6= j < q for which 〈a〉⊕ix∩〈a〉⊕jx 6= ∅. There is no loss in assuming
that i < j. By Theorem 4.1, 〈a〉 ⊕ ix = 〈a〉 ⊕ jx. This implies jx = c ⊕ ix for
some c ∈ 〈a〉. By the right cancellation law,

c = (c⊕ ix)� (	ix) = jx� (	ix) = jx⊕ gyr [jx, ix](	ix) = jx	 ix = (j − i)x.

By Corollary 3.15 (2) of [18], |(j − i)x| =
|x|

gcd (|x|, j − i)
= q for 0 < j − i < q.

Since c ∈ 〈a〉, 〈c〉 6 〈a〉. Since |c| = q = |a|, 〈c〉 = 〈a〉. Similarly, 〈(j − i)x〉 = 〈x〉.
Therefore, 〈x〉 = 〈a〉 and hence x ∈ 〈a〉.

Theorem 4.4. Let q be a prime and let n be a positive integer such that n < q.
Let G be a gyrogroup of order nq. De�ne

Gq = {a ∈ G : qa = 0}. (4)

Then Gq is either the trivial subgyrogroup or the unique subgyrogroup of G order
q.
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Proof. If Gq = {0}, then we are done. We may therefore assume that Gq 6= {0}.
Hence, qa = 0 for some a ∈ G \ {0}. By Lemma 4.2, |a| divides q. Since q is a
prime and a 6= 0, |a| = q. It follows that 〈a〉 is a subgyrogroup of G of order q. If
K is a subgyrogroup of G of order q, then K = 〈b〉 for some b ∈ K by Theorem
6.2 of [18]. Since |b| = q, Lemma 4.3 implies b ∈ 〈a〉. Hence, K = 〈b〉 = 〈a〉. This
proves existence and uniqueness of the subgyrogroup of G of order q.

Next, we prove that Gq = 〈a〉. Let x ∈ 〈a〉. Then either x = 0 or |x| = q. In
either case, qx = 0. Hence, x ∈ Gq. This proves 〈a〉 ⊆ Gq. Let x ∈ Gq. Then
qx = 0. If x = 0, then x ∈ 〈a〉. We may therefore assume that x 6= 0. By Lemma
4.2, |x| divides q and so |x| = q. By Lemma 4.3, x ∈ 〈a〉 and we have the reverse
inclusion Gq ⊆ 〈a〉.

A subgyrogroup H of a gyrogroup G is called an L-subgyrogroup of G if

gyr [a, h](H) = H

for all a ∈ G, h ∈ H. One of the main aspects of L-subgyrogroups is that they
partition G into left cosets of equal size [19, Theorem 20].

Theorem 4.5. If Gq given in Theorem 4.4 is nontrivial, then it is an L-subgyro-
group of G of index n.

Proof. Assume that Gq 6= {0}. Let a, b ∈ G. Since gyr [a, b] is a gyrogroup
automorphism of G, gyr [a, b](Gq) forms a subgyrogroup of G of order q. By the
uniqueness of Gq, gyr [a, b](Gq) = Gq. By de�nition, Gq 6L G. As Gq 6L G, the
index formula holds and hence [G : Gq] = |G|/|Gq| = n.

Theorem 4.6. If G is a gyrogroup of order pq, where p and q are primes with
p < q, then G contains the unique subgyrogroup of order q.

Proof. By Cauchy's theorem for gyrogroups of order pq [18, Theorem 6.9], G has an
element of order q. So, Gq 6= {0} and the theorem follows directly from Theorem
4.4.

Theorem 4.7. Let G be a gyrogroup of order pq, where p and q are primes with
p < q. If the unique subgyrogroup of G of order q is normal in G, then G is
solvable.

Proof. Let N be the unique subgyrogroup of G of order q and assume that N EG.
By Theorem 6.2 of [18], N is a cyclic group of order q and hence is an abelian group.
Since N EG, G/N has the quotient gyrogroup structure and |G/N | = [G : N ] = p.
Hence, G/N is an abelian group as well. Therefore, the series {0} 6 N 6 G ful�lls
the condition of a solvable gyrogroup.

Let Γ be a group. A subgroup Ξ of Γ is said to be characteristic in Γ if
Ξ is invariant under the automorphisms of Γ, that is, if τ(Ξ) = Ξ for all τ in
Aut (Γ). Since group-theoretic conjugation κg : x 7→ gxg−1, x ∈ Γ, de�nes a group
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automorphism of Γ for all g ∈ Γ, every characteristic subgroup of Γ is normal in
Γ. From this point of view, characteristic subgroups are sometimes called strongly
normal subgroups.

In light of Theorem 4.4, not only the structure of a �nite gyrogroup, but also
the structure of a �nite group, is revealed, as shown in the following theorem.

Theorem 4.8. Let q be a prime and let n be a positive integer such that n < q.
Every group of order nq contains the unique characteristic subgroup of order q.

Proof. Let Γ be a group of order nq. By Cauchy's theorem for groups, Γ has an
element of order q. By Theorem 4.4, Γ has the unique subgroup of order q, say Ξ.
If τ is a group automorphism of Γ, then τ(Ξ) is indeed a subgroup of Γ of order
q. Hence, τ(Ξ) = Ξ. This proves that Ξ is characteristic in Γ.

Note that if the integer n in Theorem 4.8 becomes a prime, we recover the
well-known result in abstract algebra that any group of order pq, where p and q
are primes with p < q, contains the unique normal subgroup of order q. This result
arises as an application of the Sylow theorems, see for instance [4, p. 143]. Fur-
ther, it is not di�cult to see that Theorem 4.8 can be obtained as a consequence
of the Sylow theorems as well.
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