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Characterizations of highly non-associative

quasigroups and associative triples

Viacheslav A. Artamonov, Sucheta Chakrabarti, Saibal Kumar Pal

Abstract. Number of associative triples of quasigroup plays an important role in development

of quasigroup based cryptographic schemes. In this paper we present algebraic properties of

highly non-associative quasigroups and derive the criteria for polynomial completeness based on

their multiplicative groups. We develop an algorithm to check the polynomial completeness of

the quasigroup Q from its Latin square representation, which is based on the criteria derived

by using element of Mult(Q) with speci�c cycle structure. We also develop and implement an

algorithm for deriving associative triples of �nite quasigroups based on commutators of their

Latin squares. Experimental results on quasigroups of di�erent order and all quasigroups of

order 4 of di�erent classes are reported.

1. Introduction

Crypto community has focused on usage of non-commutative and non-associative
algebraic structures in cryptography more intensively from the beginning of this
century. Quasigroups are good choice of this type of algebraic structures for cryp-
tographic purpose [2, 10, 11, 16]. The security of quasigroup based cryptographic
primitives depend on its algebraic properties. Highly non-associative is one of the
signi�cant algebraic properties for cryptographic suitable choice of quasigroup [6].

Highly non-associative quasigroups were considered in [13, 18]. It was shown in
[4] that almost all �nite quasigroups Q have the property that the multiplication
group Mult(Q) contains symmetric or alternative group. In other words, the ratio
of number of quasigroups having this property and total number of quasigroups
of �nite order n tends to 1 as n→∞. From a practical point of view quasigroups
of order n, 4 6 n 6 256 are frequently used in cryptography.

In the present paper we consider the problem of characterizing the highly non-
associative quasigroup Q of �nite order from its multiplicative group Mult(Q).
Also one of our main aim is to develop an algorithm for testing polynomial com-
pleteness based on these algebraic properties. It is the main algebraic parameter
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for cryptographically suitable choice of quasigroups. Another signi�cant param-
eter for suitable choice of quasigroups is the number of associative triples. The
number of associative triples of di�erent classes of �nite quasigroups was studied
by di�erent researchers [6, 7, 8, 9]. In this paper we also deal with the problem
of development of algorithm for derivation of associative triples of a quasigroup
of �nite order by algebraic approach from its Latin square. The smallest number
of associative triples plays an important role to resist some known cryptographic
attacks.

In this paper �rst we discuss the preliminaries of quasigroups, their Latin
squares and polynomial completeness in �2. Some properties of a�ne quasigroups
are discussed in �3. Section 4 deals with the characterization of highly non-
associative quasigroups, polynomial completeness and simplicity by using mul-
tiplicative group Mult(Q) of a quasigroup Q. Also in this section we present the
algorithm for testing the polynomial completeness of a quasigroup from its Latin
square by using the cycle structure of permutations of Q which are belong to
Mult(Q). Section 5 deals with the development of algorithm and experiments of
computation of associative triplets and its total numbers from a given Latin square.
Also we present experimental results on associative triples over all quasigroups of
order 4.

2. Preliminaries

A quasigroup is a set Q with a binary operation of multiplication such that for all
a, b ∈ Q the equations ax = b, ya = b have unique solutions x = a�b, y = b�a.
Then the class of quasigroups form a variety of algebras with three operations
xy, x�y, x�y which is de�ned by identities

(xy)�y = x = (x�y)y x�(xy) = y = x(x�y). (1)

Each quasigroup Q can be given by a Latin square

x1 . . . xn
x1 a11 . . . a1n
... . . . . . . . . .
xn an1 . . . a11

(2)

of size n. The elements of Q are {x1, . . . , xn}, each entry aij stands for the product
xixj in the quasigroup Q.

Let x · y, x ∗ y be two quasigroup multiplications on a set Q. We say that
multiplication x∗y is an isotope of multiplication x ·y if there exists permutations
π, π1, π2 on Q such that

x ∗ y = π
(
π−11 (x) · π−12 (y)

)
(3)
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for all x, y ∈ Q. Here (π, π1, π2) is called an isotopy and the two quasigroups (Q, )
and (Q, ∗) are said to be isotopic. If π is an identity permutation then it is called
principal isotopy.

In terms of the Latin square (2) it means that we replace it by the square

x1 . . . xn
x1 b11 . . . b1n
... . . . . . . . . .
xn bn1 . . . b11

, (4)

where

bij = π
(
π−11 (xi) · π−12 (xj)

)
= π

(
aπ−1

1 (xi),π
−1
2 (xj)

)
. (5)

It means that we rearrange columns and rows of Q using permutations π2 and π1,
respectively, and afterwards permute elements of the obtained Latin square using
π.

The next Proposition follows from (3) and (5).

Proposition 2.1. Let Q be a quasigroup of order n with a Latin square (2).
Denote the sets of its row and column permutations by

{σ1, . . . , σn}, {τ1, . . . , τn}. (6)

If (π, π1, π2) is an isotopy of Q then (6) is replaced by the sets

{πσπ−1
1 (1)π

−1
2 , . . . , πσπ−1

1 (n)π
−1
2 } = {πσrπ−12 , 1 6 r 6 n},

{πτπ−1
2 (1)π

−1
1 , . . . , πτπ−1

2 (n)π
−1
1 } = {πτsπ−11 , 1 6 s 6 n}.

(7)

In particular the sets

{σij = σiσ
−1
j | 1 6 i, j 6 n}, {τij = τiτ

−1
j | 1 6 i, j 6 n} (8)

are replaced by the sets

{πσπ−1
1 (i)σ

−1
π−1
1 (j)

π−1 | 1 6 i, j 6 n} = {πσrsπ−1 | 1 6 r, s 6 n},

{πτπ−1
2 (i)τ

−1
π−1
2 (j)

π−1 | 1 6 i, j 6 n} = {πτklπ−1 | 1 6 k, l 6 n},
(9)

respectively.

The multiplication group Mult(Q) is the permutation group of the set Q gen-
erated by permutations (6). By [13, Theorem 2] dihedral, symmetric, alternating,
general linear, projective general linear groups as well as Mathieu groupsM11, M12

can occur as Mult(Q) for some quasigroup Q.
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Denote by G(Q) the subgroup of Mult(Q) generated by elements (8). Note
that G(Q) is generated by elements σi1, τi1 where 2 6 i 6 n. Since (4) is a Latin
square the elements σi1, 2 6 i 6 n, are distinct and non-identical. Adding to them
the identity element we can conclude that the order of the group H(Q) generated
by all elements σi1 where 2 6 i 6 n is at least n = |Q|. Since G(Q) ⊇ H(Q), the
order of G(Q) is greater or equal to the order of Q.

The next Theorem is close to [13, Theorem 1].

Theorem 2.2. Under an isotopy (π, π1, π2) the group G(Q) is mapped to πG(Q)π−1.
In particular if by Albert theorem Q is isotopic to a loop Q′ then G(Q) is conjugate
to the group G(Q′) which coincides with MultQ′.

Proof. Let e = xi be the identity of a loop Q′. Then σi = τi is the iden-
tity permutation. Then σjσ

−1
i = σj and similarly τjτ

−1
i = τj for all j. Hence

πG(Q)π−1 = G(Q′) = MultQ′. Now we can apply (9).

Note that σi is a permutation Lxi of left multiplication by xi, and τj is a
permutation Rxj of right multiplication by xj .

Theorem 2.3. The following conditions are equivalent:

(i) any pair of permutations σij , τrs from (8) commute between themselves;

(ii) Q is isotopic to a group;

(iii) the order of H(Q) is equal to the order of Q.

Proof. Suppose that (ii) holds. Using Theorem 2.2 we can replace Q by an isotopic
copy Q which is a group. By the associativity law, permutations σi, τr commute
and (i) follows.

Suppose that (i) holds. We can assume that Q is a loop. Taking x1 = e we see
that σi1 = σi and τr1 = τr. So for any a ∈ Q we have

(xia)xr = τrσi1a = σi1τra = xi(axr).

So Q is associative and therefore a group.
Suppose that (iii) holds. Then H(Q) = {σi1 | 1 6 i 6 n}. By (9), Theorem 2.2

and by Albert theorem we can assume that Q is a loop with unit element x1 = e.
Now for any indices i, j there exists an index k such that σi1σj1 = σk1. Applying
these maps to e = x1 we get xixj = xk. It means that the map xi → σi1 is an
isomorphism of Q and the group H(Q). Hence (ii) holds.

Suppose that (ii) holds. Without loss of generality we can assume that Q is a
group. Then the map H(Q) is the group of left translations by elements of Q and
this group is isomorphic to Q. So (iii) follows.

Theorem 2.4. The following conditions are equivalent:

(i) any pair of permutations from (8) commute;
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(ii) Q is isotopic to an abelian group;

(iii) G(Q) is an abelian group;

(iv) Q is isotopic to the abelian group G(Q);

(v) The order of H(Q) is equal to the order of G(Q) and to the order of Q.

Proof. Note that conditions (i) and (iii) are equivalent since the elements (8)
generate G(Q).

Now let (i) and (iii) hold. By Albert's theorem Q is isotopic to a loop Q′. Then
G(Q) = MultQ′ by Theorem 2.2 is an abelian group. Hence for any x, y, a ∈ Q′
we have (xa)y = x(ay) and x(ya) = y(xa). It follows that mutiplication in Q′ is
associative and commutative. Thus Q′ is a group and (ii) holds.

Conversely if (ii) holds then G(Q) = MultQ′ is an abelian group by Theorem
2.2.

Finally if equivalent conditions (i) � (iii) hold, then G(Q) is isomorphic to
MultQ′ where Q′ is an abelian group. In this case MultQ′ ' Q′. Thus G(Q) ' Q′
and (iv) holds. Conversely (iv) implies (iii).

Suppose that (v) holds. Then Q is isotopic to a group by Theorem 2.3. So we
can assume that Q is a group with a unit element x1. By (v) we have τi1 = σj1
for some j. It means that xix = xxj for any x ∈ Q. Setting x = x1 we get xj = xi
and obtain commutativity law in Q. So (ii) holds.

The same argument shows that (v) implies (ii).

3. A�ne quasigroups

A universal algebra Q is a�ne if there exists a structure of additive abelian group
on Q such that any basic n-ary operation f on Q has the form

f(x1, . . . , xn) = α1(x1) + · · ·+ αn(xn) + c,

where α1, . . . , αn are group endomorphisms of (Q,+) and c ∈ Q. Following this
de�nition we call a quasigroup Q is a�ne or a T -quasigroup if there exists a
structure of an abelian group < Q,+, 0,− > in Q such that

xy = α(x) + β(y) + c (10)

for some automorphisms α, β of the group < Q,+, 0,− > and for some element
c ∈ Q. It is easy to see that a quasigroup is a�ne if and only if the group oper-
ations < Q,+, 0,− > are polynomials with respect to the quasigroup operations
< Q, ·,�,� >.

Note that the a�ne quasigroup is isotopic to the abelian group 〈Q,+〉. In fact
take π1 = α−1, π2 = β−1 and π(x) = x+ c.

Hence we have
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Proposition 3.1. If Q is an a�ne quasigroup then G(Q) is isomorphic to the

group < Q,+, 0,− >.

An equivalence relation ℘ in a quasigroup Q is a congruence if ℘ is a sub-
quasigroup in direct square Q×Q. A quasigroup Q is simple if it has only trivial
congruences. It means in particular that any quasigroup homomorphism from Q
to any other quasigroup is either an embedding or its image is a one-element set.

Proposition 3.2. Let Q be a �nite simple a�ne quasigroup. Then (Q,+) is

an elementary abelian p-group for some prime p and |Q| = pd for some positive

integer d. The group Mult(Q) is embedded into the group of a�ne transformations

Aff(Q) of Q as a vector space over the �eld Fp with p elements. In particular G(Q)
is a normal subgroup in Mult(Q) isomorphic to 〈Q,+〉.

Proof. Let A be a subgroup in (Q,+) which is stable under α, β. De�ne a relation
u ∼ v ⇐⇒ u − v ∈ A. It is easy to check that ∼ is a congruence. So if Q is a
simple quasigroup then (Q,+) has no non-trivial subgroups stable under α, β. In
particular for any divisor p of the order of Q the set {x ∈ Q | px = 0} is non-zero
and therefore it coincides with (Q,+). Hence Q is a vector space over the �eld
Fp.

Corollary 3.3. A simple �nite quasigroup Q is polynomially complete if either of

conditions is satis�ed:

(i) the order of Q is not a prime power,

(ii) the order of Q is a power of a prime p, and G(Q) is not an elementary abelian

p-group whose order is equal to the order of Q,

(iii) Mult(Q) has no normal abelian subgroups.

The class of quasigroups with the given property is stable under isotopies.

Use Proposition 3.2 and [1, Corollary 3.4]

Proposition 3.4. Let Q be an a�ne quasigroup of a prime order p. Then the

order of each cycle occurring in permutations τj , σi is a divisor of p − 1. In

particular the order of each permutation τj , σi is a divisor of p− 1.

Proof. A�ne quasigroup is de�ned on residue group Z/p by (10). So we can
conclude that α(x) = kx, β(y) = my, where k,m are coprime with p.

Fix an element y = xj . Then Ry = τj . By induction on t we can prove that

τ tj (x) = ktx+
(
kt−1 + · · ·+ 1

)
(my + c) .

Let τj have a cycle of length t generated by an element x, then

x = ktx+
(
kt−1 + · · ·+ 1

)
(my + c)



Non-associative quasigroups and associative triples 7

and therefore
(kt − 1)x+

(
kt−1 + · · ·+ 1

)
(my + c) = 0.

Suppose �rst that
a = kt−1 + · · ·+ 1 ∈ Z/p \ 0.

Canceling by a, we obtain (k − 1)x + my + c = 0 or τj(x) = x. So τj has a cycle
of length 1.

Suppose now that
a = kt−1 + · · ·+ 1 = 0

in Z/p. Then kt = 1. Since k is coprime with p we can conclude that t is a divisor
of p− 1.

Proposition 3.5. Let Q be an a�ne quasigroup of a prime order p. Then Mult(Q)
is an extension of an abelian translation group by a cyclic group of order dividing

p− 1.

Proof. By (10) each mapRy, Lx is an a�ne transformation ofQ = Fp and therefore
it has the form x→ αx+ c where α is a non-zero element of Fp.

There exists a surjective group homomorphism Aff(Fp) → F∗p sending each
map x 7→ αx + c to α ∈ F∗p. The image is a subgroup of the cyclic group F∗p and
the kernel consists of translations x 7→ x+ c, c ∈ Q.

Proposition 3.6. Let Q be an a�ne quasigroup. Then the operations x�y, x�y
are also a�ne. Conversely, if an operation x�y (x�y) is a�ne then Q is a�ne.

Proof. Let (10) holds. Then by (1)

y = x(x�y) = αx+ β(x�y) + c

and therefore
x�y = −β−1αx+ β−1y − β−1c.

Similarly
x = (x�y)y = α(x�y) + βy + c

implies
x�y = α−1x− α−1βy − α−1c.

Thus the operations x�y, x�y are a�ne.
Suppose now that x�y = γx+ δy + d is a�ne. Then

y = x�(xy) = γx+ δ(xy) + d

and
xy = −δ−1γx+ δ−1y − δ−1d

is an a�ne operation. The case of a�ne operation x�y is similar.
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Take fundamental operations xy, x�y, y�x in a quasigroup Q and of all
nullary operations �xing elements from Q. Now consider all �nitary operations
in Q which are obtained from fundamental ones by compositions, identi�cations
and permutations of variables. The operations on Q which are obtained by this
process are called polynomial. A quasigroup Q is polynomially complete if any
�nitary operation on Q is polynomial.

Theorem 3.7 ([12]). A �nite quasigroup Q is polynomially complete, if and only

if Q is simple and non-a�ne quasigroup.

It is well known that a quasigroup Q is simple if and only if Mult(Q) is primitive
permutation group of Q. The following section deals with characterization of
polynomial completeness of highly non-associative quasigroups and its invariant
class under isotopy by using Mult(Q) and G(Q).

4. Highly non-associative quasigroups

A quasigroup Q is highly non-associative if Mult(Q) = Sym(Q).
By a de�nition of a quasigroup the group Mult(Q) of a quasigroup Q acts

transitively on the set Q.

Proposition 4.1 ([17]). Let Q be a quasigroup of order n such that Mult(Q) is

a doubly transitive permutation group on Q. Then Q is simple. In particular, if

n > 4 and Mult(Q) ⊇ An then Q is simple. A highly non-associative quasigroup

of any order is simple.

Proof. Suppose ℘ is a congruence in Q. Let ℘(c) be a class containing c ∈ Q and
d ∈ ℘(c)\c. By double transitivity there exists g ∈ Mult(Q) such that g(c) = c and
g(d) /∈ ℘(c). Since ℘ is a congruence (c, d) ∈ ℘ implies (g(c), g(d)) = (c, g(d)) ∈ ℘,
which is not the class.

If a quasigroup Q is highly non-associative then Mult(Q) = Sym(Q) is a doubly
transitive group. If n > 4, then An is again a doubly transitive group.

The next Proposition generalizes [1, Proposition 3.13].

Proposition 4.2. Let Q be a quasigroup of order n. Suppose that Mult(Q) con-

tains a simple non-identical subgroup G whose images under any group homomor-

phisms into any symmetric group Sq is identical provided q < n and q | n. Then

Q is simple.

Proof. Suppose that Q has a proper congruence ℘. If x ∈ Q then the maps Lx, Rx
permute congruence classes of ℘. Hence there exists a group homomorphism π
from MultQ into the group Sq of permutations of Q/℘. As it was shown in [3]
orders of each congruence classes of ℘ are equal and therefore the order q of Q/℘
is a divisor of the order of Q. By assumption π(G) = 1 which means that G acts
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identically on Q/℘. It means that each class of the congruence ℘ is stable under
the action of G.

Let x ∈ Q and C the class of ℘ containing x. The order of C is equal to
n
q < n . Since C is stable under action of G there exists a group homomorphism

ξ : G → Sn
q
. By assumption ξ(G) = 1. It means that g(x) = x for any g ∈ G, a

contradiction. Hence Q is simple.

Corollary 4.3. Let Q be a quasigroup of order n and G a simple non-identical

subgroup of Mult(Q). Suppose that the order of G does not divide q! for any

proper factor q of n. Then any homomorphisms of G into any symmetric group

Sq is identical provided q < n and q | n. In particular Q is simple.

Proof. Let π : G → Sq be a homomorphism where q < n and q | n. Then the
order of the image π(G) divides q!. If π is not identical then by simplicity of G
the order of π(G) is equal to the order of G, a contradiction.

Theorem 4.4. Let Q be a �nite quasigroup of order n and Mult(Q) contain a

subgroup isomorphic the alternative subgroup Am, where

m > max
([n

2

]
+ 1, 5

)
. (11)

Then Q is polynomially complete. In particular a highly non-associative quasigroup

of order n > 5 is polynomially complete.

Proof. To prove the theorem we need the following two lemmas.

Lemma 4.5. The group G, isomorphic to Am yields the assumption of Proposition

4.2.

Proof. Let π be a non-identical homomorphism of G = Am into Sr where r | n
and r < n. Since Am is simple the map π is injective and therefore m!

2 , the order
of Am divides r!, the order of Sr. Thus m! | 2 · r!. It is required to mention that

r 6
[n

2

]
and

m >
[n

2

]
+ 1.

Hence ([n
2

]
+ 1
)

! | 2 ·
[n

2

]
!.

It follows that
[
n
2

]
+ 1 | 2 and

[
n
2

]
= 1. In this case r = 1 and

5!

2
| m!

2
| r! = 1,

a contradiction.
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Lemma 4.6. Let p be an odd prime. Then p+ 1 6
[
p2

2

]
.

Proof. Since p > 3 we have

p2 − 2p− 2 = (p− 1)2 − 3 > 22 − 3 = 1 > 0.

Hence p2 > 2p+ 2 and the proof follows.

Now it follows from Lemma 4.5 and Propositions 4.2, 3.2 Q is a vector space
over the �eld Fp for some prime p of dimension d.

The maps Lx, Ry are a�ne transformations of the vector space Q by (10).
Therefore Mult(Q) consists of a�ne transformations of (Q,+).

Recall some basic facts related to the group Aff(Q) of a�ne transformations
of (Q,+). Let f ∈ Aff(Q) and f(x) = α(x) + c where α ∈ GL(d,Fp) and c ∈ Q.
Put ζ(f) = α. Then ζ : Aff(q) → GL(d,Fp) is a surjective group homomorphism
with abelian kernel consisting of translations f(x) = x+ c, c ∈ Q. Since Am is a
nonabelian simple group the homomorphism ζ mapsAm injectively into GL(d,Fp).
Moreover there is a surjective group homomorphism det : GL(d,Fp) → F∗p with
kernel SL(d,Fp). The group F∗p of nonzero elements of the �eld Fp is abelian.
Again by simplicity of Am we have det (ζ(Am)) = 1. It means that ζ embeds Am

into SL(d,Fp) and by Lagrange's theorem m!
2 divides the order of SL(d,Fp) which

is equal to

(pd − 1)(pd − p) · · · (pd − pd−1)

p− 1
= p

d(d−1)
2 (pd − 1)(pd−1 − 1) · · · (p2 − 1).

Since m >
[
pd

2

]
+ 1 we can conclude that

([
pd

2

]
+ 1

)
! | 2p

d(d−1)
2 (pd − 1)(pd−1 − 1) · · · (p2 − 1). (12)

Note that by de�nition pd−1 6 pd

2 . Hence the product (pd−1−1) · · · (p2−1) occurs

in
([

pd

2

]
+ 1
)

!. After cancellation in (12) we obtain

pd−1
(
pd−1 + 1

)
| 2p

d(d−1)
2 (pd − 1)

and therefore
(
pd−1 + 1

)
| 2(pd − 1). Note that

2p+ 2 = −2
(
pd − 1

)
+ 2p

(
pd−1 + 1

)
.

Hence (
pd−1 + 1

)
| 2(p+ 1). (13)
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Let p = 2. Then d > 3, because n = 2d > 5. So in (13) we have
(
2d−1 + 1

)
| 6.

Then d = 1, 2, a contradiction.

Now let p be an odd prime and (13) holds. If d > 3, then

pd−1 + 1 > p2 + 1 > 2(p+ 1),

a contradiction.

Let d = 2. Then in (12) we have([
pd

2

]
+ 1

)
! | 2p(p2 − 1) = 2p(p− 1)(p+ 1). (14)

Cancel (14) by (p−1)p(p+1). Then by Lemma 4.6, 1 · . . . ·(p−2) ·(p+2) · · · | 2,
and therefore p+ 2 divides 2, a contradiction, since p is an odd prime.

So (12) is impossible and Q is not a�ne. Therefore Q is polynomially complete.

In particular, if Mult(Q) is highly non-associative, then Mult(Q) contains Sn
and Am, where m is from (11).

Proposition 4.7. Let Q be a quasigroup of order n > 5. Suppose that there exists
an element of Mult(Q) with a cycle decomposition containing a cycle of prime

length p > n
2 and n− p 6= 0, 1. Then MultQ is simple and MultQ contains An if

one of the following conditions is satis�ed:

(i) n > p+ 3

(ii) n = p+ 2 and n− 1 6= 2t, t ∈ N.

Proof. Let σ ∈ Mult(Q) and σ = σ1 · · ·σm a decomposition into a product of
independent cycles and the length of σ1 is equal to p. Then the lengths of other
cycles σj , j > 1 is less than p. Let d be the least common multiple of orders of
cycles σj , j > 1. Then d is coprime with p. Therefore σd = σd1 ∈ Mult(Q) is
a cycle of prime length p �xing n − p elements of Q. Hence σ1 ∈ Mult(Q) and
therefore

σ2 · · ·σm = σ−11 σ ∈ Mult(Q).

The group G = 〈σ1〉 has a prime order. Hence it is a simple subgroup in Mult(Q).
Suppose there exists a homomorphism f : G → Sq where q < n and q | n. So
q 6 n

2 , p >
n
2 so n

2 < p and therefore q < p.

The image f(G) has order p so p | q! where (q, p) = 1. It follows that p can't
divide q!, a contradiction. Hence f(G) = 1.

By Proposition 4.2 we obtain that Q is simple and therefore MultQ is primitive
group of permutations.

Now since n− p 6= 0, 1, so either

(i) n− p > 3, then, by [14, Theorem 1.2, Corollary 1.3], An ⊆ Mult(Q), or
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(ii) n−p = 2 then by [14, Theorem 1.2, Corollary 1.3] we obtain An ⊆ Mult(Q),
if n−1 = p+1 is not a prime power. Suppose that p+1 = qt for some prime
q. Then qt − 1 = p and (q − 1) | p which means that q = 2. So in this case if
n− 1 6= 2t then the proposition holds.

By using Proposition 4.7 in a restricted domain and Theorem 4.4 we develop
an algorithm (Figure 1) to identify polynomially complete quasigroups of order
n > 5 based on their Latin square representations. Compute Mult(Q) from Q is
computationally expensive. Hence in this algorithm we choose the element from Q
of Mult(Q) and it able to identify a subclass of polynomially complete quasigroup
using lesser computation. The algorithm is given below:

Algorithm

Input : n× n Latin square of the quasigroup Q of order n
Output : Decision - quasigroup is polynomially complete / unidenti�ed
Steps :

1. �ag=0

2. for i = 1 : n

• Decompose row permutation σi of Q into disjoint cycles

• Check whether there exists a sub-cycle of σi of prime length p ∈
[[

n
2

]
+ 1, n− 2

]
� if yes, then check whether

(n− p > 3) or (n− p = 2&n 6= 2t for t ∈ N)

� if yes then �ag=1; break; endif

endif

endfor

3. if �ag=0 then repeat step2 for column permutation τj , 1 6 j 6 n, of Q

endif

4. if �ag=1 print : Polynomially Complete

else print : unidenti�ed

endif

Figure 1: Algorithm for identifying polynomially complete quasigroup of order > 5.

The following example shows the application of the algorithm to identify the
polynomially complete quasigroup Q from the given corresponding Latin square
by testing the cycle structures of row / column permutations of Q ⊆ Mult(Q).

Let Q be a �nite quasigroup Q of order n = 7. The corresponding 7× 7 Latin
square is given below
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1 2 3 4 5 6 7

1 1 4 3 7 2 6 5
2 5 1 7 4 6 3 2
3 6 2 1 5 7 4 3
4 7 3 2 6 1 5 4
5 3 6 5 2 4 1 7
6 2 5 4 1 3 7 6
7 4 7 6 3 5 2 1

Following the steps of the algorithm described in Figure 1, for i = 4, σ4 has a
sub-cycle of length p = 5. Now n − p = 2 &n − 1 = 6 6= 2t for t ∈ N. So by the
algorithm it is identi�ed as polynomially complete.

Recall that the Klein subgroup V4 of S4 consists of an identity permutation
and of all three 2× 2-cycles. The order of V4 is equal to 4 and it is isomorphic to
Z2 × Z2.

Proposition 4.8. Let Q be a quasigroup of order 4. Suppose that Mult(Q) does

not contain a cycle of length 3. Then Mult(Q) is contained in a Sylow 2-group
Syl2 of S4 which is a semi-direct product of the Klein group V4 and a subgroup of

order 2 generated by 2-cycle.

Proof. By assumption each non-identical element from Mult(Q) ⊆ S4 is either
a 4-cycle or a product of independent 2-cycles. It means that each element of
Mult(Q) has order 1, 2, 4. So it is contained in Sylow 2-subgroup of S4.

Proposition 4.9. Let Q be a quasigroup of order 4 in which Mult(Q) has a

3-cycle. Then the group Mult(Q) contains A4. Hence if there is also an odd per-

mutation among its row or column permutations then Q is highly non-associative

and therefore polynomially complete.

Proof. Let a 3-cycle σ exist. By [1, Proposition 3.13] the quasigroup Q is simple.

Let G = Mult(Q) and H a subgroup in G �xing the same element as σ. Then
σ belongs to H. Hence the order of H is divisible by 3 and also |G| = 4|H| because
G acts transitively on Q. Hence the order of G is divisible by 12.

Since G is a subgroup of S4 we can conclude that the order of G is either 12
or 24. So either G = A4 or G = S4.

If in addition there exists an odd permutation from Mult(Q) ⊃ A4, then
Mult(Q) = S4. By [1, Proposition 4.4] Q is not a a�ne quasigroup.

Proposition 4.10. Let Q be a non-simple quasigroup of order 4. Then Mult(Q)
is contained in Sylow 2-subgroup Syl2 of S4. Note that the commutator of Syl2 is

contained in V4 and it has order 2.

Proof. If Q is non-simple then Mult(Q) does not contain 3-cycles by Proposition
4.9. Apply Proposition 4.8.
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Proposition 4.11. Let |Q| = pd for some prime p and Mult(Q) is embedded into

the group of all a�ne transformations of a vector space V of dimension d over the

�eld Fp with p elements. Then Q can be identi�ed with V and

xy = x ∗ y + α(x) + β(y) + c, c ∈ Q,

where x ∗ y is a bilinear multiplication in Q such that α, β and the maps

x 7→ x ∗ y + α(x), y 7→ x ∗ y + β(y) (15)

are invertible linear operators in Q.

Proof. By assumption on the order of Q and on action of Mult(Q) we can identify
Q with the vector space V of dimension d over the �eld Fp such that the maps of
left and right multiplication became a�ne transformations on Q. More precisely,
for any x, y ∈ Q we have

xy = Lxy = βx(y) + γ(x), γ(x) ∈ Q;

xy = Ryx = αy(x) + δ(y), δ(y) ∈ Q,

where βx, αy are invertible linear operators in Q for any x, y ∈ Q.
Setting β = β0, α = α0 we get

0y = β(y) + γ(0) = δ(y);

x0 = α(x) + δ(0) = γ(x).

Hence
xy = βx(y) + α(x) + δ(0) = αy(x) + β(y) + γ(0).

Setting x = y = 0 we obtain δ(0) = γ(0) and therefore

βx(y)− β(y) = αy(x)− α(x)

is a bilinear multiplication x ∗ y in Q. Finally, αy(x) = x ∗ y + α(x) and it follows
that xy has the required form.

As we have noticed above α, β are invertible linear operators. Since Q is a
quasigroup the maps (15) are also invertible linear operators for any x, y ∈ Q.

Consider a quasigroup
1 2 3 4

1 2 1 3 4
2 1 3 4 2
3 4 2 1 3
4 3 4 2 1

.

In this example the �st row is the cycle (1, 2), the second row is the cycle
(2, 3, 4). It also contains a cycle (1, 3, 2, 4) and by Theorem 4.9 it is highly non-
associative. Therefore by Proposition 4.1 it is simple.
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Consider another quasigroup

1 2 3 4
1 3 2 4 1
2 4 1 3 2
3 1 4 2 3
4 2 3 1 4

. (16)

In this example row permutations are

(1, 3, 4), (1, 4, 2), (2, 4, 3), (1, 2, 3). (17)

Column permutations are

(1, 3)(2, 4), (1, 2)(3, 4), (1, 4)(2, 3), ε, (18)

where ε is the identity permutation. So by Proposition 4.9 this is a simple quasi-
groups whose Mult(Q) = A4. So simplicity does no imply highly-nonassociativity.

Now we shall characterize invariant class of polynomially complete highly non
associative quasigroup under isotopy.

Proposition 4.12. Let Q be a �nite quasigroup of order n > 5. Suppose that the

group G(Q) from � 2 contains a subgroup isomorphic to Am, m > max( |Q|2 +1, 5).
The class of quasigroups Q with given property is stable under isotopies. All of

them are polynomially complete.

Apply Theorems 2.2 and 4.4.

5. Method for derivation of associative triples

In this section we present a method for deriving associative triples of quasigroups
of order n. It is based on commutators of row and column permutations of its
Latin squares. Here we also give an algorithm for this scheme.

Recall that a triple (x, a, y) of elements of a quasigroup Q is associative if
x(ay) = (xa)y. In other words LxRya = RyLxa, where Lx, Ry are maps of left
multiplication by x and right multiplication by y.

Suppose that a �nite quasigroup Q of order n is given by its Latin square (2)
with row and column permutations σ1, . . . , σn, τ1, . . . , τn. Let x = xi, y = xj .
So Lx = σi, Ry = τj . Then LxRya = σiτja, RyLxa = τjσia. Hence a triple
(xi, a, xj) is associative if and only if σiτja = τjσia. It can be written in equivalent
form σ−1i τ−1j σiτja = a. If we use group commutator [σ−1i , τ−1j ] = σ−1i τ−1j σiτj then

we can write [σ−1i , τ−1j ]a = a.
So we have
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Proposition 5.1. A triple (xi, a, xj) is associative if and only if a is a �xed

element of the permutation [σ−1i , τ−1j ].

So the number of associative triples is equal to a sum of numbers of all �xed
elements under commutators [σ−1i , τ−1j ] for all i, j = 1, . . . , n.

The algorithm for associative triples of a quasigroup Q of order n is developed
based on commutators of column and row permutations of its Latin square by
using Proposition 5.1. The algorithm is given below.

Algorithm

Input : n× n Latin square of the quasigroup Q of order n
Output : Associative triples of Q and total number
Steps :

1. Write all row (σ1, . . . , σn) & (τ1, . . . , τn) permutations of Latin square

2. Write all σ−11 , . . . , σ−1n &τ−11 , . . . , τ−1n

3. Calculate [σ−1i , τ−1j ] = σ−1i τ−1j σiτj

4. Represent each [σ−1i , τ−1j ] is cycle form

5. Write all elements xk ∈ Q such that xk does not belong to any nontrivial cycle
of [σ−1i , τ−1j ] and denote by xk

6. Associative triples for each [σ−1i , τ−1j ] are (xi, xk, xj)∀xk

7. Total number of associative triples =
∑

#xk for each i, j where 1 6 i, j 6 n

Figure 2: Algorithm for associative triples.

This algorithm �rst calculates n2 number of commutators and directly calcu-
late associative triples directly instead of calculations of 2n3 triplets of the form
(xy)z, x(yz) and comparing them to derive associative triplets.

The following example shows application of the algorithm for a quasigroup of
order 5. Consider a quasigroup Q of order 5 with the Latin square

1 2 3 4 5

1 4 2 3 5 1
2 5 1 4 2 3
3 2 3 5 1 4
4 3 5 1 4 2
5 1 4 2 3 5

.
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Then the row and column permutations are

σ1 = (1, 4, 5), σ2 = (1, 5, 3, 4, 2), σ3 = (1, 2, 3, 5, 4),

σ4 = (1, 3)(, 2, 5), σ5 = (2, 4, 3),

τ1 = (1, 4, 3, 2.5), τ2 = (1, 2)(4, 5), τ3 = (1, 3, 5, 2, 4),

τ4 = (1, 5, 3), τ5 = (2, 3, 4).

A calculations by algorithm given in Figure 2 shows that the following com-
mutators have �xed elements:

commutators
�xed

elements
associative
triples

number of
associative
triples

[σ−1
1 , τ−1

1 ] = (1, 2, 4) x3, x5 (x1, x3, x1), (x1, x5, x1) 2

[σ−1
1 , τ−1

2 ] = (1, 5)(2, 4) x3 (x1, x3, x2) 1

[σ−1
1 , τ−1

4 ] = (1, 3)(4, 5) x2 (x1, x2, x4) 1

[σ−1
1 , τ−1

5 ] = (1, 3, 4) x2, x5 (x1, x2, x5), (x1, x5, x5) 2

[σ−1
2 , τ−1

4 ] = (2, 5, 3) x1, x4 (x2, x1, x4), (x2, x4, x4) 2

[σ−1
2 , τ−1

5 ] = (2, 5, 4)) x1, x3 (x2, x1, x5), (x2, x3, x5) 2

[σ−1
4 , τ−1

4 ] = (1, 5)(2, 3) x4 (x4, x4, x4) 1

[σ−1
5 , τ−1

1 ] = (1, 2, 3) x4, x5 (x5, x4, x1), (x5, x5, x1) 2

[σ−1
5 , τ−1

4 ] = (3, 4, 5) x1, x2 (x5, x1, x4), (x5, x2, x4) 2

[σ−1
5 τ−1

5 ] = ε xi, ∀i (x5, xi, x5) ∀i 5

The total number of associative triples is equal to 20. This algorithm can
explicitly able to compute the associative triples of any �nite order quasigroups
and hence total number of associative triples. In our experiment we �nd the lowest
number of associative triples for quasigroup of order 5 is 20.

In the following section we present experimental results of number of associative
triples for all quasigroups of order 4 of di�erent algebraic classes considered in [2].

6. Experimental results

The algorithm for derivation of associative triples of quasigroups of �nite order
is implemented. It has been succesfully applied on di�erent order of quasigroups.
From algebraic point of view we classify the the quasigroups of order 4 in four
di�erent classes [2] which are viz. (i) Simple and a�ne quasigroups (ii) Simple
and non-a�ne quasigroups (Polynomially complete), (iii) Non-simple and a�ne
quasigroups and (iv) Non-simple and non-a�ne quasigroups. Experiments are
carried out on the set of all quasigroups of order 4 to �nd out the number of
associative triples of di�erent classes. Experimental results show that number of
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associative triples are either 16 or 24 for simple cases and 32 or 64 for non-simple
cases. So, 16 is the minimum number of associative triples of quasigroups of order
4 [9].

The table given below shows the number of quasigroups and corresponding
associative triples of each class.

Classes
Number of
quasigroups

Number of
associative triples

Simple and a�ne 104 16

Simple and non-a�ne
(polynomially complete)

240
144

16
24

Non-simple and a�ne
48
8

32
64

Non-simple and non-a�ne
24
8

32
64

Figure 3: Associative triples of di�erent classes of quasigroups of order 4

From algebraic point of view we know that cryptographic suitable quasigroups
are polynomially complete [1]. Minimum number of associative triples is also
an important algebraic property for good choice of cryptographic quasigroups.
Experimental results show that cryptographic suitable quasigroups of order 4 are
240 beloging to the polynomially complete class. It is also observed that number
of associative triples of non-simple quasigroups are always greater than simple
quasigroups of order 4. Therefore, quasigroups belonging to the non-simple class
are unsuitable for cryptographic purpose.

7. Acknowledgement

We are thankful to Dr. G.Athithan, DG (MED & CoS), DRDO and Ms. Anu
Khosla, Director SAG, DRDO for their support and encouragements to carry out
the collaborative research work.

Our heartiest thanks to Professor Bimal K. Roy, ASU, ISI Kolkata for his
support and hospitality.

Authors are also thankful to all professors of Indo-Russian joint project team
for their technical support and cooperation.

References

[1] V.A. Artamonov, S. Chakrabarti, S. Gangopadhyay, S.K. Pal, On Latin

squares of polynomially complete quasigroups and quasigroups generated by shifts.
Quasigroups and Related Systems 21 (2013), 201− 214.



Non-associative quasigroups and associative triples 19

[2] V.A. Artamonov, S. Chakrabarti, S.K. Pal, Characterization of polynomi-

ally complete quasigroups based on Latin squares for cryptographic transformations,
Discrete Appl. Math. 200 (2016), 5− 17.

[3] V.D. Belousov, Foundations of the theory of quasigroups and loops, (Russian),
Izdat. Nauka, Moscow, 1967.

[4] P.J. Cameron, Almost all quasigroups have rank 2, Discrete Math. 106/107
(1992), 111− 115.

[5] J. Dénes, T. Dénes, Non-associative algebraic system in cryptology. Protection

against "meet in the middle" attack, Quasigroups and Related Topics, 8 (2001),
7− 14.

[6] J. Dénes, A.D. Keedwell, A new authentication scheme based on Latin squares.

Discrete Math. 106/107 (1992), 57− 161.

[7] A. Drápal, On quasigroups rich in associative triples. Discrete Math. 44 (1983),
251− 265.

[8] A. Drápal, T. Kepka, A note on the number of associative triples in quasigroups

isotopic to groups. Comment. Math. Univ. Carol. 22 (1981), 735− 743.

[9] O. Gro²ek, P. Horák, On quasigroups with few associative triples. Des. Codes
Cryptogr. 64 (2012), 221− 227.

[10] M.M. Glukhov, On application of quasigroups in cryptology, Applied Discrete
Math. 2 (2008), 28− 32.

[11] D. Gligoroski, S. Markovski, S.J. Knapskof, The stream cipher Edon-80, Lec-
ture Notes Computer Sci. 4986 (2008), 152− 169.

[12] J. Hagemann, C. Herrmann, Arithmetically locally equational classes and repre-

sentation of partial functions. Universal Algebra, Estergom (Hungary) 29, Colloq.
Math. Soc. J. Bolyai, 1982, 345− 360.

[13] T. Ihringer, On multiplication groups of quasigroups, European J. Combin. 5
(1984), 137− 141.

[14] G.A. Jones, Primitive permutation groups containing a cycle, Bull. Aust. Math.
Soc. 89 (2014), 159− 165.

[15] L. Guohao, Y. Xu, Cryptographic classi�cation of quasigroups of order 4, Intern.
Workshop on Cloud Computing and Information Security (2013), 278− 281.

[16] V.A. Shcherbacov, Quasigroups in cryptology, Computer Sci. J. Moldova 17
(2009), 193− 227.

[17] K.K. Schukin, Simplicity of a quasigroup and primitivity of its of its multiplication

group, Izv. Akad. Nauk. Mold. SSR. Mat. 3 (1990), 66− 68.

[18] J.D. Smith, Multiplication groups of quasigroups, Preprint No. 603, Technische
Hochschule Darmstadt, 1981.

Received November 10, 2016

V.A. Artamonov

Faculty of Mchanics and Mathematics, Moscow Satate University, Leninsky Gory 1,

119992 Moscow, Russia

e-mail: artamon@mech.math.msu.su

S. Chakrabarti, S.K. Pal

Scienti�c Analysis Group, DRDO, India,

e-mail: suchetadrdo@hotmail.com, skptech@yahoo.com


