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Nilpotency of gb-triple systems

Guy Roger Biyogmam

Abstract. gb-triple systems are among the generalizations of Leibniz algebras (which includes

Lie algebras) to ternary algebras. In this paper, we extend several results established on nilpotent

Lie algebras to gb-triple systems. In particular we prove an analogue of Engel's theorem for gb-

triple systems and establish some properties of nilpotent gb-triple systems in connection with

their Frattini ideal. Also, we show the invariance of the nilradical under derivations.

1. Introduction

In recent years, Lie algebras have been generalized to several algebraic structures
endowed with a multilinear operation. In particular, 3-Lie algebras [12] and Lie
triple systems [8, 14] are generalizations of Lie algebras to ternary algebras. An-
other ternary algebra in this picture is Leibniz 3-algebras [10] which generalizes
Leibniz algebras introduced by J. L. Loday [17] as a non commutative version of
Lie algebras. A considerable amount of research (see [2, 3, 9, 11, 16]) has been
devoted in extending classical theorems of Lie algebras to these generalizations.
This paper is a continuation of investigations on gb-triple systems; a new algebraic
structure recently introduced in [6] as another generalization of Leibniz algebras
to ternary operations, and further investigated in [7].

Our purpose in this work is the study of nilpotency on gb-triple systems. In
Section 3 we introduce the Frattini subalgebra and ideal of gb-triple systems and
extend their classical properties known on Lie algebras to gb-triple systems. In
Section 4, we prove that a gb-triple system g for which the Frattini ideal φ(g) is
a 3-sided ideal is nilpotent if and only if the quotient gb-triple system g/φ(g) is
nilpotent. We also prove an analogue of Engel's theorem for gb-triple systems,
thanks to the fact that the bracket operator generates the Lie algebra of inner
derivations as in the case of all algebras mentioned above. In Section 5, we show
that the nilradical 2-sided (right) ideal of a gb-triple system is invariant under
derivations.

For the remainder of this paper, we assume that K is a �eld of characteristic
di�erent to 2, all tensor products are taken over K and all algebras are �nite
dimensional.
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2. gb-triple systems

In this section, we recall preliminaries about gb-triple systems and de�ne the quo-
tient gb-triple system.

De�nition 2.1. (cf. [6]) A gb-triple system is a K -vector space g equipped with
a trilinear operation [−,−,−]g : g×3 −→ g satisfying the identity

[x, y, [a, b, c]g]g = [a, [x, y, b]g, c]g − [[a, x, c]g, y, b]g − [x, [a, y, c]g, b]g. (2.1)

De�nition 2.2. (cf. [6]) Let (g, [−,−,−]g) be a gb-triple system. A subspace S
of g is a subalgebra of g if (S, [−,−,−]g) be a gb-triple system.

Example 2.3. See Example 2 and Example 8 in [6].

De�nition 2.4. (cf. [6]) A subalgebra I of a gb-triple system g is called ideal

(resp. left ideal, right ideal) of g if it satis�es the condition
[
g, I, g

]
g
⊆ I (resp.[

g, g, I
]
g
⊆ I, resp.

[
I, g, g

]
g
⊆ I). If I satis�es these three conditions, then I is

called a 3-sided ideal.

Remark 2.5. (cf. [6]) If S is a subalgebra of a gb-triple system g, then the left

normalizer

Nl
g(S) :=

{
x ∈ g :

[
x, S, g

]
g
⊆ S

}
and the right normalizer

Nr
g(S) :=

{
x ∈ g :

[
g, S, x

]
g
⊆ S

}
of S in g are also subalgebras of g. Note that this statement is not true for Leibniz
algebras since the right normalizer of a subalgebra of a (left) Leibniz algebra need
not be a subalgebra (see [5, Example 1.7]).

Moreover, S is an ideal of g if and only if Nl
g(S) = g = Nr

g(S).

De�nition 2.6. (cf. [6]) Given a gb-triple system g, the center Z(g) and the
derived algebra of g are de�ned respectively by

Z(g) =
{
x ∈ g :

[
g, x, g

]
g
= 0
}

and [
g, g, g

]
=
{[
a1, a2, a3

]
g
, a1, a2, a3 ∈ g

}
.

g is said to be perfect if
[
g, g, g

]
g
= g, and abelian if

[
g, g, g

]
g
= 0.

De�nition 2.7. The full center Zf (g) of a gb-triple system g is de�ned by

Zf (g) = Z(g) ∩
{
x ∈ g :

[
g, g, x

]
g
= 0 and

[
x, g, g

]
g
= 0
}
.
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The following result is straightforward.

Proposition 2.8. A gb-triple system g is abelian if and only if Zf (g) = g.

Note that Z(g) is an ideal of g while Zf (g) and
[
g, g, g

]
g
are 3-sided ideals of

g. Let I be a 3-sided ideal of a gb-triple system g. Then the quotient space g/I
has a natural gb-triple system structure given by the bracket

[x+ I, y + I, z + I]g/I = [x, y, z] + I. (2.2)

Notice that if x+ I = x′ + I, y + I = y′ + I and z + I = z′ + I, then

[x, y, z]g = [x′ + (x− x′), y′ + (y − y′), z′ + (z − z′)]g
= [x′, y′, z′]g + [x′ + (x− x′), y − y′, z′ + (z − z′)]g

+ [(x− x′), y′, z′ + (z − z′)]g + [x′, y′, (z − z′)]g

and thus [x, y, z]g + I = [x′, y′, z′]g + I since x− x′ ∈ I, y − y′ ∈ I and z − z′ ∈ I
as I is a 3-sided ideal. That the bracket (2.2) satis�es the identity (2.1) follows by
de�nition.

De�nition 2.9. g/I endowed with the bracket (2.2) is called quotient gb-triple
system of g by I.

Recall that if V is a vector space endowed with a trilinear operation σ : V ×
V × V −→ V, then a map d : V −→ V is called a derivation with respect to σ if

d(σ(x, y, z)) = σ(d(x), y, z) + σ(x, d(y), z) + σ(x, y, d(z)) (2.3)

Remark 2.10. Let g be a gb-triple system. Then by [7, Remark 3.9], the Lie
algebra Der(g) of derivations of g has a gb-triple system structure when endowed
with the bracket

{d1, d2, d3} =
[
d2,
[
d1, d3

]
Der(g)

]
Der(g)

.

Remark 2.11. For every derivation d of g and x, y, y′, z ∈ g, it follows by (2.3)
and by setting σ = [−,−,−]g that

[x, y + d(y′), z]g = [x, y, z]g − [d(x), y′, z]g − [x, y′, d(z)]g + d([x, y′, z]g).

So if I is an ideal of g, then I+ d(I) is also an ideal of g.

3. The Frattini subalgebra of gb-triple systems

This section is devoted to the introduction of the Frattini subalgebra and Frattini
ideal of gb-triple systems.

De�nition 3.1. A maximal subalgebra m of a gb-triple system g is a proper sub-
algebra of g such that no proper subalgebra S strictly contains m.
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Remark 3.2. Let m be a maximal left ideal of a gb-triple system g. Then as m
is a left ideal of g, m ⊆ Nr

g(m). Now since m is maximal, then Nr
g(m) = m or

Nr
g(m) = g.

De�nition 3.3. The intersection of all maximal subalgebras of a gb-triple system
g is the subalgebra F (g) of g called the Frattini subalgebra.

De�nition 3.4. The largest ideal of a gb-triple system g contained in F (g) is
denoted φ(g) and called the Frattini ideal of g.

Proposition 3.5. Let g be a non perfect gb-triple system. Then F (g) ⊆ [g, g, g]g.
In particular, F (g) = 0 if g is abelian.

Proof. By contradiction, let x ∈ F (g) with x /∈ [g, g, g]g. Any subalgebra S of
g with dimension dimg − 1 containing [g, g, g]g and with x /∈ S is a maximal
subalgebra of g. A contradiction with x ∈ F (g).

Following the proofs of [2, Propositions 2.1, 2.2, 2.4], it is easy to show that
the following statements which hold for Leibniz 3-algebras also hold for gb-triple
systems.

Proposition 3.6. Let g be a gb-triple system and I an ideal of g. Then there are

proper subalgebras Sand S′ of g such

(1) g = I+ S i� I is not contained in F (g).

(2) g = I+ S′ i� I is not contained in φ(g).

Proposition 3.7. Let g be a gb-triple system, I an ideal of g and S a subalgebra

of g. Then the following statements hold:

(1) If S + F (g) = g, then S = g.

(2) If S + φ(g) = g, then S = g.

(3) If I ⊆ F (S), then I ⊆ F (g).

(4) If I ⊆ φ(S), then I ⊆ φ(g).

(5) If F (S) is an ideal of g, then F (S) ⊆ F (g).

(6) If φ(S) is an ideal of g, then φ(S) ⊆ φ(g).

(7) (F (g) + I)/I ⊆ F (g/I).

(8) (φ(g) + I)/I ⊆ φ(g/I).

(9) If I ⊆ F (g), then F (g)/I = F (g/I).

(10) If I ⊆ φ(g), then φ(g)/I = φ(g/I).
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(11) If F (g/I) = 0, then F (g) ⊆ I.

(12) If φ(g/I) = 0, then φ(g) ⊆ I.

(13) If S is minimal with respect to g = I+ S, then I ∩ S ⊆ g.

(14) If I is abelian and I∩φ(g) = 0, then g = I+K for some subalgebra K of g.

Proof. The proof is similar to the case of Lie 3-algebras (see [2]).

4. Nilpotency of gb-triple systems

4.1. De�nition and Examples

De�nition 4.1. The lower central series of a gb-triple system g is the sequence
of subalgebras de�ned by g(s+1) = [g, g(s), g] with g(1) = g.

A gb-triple system g is nilpotent if this sequence terminates, i.e., g(s) = 0 for
some positive integer s. The smallest of such values s is called class of nilpotency

of g.

Remark 4.2. Let g be a nontrivial nilpotent gb-triple system of class s. Then the
following holds.

(1) g has a non trivial center. Indeed, since there is some positive integer s
such that g(s) = 0 i.e. [g, g(s−1), g]g = 0, it follows that g(s−1) ⊆ Z(g).

(2) g is abelian if and only if its class is s = 2.

Proposition 4.3. Let g be a gb-triple system. Then g is nilpotent if and only if

g/Zf (g) is nilpotent

Proof. If g is nilpotent of class s, then [g, g(s−1), g]g = g(s) = 0. Using (2.2),

it is easy to show that
(
g/Zf (g)

)(s)
= g(s)/Zf (g) = Zf (g). Therefore g/Zf (g)

is nilpotent. Conversely, if g/Zf (g) is nilpotent of class s, then g(s)/Zf (g) =(
g/Zf (g)

)(s)
= Zf (g). This implies that g(s) ⊆ Zf (g). So g(s+1) = [g, g(s), g]g ⊆

[g, Zf (g), g]g = 0. Hence g is nilpotent.

It is worth mentioning that the above de�nition of nilpotency appears to extend
the de�nition of nilpotency for both left and right Leibniz algebras [11].

The following theorem classi�es a subfamily of two dimensional nilpotent com-
plex gb-triple systems.

Theorem 4.4. Up to isomorphisms, there are three two-dimensional nilpotent

complex gb-triple systems with one dimensional derived algebra.

Proof. Among the seven two-dimensional complex gb-triple systems with one di-
mensional derived algebra established in the proof of [6, Theorem 11], only the
following are nilpotent, all with class of nilotency s = 3.
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g2 : [ai, aj , ak]g =

{
αa1, if i, j, k = 2

0, else
,

g3 : [ai, aj , ak]g =


a1, if i = 1, j, k = 2

−a1, if i, j = 2, k = 1

0, else

,

g6 : [ai, aj , ak]g =


a1, if i = 1, j, k = 2

−a1, if i, j = 2, k = 1

αa1, if i, j, k = 2

0, else

,

with α 6= 0.

It was shown in [3] that every maximal subalgebra m of a nilpotent 3-Lie
algebra L is an ideal of L. The following example shows that this statement does
not hold for gb-triple systems, and Corollary 4.7 shows that the result holds if m
is a maximal left ideal (or right ideal).

Example 4.5. Consider the nilpotent gb-triple system g3 above with basis {a1, a2}.
The one-dimensional subspace with basis {a2} is a maximal subalgebra of g3, but
not an ideal of g3 since [a1, a2, a2]g = a1 /∈< a2 > .

As in Lie algebras, we say that a gb-triple system g satis�es the right normalizer
condition if there is no proper subalgebra S of g such thatNr

g(S) = S. The following
result which holds for groups and Leibniz algebras also holds gb-triple systems, and
the proof is similar.

Proposition 4.6. Nilpotent gb-triple systems satisfy the right normalizer condi-

tion.

Corollary 4.7. If m is a maximal left or rihgt ideal of a nilpotent gb-triple system

g, then m is an ideal of g.

Proof. Since g is nilpotent, it follows from Proposition 4.6 that m 6= Nr
g(m). So by

Remark 3.2, Nr
g(m) = g. Hence m is an ideal of g.

4.2. Engel's Theorem for gb-triple systems

De�nition 4.8. (cf. [17]) A Leibniz algebra (sometimes called a Loday algebra,
named after Jean-Louis Loday) is a K vector space L with a bilinear product [−,−]
satisfying the Leibniz identity

[x, [y, z]] = [[x, y] z] + [y, [x, z]] (4.1)
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.
A Leibniz algebra L is nilpotent if L<s> = 0 for some positive integer s, where

L<1> = L and L<s+1> = [L,L<s>]. A 2-sided ideal of L is a subalgebra I of L
satisfying [I, L] ⊆ L and [L, I] ⊆ L.

Proposition 4.9. Every Leibniz algebra L has a gb-triple system structure given

by the bracket

{x, y, z} = [[x, z], y].

Proof. To check that {−,−,−} satis�es the identity (2.1), let x, y, a, b, c ∈ L; we
have on one hand

{x, y, {a, b, c}}+ {{a, x, c}, y, b} = [[x, {a, b, c}], y] + [[{a, x, c}, b], y]
=
[
[x, [[a, c], b]], y] + [[[a, c], x], b], y

]
=
[
[[a, c], [x, b]], y

]
.

On the other hand

{a, {x, y, b}, c} − {x, {a, y, c}, b} =
[
[a, c], {x, y, b}

]
−
[
[x, b], {a, y, c}

]
=
[
[a, c], [[x, b], y]

]
−
[
[x, b], [[a, c],y]

]
.

The equality holds by the identity (4.1).

Now recall that for a gb-triple system g, g⊗2 is a Leibniz algebra (see [6, Propo-
sition 2.1]) when endowed with the bracket[

a1 ⊗ a2, b1 ⊗ b2
]
g⊗2 =

[
a1, b1, a2

]
g
⊗ b2 + b1 ⊗

[
a1, b2, a2

]
g
.

Lemma 4.10. Let k be a positive integer such that k > 2. Then for all a1, b1, a2, b2,
. . . , ak, bk, g1, g2 ∈ g we have[

a1 ⊗ b1,
[
a2 ⊗ b2,

[
. . . , [ak ⊗ bk, g1 ⊗ g2]g⊗2

]
g⊗2

]
g⊗2

]
g⊗2

= [a1, [a2, [. . . [ak, g1, bk]g . . .]g, b2]g, b1]g ⊗ g2
+ g1 ⊗ [a1, [a2, [. . . [ak, g2, bk]g . . .]g, b2]g, b1]g

+

k−1∑
i=1

[a1, [a2, . . . , [âi, . . . [ak, g1, bk]g . . . , b̂i]g, . . . b2]g, b1]g ⊗ [ai, g2, bi]g

+

k−1∑
i=1

[ai, g1, bi]g ⊗ [a1, [a2, . . . , [âi, . . . [ak, g2, bk]g . . . , b̂i]g, . . . b2]g, b1]g,

where ĝ means that the variable g is deleted.

Proof. The proof follows by induction and by the formula (2.1) in [6, Proposition
2.1].



34 G.R. Biyogmam

Corollary 4.11. If g is a nilpotent gb-triple system of class s, then g⊗2 is a

nilpotent Leibniz algebra of class s+ 1.

Proof. The proof follows directly by Lemma 4.10.

Recall also that the map Ag1⊗g2 : g −→ g de�ned by Ag1⊗g2(z) = [g1, z, g2]g is
a derivation of g, and the subspace A(g) =

{
Ag1⊗g2 | g1, g2 ∈ g

}
is a Lie algebra

(see [6, Proposition 2.1]) with respect to the product[
Aa1⊗a2 , Ab1⊗b2

]
A(g)

= Aa1⊗a2 ◦Ab1⊗b2 −Ab1⊗b2 ◦Aa1⊗a2 .

Proposition 4.12. Let g be a gb-triple system, K=
{
g1 ⊗ g2 ∈ g⊗2 |Ag1⊗g2 = 0

}
.

If h := g⊗2/K is a nilpotent Leibniz algebra of class s, then g⊗2 is a nilpotent

Leibniz algebra of class s+ 1.

Proof. From the proof of [6, Proposition 2.4], we have

A[a1⊗a2,b1⊗b2]g⊗2
=
[
Aa1⊗a2

, Ab1⊗b2
]
A(g)

for all a1, a2, b1, b2 ∈ g. It follows that K is a 2-sided ideal of g⊗2. Since h is

nilpotent of class s, ad
(s)
h (h) =

{
[h1, [h2, [. . . , [hs, h]h]h]h]h, h1, h2, . . . , hs, h ∈ h

}
=

K. This implies that ad
(s)
g⊗2(g

⊗2) ⊆ K. Now for all g1 ⊗ g2 ∈ K and a ⊗ b ∈ g⊗2,
we have

adg1⊗g2(a⊗ b) = [g1 ⊗ g2, a⊗ b]g⊗2

= [g1, a, g2]g ⊗ b+ a⊗ [g1, b, g2]g

= Ag1⊗g2(a)⊗ b+ a⊗Ag1⊗g2(b) = 0.

So [K, g⊗2]g⊗2 = adK(g⊗2) = 0. Therefore

ad
(s+1)
g⊗2 (g⊗2) =

[
ad

(s)
g⊗2(g

⊗2), g⊗2
]
g⊗2 ⊆ [K, g⊗2]g⊗2 = 0.

Hence g⊗2 is nilpotent of class s+ 1.

The following theorem is known as Engel's Theorem. It was extended to Leibniz
algebras in [1].

Theorem 4.13. (cf. [13]) A Lie algebra L is nilpotent if and only if adx is nil-

potent for any x ∈ L, where adx(y) := [x, y].

Note that the Leibniz algebras version of Theorem 4.13 could be used to prove
Proposition 4.12.

The following is a Engel-like Theorem for gb-triple system.

Theorem 4.14. A gb-triple system g is nilpotent if and only if Ag1⊗g2 is nilpotent

for every g1, g2 ∈ g.
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Proof. Assume that g is nilpotent. Then g(s) = 0 for some positive integer s. So
for every g, a1, . . . , as−1, b1, . . . , bs−1 ∈ g,

[a1, [a2, [. . . , [as−1, g, bs−1]g . . .]g, b2]g, b1]g = 0.

that is

Aa1⊗b1 ◦Aa2⊗b2 ◦ . . . ◦Aas−1⊗bs−1(g) = 0.

In particular,(
Ag1⊗g2 ◦Ag1⊗g2 ◦ . . . ◦Ag1⊗g2︸ ︷︷ ︸

(s-1)-times

)
(g) = 0 for every g1, g2 ∈ g.

So for every g1, g2 ∈ g, Ag1⊗g2 is nilpotent.
Conversely, assume that Ag1⊗g2 is nilpotent for every g1, g2 ∈ g. So the Lie

algebra A(g) =
{
Ag1⊗g2 | g1, g2 ∈ g

}
is a Lie algebra of nilpotent linear maps.

Moreover, by the proof of [6, Proposition 3.6], A(g) is an ideal of Der(g), and
thus a closed subset of End(g). It follows by [9, Theorem 3.5] that the associative
subalgebra generated by A(g) is nilpotent. So there exists a positive integer s such
that(

Aa1⊗b1 ◦Aa2⊗b2 ◦ . . . ◦Aas⊗bs
)
(g) = 0 for all g, a1, . . . , as, b1, . . . , bs ∈ g.

This implies that

[a1, [a2, [. . . , [as, g, bs]g . . .]g, b2]g, b1]g = 0 for all g, a1, . . . , as, b1, . . . , bs ∈ g.

Hence g(s+1) = 0. Therefore g is nilpotent.

Corollary 4.15. Let g be a gb-triple system. Then if g is nilpotent, so is any

subalgebra S of g.

Proof. Let S be a subalgebra of g. If S is not nilpotent, then by Theorem 4.14

there exists g1, g2 ∈ S such that the restriction A
(s)
g1⊗g2 |S 6= 0 for all positive

integer s. But this implies that A
(s)
g1⊗g2 6= 0 for all positive integer s. So Ag1⊗g2 is

not nilpotent, and thus g is not nilpotent by Theorem 4.14.

Corollary 4.16. If L is nilpotent as a Leibniz algebra, then L is also nilpotent as

a gb-triple system.

Proof. For all g1, g2 ∈ g, Ag1⊗g2 = ad[g1,g2] by Proposition 4.9. The result now
follows by applying both Engel's theorems for Leibniz and gb-triple systems.

4.3. Nilpotent ideals of gb-triple systems

For an ideal I of a gb-triple system g, consider the series de�ned by I(0) = g, and
I(s+1) = [I, I(s), g] with I(1) = I where s is a positive integer, s > 1.

Proposition 4.17. I(s) is an ideal of g for every integer s > 0.
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Proof. The cases s = 0, 1 are trivial. By induction, assume that for s > 2, I(s−1)

is an ideal of g and let x, y, z ∈ g, b ∈ I and a ∈ I(s−1). Then it follows from the
identity (2.1) that

[x, [b, a, z]g, y]g = [b, a, [x, z, y]g]g + [[x, b, y]g︸ ︷︷ ︸
∈ I

, a, z]g + [b, [x, a, y]g︸ ︷︷ ︸
∈ I(s−1)

, z]g ∈ I(s).

So I(s) is an ideal of g.

Proposition 4.18. Let I1 and I2 be two ideals of g such that I1 ⊆ I2. Then

I
(s)
1 ⊆ I

(s)
2

for all integer s > 0.

Proof. The cases s = 0, 1 are trivial. By induction, assume that the result is true

for s > 2. Then I
(s+1)
1 = [I1, I

(s)
1 , g]g ⊆ [I2, I

(s)
2 , g]g = I

(s+1)
2 .

De�nition 4.19. An ideal I of g is nilpotent if I(s) = 0 for some positive integer

s. The smallest of such values s is called class of nilpotency of I.

The following lemma provides the �tting decomposition of a gb-triple system
relative to a derivation in A(g).

Lemma 4.20. Let g be a �nite dimensional gb-tiple system and g1, g2 ∈ g. Then

g = g0 ⊕ g1

with g0 =
{
x ∈ g | A(s)

g1⊗g2(x) = 0 for some integer s > 0
}
and Ag1⊗g2(g) = g

Proof. Apply the Fitting Lemma [15, Chapter 2] on the linear transformation
Ag1⊗g2 .

The spaces g0 and g1 are called the Fitting null and one-components of g with
respect to Ag1⊗g2 .

The following theorem was proved in [4] for Lie algebras and in [18] for n-Lie
algebras.

Theorem 4.21. Let g be a gb-triple system. If I1 and I2 are 3-sided ideals of g
such that I1 ⊆ φ(g) ∩ I2 and I2/I1 is nilpotent, then I2 is nilpotent.

Proof. We proceed by contradiction. Assume that I2 is not nilpotent. Then by

Theorem 4.14, there exists g1, g2 ∈ I2 such that A
(s)
g1⊗g2(x) 6= 0 for all positive

integer s. By Lemma 4.20 let g0 and g1 be the Fitting null and one-components of
g with respect to Ag1⊗g2 . Since I2 is a 3-sided ideal, it follows that g1 ⊆ I2. Also,

since I2/I1 is nilpotent we have I
(k)
2 ⊆ I1 for some positive integer k. It follows

by de�nition of g1 that g1 = A
(k)
g1⊗g2(g1) ⊆ I

(k)
2 ⊆ I1. Therefore g1 ⊆ φ(g). So
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g = g0 + φ(g). Now since by [6, Proposition 2.6] Ag1⊗g2 is a derivation of g, g0 is
a subalgebra of g. So there is a maximal subalgebra m that contains g0. Since by
de�nition φ(g) ⊆ m , it follows that m = g. This contradicts the maximality of m.
Therefore I2 is nilpotent.

Corollary 4.22. Every 3-sided ideal of a gb-tiple system g contained in the Frat-

tini ideal φ(g) is nilpotent. In particular, if φ(g) is a 3-sided ideal, then φ(g) is a

nilpotent ideal of g.

Proof. Let I be a 3-sided ideal of g such that I ⊆ φ(g). The result follows from
Theorem 4.21 by setting I1 = I2 = I. In particular, take I = φ(g) to show that
φ(g) is nilpotent.

Corollary 4.23. Let g be a gb-triple system for which φ(g) is a 3-sided ideal.

Then g/φ(g) is nilpotent if and only if g is nilpotent.

Proof. The �rst implication follows from Theorem 4.21 by setting I1 = φ(g) and
I2 = g. Conversely, if g is nilpotent, then g(s) = 0 for some positive integer s. So(
g/φ(g)

)(s)
= g(s)/φ(g) = φ(g).

5. Invariance of the nilradical under derivations

The following Lemma which was proved (see [9, Lemma 3.3]) for Leibniz 3-algebras
also holds for gb-triple systems, and the proof is identical.

Lemma 5.1. For every derivation d of g and every positive integer s,

ds([x, y, z]g) =
∑

i+j+k=s

s!

i!j!k!

[
di(x), dj(y), dk(z)

]
g
. (5.1)

Analogues of the following results were established in [16] for Leibniz 3-algebras.

Proposition 5.2. Let I be an ideal of a gb-triple system g and d a derivation of

g. Then (
d(I)

)(s) ⊆ ds(I(s)) (5.2)

for all positive integer s.

Proof. Notice that the assertion is trivial for s = 1. Now assume by induction that
the result holds for any positive integer s, then(
d(I)

)(s+1)
=
[
d(I),

(
d(I)

)(s)
, g
]
g
⊆
[
d(I),

(
ds(I(s)

)
, g
]
g
⊆ ds+1

(
I(s+1)

)
by (5.1).
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Proposition 5.3. Let I be an ideal of a gb-triple system g and d a derivation of

g. Then for all s > 2,

(
I+ d(I)

)(s) ⊆ I+
(
d(I)

)(s)
+

s−1∑
i=1

di(I(s)). (5.3)

Proof. We verify the assertion for s = 2.(
I+ d(I)

)(2)
= [I+ d(I), I+ d(I), g]g

⊆ I+ [I, d(I), g]g + [d(I), d(I), g]g

⊆ I+ d(I(2)) + (d(I))(2) by (5.1).

Now assume by induction that the result holds for any positive integer s, then(
I+ d(I)

)(s+1)
=
[
I+ d(I),

(
I+ d(I)

)(s)
, g
]
g

⊆
[
I+ d(I), I+

(
d(I)

)(s)
+

s−1∑
i=1

di(I(s)), g
]
g

⊆ I+ [I, (d(I))(s), g]g +

s−1∑
i=1

[
I, di(I(s)), g

]
g

+ [d(I), (d(I))(s), g]g +

s−1∑
i=1

[
d(I), di(I(s)), g

]
g

⊆ I+ ds(I(s+1))︸ ︷︷ ︸
by (5.2) and (5.1)

+

s−1∑
i=1

di(I(s+1))︸ ︷︷ ︸
by (5.1)

+(d(I))(s+1)

+

s−1∑
i=1

di+1(I(s+1)) by (5.1)

⊆ I+ 2

s∑
i=1

di(I(s+1)) + (d(I))(s+1)

⊆ I+

s∑
i=1

di(I(s+1)) + (d(I))(s+1).

For the remainder of this paper, we assume that all ideals are also right ideals.
We call them 2-sided (right) ideals.

Lemma 5.4. If I1 and I2 are 2-sided (right) ideals of a gb-triple system g, then(
I1 + I2

)(s) ⊆ ∑
i+j=s,
06i,j6s

I
(i)
1

⋂
I
(j)
2 .
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Proof. By de�nition,
(
I1+I2

)(1)
= I1+I2 = I

(1)
1

⋂
I
(0)
2 +I

(0)
1

⋂
I
(1)
2 since I

(0)
1 =

I
(0)
2 = g. By induction, assume the result holds for

(
I1 + I2

)(s−1)
. Then

(
I1 + I2

)(s)
= [I1 + I2,

(
I1 + I2

)(s−1)
, g]g

= [I1,
(
I1 + I2

)(s−1)
, g]g + [I2,

(
I1 + I2

)(s−1)
, g]g

⊆ [I1, I
(s−1)
1 , g]g +

s−2∑
r=1

[
I1, I

(s−r−1)
1

⋂
I
(r)
2 , g

]
g
+ [I1, I

(s−1)
2 , g]g

+ [I2, I
(s−1)
1 , g]g +

s−2∑
r=1

[
I2, I

(s−r−1)
1

⋂
I
(r)
2 , g

]
g
+ [I2, I

(s−1)
2 , g]g

⊆
∑

i+j=s,
06i,j6s

I
(i)
1

⋂
I
(j)
2

because [
I1, I

(s−r−1)
1

⋂
I
(r)
2 , g

]
g
⊆ I

(s−r)
1

⋂
I
(r)
2 ,[

I2, I
(s−r−1)
1

⋂
I
(r)
2 , g

]
g
⊆ I

(s−r−1)
1

⋂
I
(r+1)
2 ,

and [
I1, I

(s)
2 , g

]
g
⊆ I

(1)
1

⋂
I
(s)
2 ,

[
I2, I

(s)
1 , g

]
g
⊆ I

(s)
1

⋂
I
(1)
2

as I
(s−r−1)
1 , I

(r)
2 , I

(s)
1 , I

(s)
2 are ideals and I1, I2 are right ideals.

Proposition 5.5. If I1 and I2 are nilpotent 2-sided (right) ideals of g, then I1+I2
is also a nilpotent 2-sided (right) ideal of g.

Proof. This follows by de�nition and using Lemma 5.4. More precisely one shows
that if I1 is nilpotent of class s1 and I2 is nilpotent of class s2, then I1 + I2 is
nilpotent of class s1 + s2.

As a consequence of Proposition 5.5, the sum of all nilpotent 2-sided (right)
ideals of g is also nilpotent and contains all nilpotent 2-sided (right) ideals of g.
It is the unique maximal nilpotent 2-sided (right) ideal called nilradical 2-sided
(right) ideal of g and denoted N.

The following result shows that N is invariant under derivations of g.

Corollary 5.6. For every derivation d of g, we have d(N) ⊆ N.

Proof. Since N is nilpotent, N(s) = 0 for some positive integer s. Then by (5.2)

and (5.3), it follows that
(
N + d(N)

)(s) ⊆ N +
(
d(N)

)(s) ⊆ N + ds(N(s)) ⊆ N.

Now by Proposition 4.18,
(
N+ d(N)

)(2s) ⊆ N(s) = 0. Thus N+ d(N) is nilpotent.
Therefore N+ d(N) ⊆ N as N is maximal. Hence d(N) ⊆ N.



40 G.R. Biyogmam

References

[1] Sh.A. Ayupov, B.A. Omirov, On Leibniz algebras, Algebra and Operator The-
ory, Proc. Colloq. in Tashkent, 1997, Kluwer Acad. Publ. 1− 13.

[2] R.P. Bai, L.Y. Chen, D.J. Meng, The Frattini subalgebra of n-Lie algebras,
Acta. Math. Sinica 23 (2007), 847− 856.

[3] R.P. Bai, L. Lili, L. Zhenheng, Elementary and φ-free Lie triple systems,
Acta. Math. Sinica 32 (2012), 2322− 2328.

[4] D. Barnes, On the cohomology of soluble Lie algebras, Math. Zeit. 101 (1967),
343− 349.

[5] D. Barnes, Some theorems on Leibniz algebras, Commun. Algebra 39 (2011),
2463− 2472.

[6] G.R. Biyogmam, Introduction to gb-triple systems, ISRN Algebra, 2014, Article
ID 738154, 5 pp.

[7] G.R. Biyogmam, Lie central triple racks, Int. Electron. J. Algebra 17 (2015),
58− 65.

[8] M.R. Bremner, J. Sánchez-Ortega, Leibniz triple systems, Commun. Con-
temp. Math. 14 (2013), 189− 207.

[9] L.M. Camacho, J.M. Casas, J.R. Gómez, M. Ladra, B.A. Omirov, On

nilpotent Leibniz n-algebras, J. Algebra Appl. 11 (2012), Article 1250062, 17 pp.

[10] J.M. Casas, J. Loday, T. Pirashvili, Leibniz n-algebras, Forum Math. 14
(2002), 189− 207.

[11] A. Fialowski, A.Kh. Khudoyberdiyev, B.A. Omirov, A characterization of

nilpotent Leibniz algebras, Algebras and Representation Theory 16 (2013), 1489−
1505.

[12] V.T. Filippov, n-Lie algebras, Sibirsh. Mat. Zh., 26 (1985), 126− 140.

[13] T. Hawkins, Emergence of the theory of Lie groups, Sources and Studies in the
History of Math. and Phys. Sci., Springer-Verlag, Berlin, New York, 2000.

[14] N. Jacobson, Lie and Jordan triple systems, Amer. J. Math. 71 (1949), 149−170.

[15] N. Jacobson, Lie algebras, Wiley, New York, 1962.

[16] F. Gago, M. Ladra, B.A. Omirov, R.M. Turdibaev, Some radicals, Frattini

and Cartan subalgebras of Leibniz n-algebras, Linear and Multilinear Algebra 61
(2013), 1510− 1527.

[17] J.L. Loday, Une version non commutative des algèbres de Lie: Les algèbres de

Leibniz, L'Enseignement Math. 39 (1993), 269− 293.

[18] M.P. Williams, Frattini theory for n-Lie algebras, Algebra Discrete Math. 2
(2009), 108− 115.

Received August 25, 2016

Department of Mathematics, Southwestern Oklahoma State University, 100 Campus Drive,
Weatherford, OK 73096, USA,
E-mail: guy.biyogmam@swosu.edu


